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Abstract

Neural Radiance Fields (NeRFs) have recently emerged
as a powerful tool for 3D scene representation and ren-
dering. These data-driven models can learn to synthesize
high-quality images from sparse 2D observations, enabling
realistic and interactive scene reconstructions. However,
the growing usage of NeRFs in critical applications such as
augmented reality, robotics, and virtual environments could
be threatened by adversarial attacks.

In this paper we present how generalizable NeRFs can
be attacked by both low-intensity adversarial attacks and
adversarial patches, where the later could be robust enough
to be used in real world applications. We also demonstrate
targeted attacks, where a specific, predefined output scene
is generated by these attack with success.

1. Introduction
Neural Radiance Fields (NeRFs) [1] have emerged as a

groundbreaking paradigm in the domain of 3D scene rep-

resentation and rendering, revolutionizing the way we per-

ceive and interact with virtual environments. NeRFs lever-

age the power of deep learning to capture intricate scene

details [2], enabling the synthesis of photorealistic images

from sparse 2D observations [3]. The ability to reconstruct

high-quality scenes from limited input data has propelled

NeRFs into the forefront of computer vision, computer

graphics, augmented reality [4], robotics [5], and other re-

lated fields.

NeRFs represent 3D scenes as continuous functions,

mapping 3D coordinates to their corresponding scene ap-

pearance properties, such as color and opacity. This con-

tinuous representation distinguishes them from most tradi-

tional 3D models, which often rely on discrete voxels or

point clouds. In essence, NeRFs can be seen as implicit

functions that define the scene’s surface, depth and appear-

ance properties, making them particularly suited for com-

plex and detailed scene reconstruction. They can generate

depth maps [6] and can be used in navigation [7], [8], local-

ization [5] and six degrees of freedom orientation estima-

tion [9].

The significance of Neural Radiance Fields (NeRFs) lies

in their widespread applicability and apart from image ren-

dering, in generating 3D scenes, depth maps, and aiding

navigation. However, it is essential to acknowledge that the

susceptibility of NeRFs to adversarial attacks can introduce

complications and challenges. These attacks could have the

potential to produce unrealistic maps and representations,

leading to the hallucination of non-existent objects within

the scene or the omission of existing objects. As a result,

in various applications employing NeRFs, these adversar-

ial perturbations may give rise to erroneous outcomes and

hinder accurate scene reconstruction and navigation.

The training process of NeRFs involves capturing multi-

view image observations of the scene and optimizing the

model to predict accurate color and opacity values for any

novel viewing angle within the scene’s spatial extent. This

approach enables NeRFs to not only render novel view-

points but also handle dynamic scenes and incorporate ad-

ditional observations over time. Consequently, NeRFs have

opened up exciting possibilities for applications like real-

time virtual reality experiences, interactive architectural vi-

sualizations [10], and advanced autonomous robotic sys-

tems [7].

As NeRFs find increasing adoption in real-world appli-

cations, concerns surrounding their vulnerability to adver-

sarial attacks have surfaced. Adversarial attacks aim to

exploit vulnerabilities in machine learning models by in-

troducing carefully crafted perturbations to the input data.

These perturbations are imperceptible to the human eye but

can lead to drastic misclassifications or erroneous predic-

tions.

In their conventional configurations, NeRFs are trained

in a scene-specific and object-specific manner, involving the

training of a dedicated neural network for each scene. The

neural network’s weights store the scene-specific represen-

tations and knowledge of views and camera angles. While

these networks could potentially be vulnerable to attacks

during the training process, exploiting data poisoning [11]
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or backdoor attacks [12], resulting in the production of in-

valid three-dimensional representations, their lack of gen-

erality limits the potential issues in real-world applications.

As a consequence, the specialized nature of NeRF training

offers a degree of protection against such adversarial pertur-

bations in practical scenarios.

As research on NeRFs has progressed, recent advance-

ments have led to the development of Generalizable Neural

Radiance Fields (GeNeRFs) [13]. These extensions go be-

yond the original NeRF formulation where scene specific

models had to be trained. The capabilities of these models

can encompass both the generation of novel views and the

creation of implicit three-dimensional representations using

known previous views and camera poses. Due to the gen-

eral nature of these methods, there arises a suspicion that

they might be susceptible to attacks through perturbations

of input pixels in the images. Such attacks could potentially

enable the creation of scenes with arbitrary objects.

In this paper, we aim to substantiate this hypothesis

by providing a demonstration of the vulnerability of these

models to adversarial perturbations on one of the most com-

monly used GeNeRF variant: IBRNet [14], showcasing

the potential for generating scenes with arbitrary objects

through these attacks.

Adversarial attacks can take various forms within the

context of NeRFs, including attacks on the embedded 3D

representation, the weights of the trained models or the in-

put pixels. Attacking input pixels is relatively easy, and this

method remains the most significant form of attack as it

does not require access to the image processing pipeline,

making it a potential real-world threat. Consequently, this

study focuses on this form of attack by employing targeted

attack strategies involving both low-intensity attacks [15]

covering all input pixels and patch based attacks [16] being

limited to only a certain region of the image.

Attack strategies can also be distinguished based on the

expected output of the attacks. In case of untargeted attacks

our aim is to modify the output of the network as much as

possible, without any restrictions on the output scene of the

model. Meanwhile in case of targeted attack a predefined

output scene has to be generated by the model as the result

of the attack.

In [17] untargeted attacks have been introduced using

GeNeRFs. The attack methodology and results are inter-

esting, but untargeted attacks do not pose a substantial real-

world threat, as the resulting outputs are often easily de-

tected as non-realistic images, hence their unrestrictedness.

In contrast, this research delves into targeted attacks,

wherein the objective is to create realistic scenes featur-

ing unreal objects on the rendered images, while the gen-

erated depth map were not investigated in the current work.

Given the importance of rendered images as the most com-

monly investigated element, the study specifically focuses

on attacking this aspect. By exploring the vulnerability of

NeRFs to targeted attacks on the rendered image, our re-

search aims to shed light on potential security risks and

the extent of their impact on NeRF-based systems. This

investigation is expected to provide valuable insights into

safeguarding NeRFs against adversarial threats and further

enhancing their reliability and practicality in various real-

world applications.

In this paper, we embark on a comprehensive exploration

of adversarial attacks on NeRFs. We investigate the efficacy

of different attack strategies and evaluate their impact on the

rendering quality, scene reconstruction accuracy, and gener-

alization capabilities of NeRFs.

Our paper is structured the following way: in section 2

we briefly describe Generalized Neural Radiance Fields, in

section 3 we introduce the most commonly applied adver-

sarial attack methodologies and algorithms, in section 4 we

describe our experiments and results and in section 5 we

draw conclusion from them.

2. Generalizable NeRFs
NeRFs present a cutting-edge approach in leveraging

deep neural networks to generate 3D representations of ob-

jects or scenes from 2D images. This innovative technique

involves encoding the complete object or scene within an

artificial neural network, which then predicts the light in-

tensity, also known as radiance, at any specific point in the

2D image. As a result, NeRFs enable the creation of novel

3D views from various angles, revolutionizing the genera-

tion of highly realistic 3D objects automatically.

The exceptional potential of NeRFs lies in their ca-

pacity to represent 3D data more efficiently compared to

other existing methods. This efficiency opens new avenues

for generating highly realistic 3D objects with remarkable

promise. Moreover, when combined with complementary

techniques, NeRFs offer the exciting prospect of signifi-

cantly compressing 3D representations of the world, reduc-

ing data sizes from gigabytes to mere tens of megabytes

[18]. Such advancements hold significant implications for

various fields, enabling streamlined and versatile 3D data

generation and manipulation.

GeNeRF variants like [19],[20], [21], [14] enable cross-

scene generalization via two modifications on top of tra-

ditional NeRFs: Firstly, these variants condition NeRFs

on the source views of new scenes. This involves uti-

lizing a limited number of observed source views from a

new scene to extract features via a Convolutional Neural

Network (CNN) encoder. These features are then used as

scene priors and fed into mostly feed-forward neural net-

works combined with transformer architectures. Secondly,

the variants incorporate a ray transformer, which operates

on all points along the same ray, enhancing the density pre-

diction.
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The most common steps implemented by the GeNeRF

models can be summarized as follows: 2D feature maps

{Wi}Si=1 are inferred for a total of S source views {Ii}Si=1

using a pretrained CNN encoder E, where Wi = E(Ii) rep-

resents a 3D tensor. (Notably, this process requires only a

one-time effort for each new scene.) A ray r(t) = o + td
is emitted from the origin o of the virtual camera along

the view direction d to pass through the pixel to be ren-

dered. 3D points xk are sampled along the ray based on

an ordered depth sequence tk drawn from a certain distribu-

tion. Each sampled 3D point xk is projected onto the im-

age planes of source views using a project transformation

π, obtaining the corresponding scene features Wi(π(xk))
for all S source views. The scene features acquired in the

previous step are applied to an MLP model f to derive the

color ck and volumetric density σk for each point. Com-

pared to scene specific NeRF models, instead of directly

predicting volumetric densities σk some architectures im-

plement a two-step process where density features fσ
k are

predicted, and the final volumetric density prediction is de-

termined by a transformer architecture T having as input all

the fσ
k vectors of every sample. Occlusion aware volume

rendering is performed in the final step by taking into ac-

count the relative viewing directions or predicting visibility

probabilities. During training, the networks E, f, and T are

updated using the Mean Squared Error (MSE) loss or other

pixel-based distance metrics, ensuring effective learning of

the rendering process.

From the various variants of GeNeRFs we have selected

IBRNet [14] for our investigations, which is commonly ap-

plied and highly cited variant, capable of rendering state

of the art images from new views on novel scenes. Since

the whole rendering pipeline is differentiable, pixels or

parts of the source images can be modified according to

the planned adversarial attacks. We have used a pretrained

model, which was trained on multiple datasets simultane-

ously (LLF [22], RealEstate 10k [23], Google Scanned Ob-

jects [24], etc. ) to be able to cope with generic scenes. For

the sake of reproducibility, the same pretrained model and

data for training and evaluation are available at the follow-

ing link 1

There are more recent implementations and variants of

GeNeRFs, such as [25], which apply geometric constraints

to be more efficient, or [13] where even hardware con-

straints were considered, but these approaches do not differ

significantly from the model of our selection, therefor we

believe that the attacks presented here can be generalized

for these variants as well.

GeNeRFs represent a highly promising real-world so-

lution for novel view synthesis, owing to their remarkable

ability to generalize across different scenes, facilitating in-

1. https://drive.google.com/drive/folders/
1qfcPffMy8-rmZjbapLAtdrKwg3AV-NJe

stant rendering on previously unseen environments. Despite

the critical significance of adversarial robustness in prac-

tical applications, limited attention has been given to ex-

ploring its implications specifically for GeNeRF. We pos-

tulate that GeNeRF’s conditioning on source views from

new scenes, often sourced from the Internet or third-party

providers, may introduce novel security concerns in real-

world scenarios. Additionally, the conventional understand-

ing and solutions for achieving adversarial robustness in

neural networks may not directly apply to GeNeRFs, given

its distinctive 3D nature and diverse operations.

3. Adversarial attacks
The concept of adversarial attacks originated from the

pioneering work of [26]. It brought to light a crucial reve-

lation about deep neural networks. Despite their ability to

generalize effectively and perform well on conventional in-

put data and even on similar inputs, they possess a vulnera-

bility to exploitation by malicious agents. This vulnerability

stems from the high-dimensional nature of inputs, enabling

the generation of non-realistic input samples that generate

outputs, which deviate drastically from human judgment

and the expected outcomes.

The initial adversarial attacks proposed by Goodfellow

et al. [15] involved calculating the sign of the gradient of

the cost function (J) with respect to the input (x) and ex-

pected output (y), which was then scaled by a constant (ε)
to control the intensity of the noise. This method, known as

the Fast Gradient Sign Method (FGSM), allowed for rapid

generation of attacks.

Rozsa et al. [27] extended FGSM by utilizing not just the

sign of the raw gradient but also a scaled version of the gra-

dient’s magnitude, termed the Fast Gradient Value method.

Furthermore, Dong et al. [28] proposed an iterative ver-

sion of FGSM that incorporated momentum into the equa-

tion. The inclusion of momentum was inspired by the con-

cept of optimization during model training, with the goal of

avoiding poor local minima and non-convex patterns in the

objective function’s landscape.

Moosavi et al. [29] approached adversarial attacks from

the perspective of binary classifier robustness. They formu-

lated the idea that a binary classifier’s robustness at a given

point x0 is determined by its distance from the separating

hyperplane Δ(x0; f). They derived a closed-form formula

to calculate the smallest perturbation required to change the

classifier’s output and applied these perturbations iteratively

to the image until the classifier’s decision changed. This ap-

proach was later extended to address multiclass classifica-

tion problems as well.

While these methods were crucial for theoretical under-

standing, their application to neural networks in practical,

real-world applications has limited significance due to their

low-intensity, constrained noise application. In real-world
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scenarios, even the smallest perturbations, such as those

arising from environmental factors like perspective, illumi-

nation changes, or lens distortion, can completely disrupt

the desired results. Therefore, the utilization of these at-

tacks in practical applications is not feasible [30].

In [16], [31] robust and real-world attacks were pre-

sented against various classification networks. These meth-

ods create an adversarial patch, where instead of the

global, but low-intensity approaches, distortions appear in

a region with limited area, but intensity values are not

bounded2. Successful attacks with adversarial patches were

also demonstrated using black and white patches only [32],

where not the intensities of the patch, but the locations and

sizes of the stickers are optimized. These attacks, where

the gradients of the networks are not necessarily used dur-

ing optimization open space towards black-box attacks [33],

[34], where the attacker needs access only to the final re-

sponses, confidence values to generate attacks using evolu-

tionary algorithms.

A general overview of adversarial attacks, containing a

more detailed description of most of the previously men-

tioned methods can be found in the following survey paper

[35]. The resilience of segmentation networks against ad-

versarial attacks was investigated heavily in the past years

[36], [37], [38], [39].

Subsequent years witnessed extensive investigations into

the potential of exploiting adversarial attacks. Researchers

developed novel attack strategies to enhance the robustness

of generated attacks [16], [31], even enabling black-box at-

tacks, which do not require access to the network gradients

[32], [33], [34].

Moreover, advancements were made in extending adver-

sarial attacks to more complex tasks beyond classification,

such as detection and localization problems [40]. These in-

novative techniques were applied to diverse network archi-

tectures, including Faster-RCNN [41].

According to our best knowledge adversarial attacks has

not be presented and investigated in GeNeRF models apart

from [17], which is restricted to low-intensity and untar-

geted attacks.

4. Method and Results
Our proposed method for the adversarial attack on GeN-

eRFs is shown in Fig. 1. We have selected a pretrained

model of the IBRNet as a GeNeRF. For a certain pose and

source images we created a new rendered image. We man-

ually placed a hallucinated object on the rendered image.

The resulting image serves as the adversarial ground truth

image. The residual loss is always computed between the

adversarial ground truth image and the currently rendered

image at the same pose. This is an important regularizer be-

2apart from the global bounds of image values

cause ignoring the gradients coming from the non-attacked

regions might significantly deteriorate the image quality in

these parts.

Since these modifications were manual we have to ad-

mit the they can be biased in two ways. On one hand they

might disturb the real structure of the images (artificial in-

sertion and deletion might cause extremely strong edges in

the image), on the other hand the modifications are subjec-

tive and other people might desire different modifications.

We would argue that this subjectivity is unavoidable and we

were carefully generating three different types of modifica-

tions:

• types where the shape of existing objects are modified.

• types where existing images were deleted from scenes

and substituted by background pixels

• types where new objects were added to the scenes

A few samples of these modifications and the result of

attacks using these image as desired outputs can be seen in

Fig. 2.

4.1. Low-intensity Attacks

For our investigation into low-intensity attacks, we opted

for the iterative version of FGSM with momentum [28] as

the attack mechanism. Our setup involved 1000 iterations,

with parameter ε set to 0.01.

In a typical low-intensity attack on classification prob-

lems, a single input image is used, allowing modifications

to all its pixels until a predefined threshold is reached. How-

ever, since GeNeRFs utilize multiple input images, referred

to as source images or source views, attackers can simulta-

neously modify all or a subset of these images. To explore

the impact of different attack scenarios, we devised five se-

tups with varying numbers of source images: 10, 8, 6, 5, and

4. The quality of the generated image depends on the num-

ber of source images, generally improving with an increase

in this number. Our investigation covered cases where one,

two, three, and so on, up to all source images were subject

to modification.

This investigation holds significance as it addresses real-

world scenarios where images from events are uploaded to

a common dataset by users or multiple autonomous robots.

In such cases, understanding the necessary number and per-

centage of images to be attacked for successful modifica-

tions in the rendered output image becomes crucial. This

way Our research aims could provide valuable insights into

enhancing the security and reliability of GeNeRFs in vari-

ous practical applications.

The quality of the attack was measured as the average

�2 distance between the generated image and our hand-

modified ground truth image. We have executed this ex-

periment on ten different scenes, repeating each attack ten

3721



Generalizable NeRF
  

 
 

Volume render

Current render

Ground truth render

H
al

lu
ci

na
te

d 
ob

je
ct

Source im
ages

Figure 1: Adversarial attack on generalizable NeRFs. A ground truth render is created for the adversarial pose and a hallucinated object is

randomly placed on the rendered image. Since all the components of the pipeline are fully differentiable, the goal is to modify the source

images such that the resulting render will be close to the attacked ground truth render. The back-propagated gradients of the residual image

are used to alter the source images within certain bounds.

times (to average out the stochastic nature of the attack al-

gorithm) and the quantitative summary of the results can be

seen in Fig. 3.

These results clearly indicate that attacks were success-

ful in most cases when a significant majority of the source

views were targeted. In our setup, an attack can be con-

sidered successful when the average pixel distance dropped

below 0.015, while unsuccessful attacks resulted in values

above 0.020. It is important to note that these threshold

values may vary depending on the scene, but as observed in

Fig. 2, scenes with only a small region altered in the image

can be used as a rule of thumb. Additional results contain-

ing PSNR, SSIM and LPIPS measures can be found in table

1.

These findings highlight the overall robustness of GeN-

eRFs, as the generated images remained reliable in cases

where the majority of the source images were left un-

touched. However, the study also underscores the vulner-

ability of the system when an attacker gains access to most

of the source images, enabling arbitrary modifications to the

output. Understanding and addressing these security impli-

cations are crucial as GeNeRFs and similar technologies ad-

vance, ensuring their safe and reliable application in various

practical scenarios.
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Figure 2: Samples cases from evaluation part of the LLFF dataset. Here we display three different samples, one in each row. The first

column contains the original output images of the network without any attacks, the second column contains the modified images which

were used as ground truth during the attacks. These modifications were done manually. The third column contains the output images of

the network after the attack. In this setup the images were generated using ten different views and attacks were applied on all input images.

The attacks were generated using FGSM for 1000 iterations with and ε value of 0.01. As these images demonstrate adversarial attacks

were successful and we were able to modify objects in the scene (fern), delete objects from the scene (orchids) and render non-existing

objects in the scene (room).

4.2. Patch-based attacked

Low-intensity attacks may hold academic interest, but

their significance diminishes when considering real-world

applications, primarily due to the limited access attackers

have to the image processing pipeline. However, the most

straightforward and practical way to target neural networks

is by modifying the real environment itself. In such scenar-

ios, attackers can manipulate small regions within the im-

age while freely altering the pixel values in this designated

region. To effectively simulate and study these real-world

threats, we have focused our investigation on patch-based

attacks.

Patch-based attacks provide a suitable framework to un-

derstand the vulnerabilities of neural networks in the face

of real-world adversarial manipulations. By restricting our

attention to specific regions in the image, we emulate the

scenario where an attacker can locally modify the environ-

ment while leaving the rest of the scene intact. The arbi-

trary nature of pixel values within these patches allows us

to evaluate the robustness of the neural networks against un-

predictable and potentially damaging alterations.

For low-intensity attacks, the algorithm’s crucial param-

eter is the ε value, intended to ensure the challenging de-

tectability of these modifications. Similarly the size of the

patch applied is the most crucial parameter in patch-based

attacks, akin to the significance of the amount of maximal

change in low-intensity attacks. To examine the impact of

patch size on these attacks, we employed the same set of
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Figure 3: This plot depicts the dependence of attack quality on

the number of source views and the number of attacked samples

in case of GeNeRFs. The Y axes plots the average �2 distance

between the pixels of the ground truth image and the image gener-

ated by the network after the attack. Lower values mean the attack

was more successful, since this case the network output was closer

to our desired output. The X axes contains the number of attacked

images, meanwhile the different colored plots depicts outputs gen-

erated from different number of source views. As it can be seen

from these results attacks are not successful (they generate a larger

distance) until the number of attacked views will not reach the ma-

jority of the source views. Each point in these measurements were

generated as the average of 10 independent runs and on ten differ-

ent scenes.

10 scenes previously generated. For each scene, desired

attack outputs were manually specified, and patches were

automatically placed at the center of the images. This ap-

proach ensured that the patches were not closely positioned

to the regions already modified.

Clearly, a patch covering the modified region could in-

fluence the outcome, especially when applied near or at the

boundary of the effect. However, the most critical scenario

to consider is when patches have far-reaching effects, alter-

ing pixels that are not in close proximity to them and keep-

ing the original output value of other regions.

Our experimental investigations involved generating

patches of sizes 2 × 2, 5 × 5, 10 × 10, and 20 × 20, and

then assessing their respective effects on the scenes. The

results of these experiments are illustrated in Fig. 4, pro-

viding valuable insights into the relationship between patch

size and the success of patch-based attacks. Additional re-

sults containing PSNR, SSIM and LPIPS measures can be

found in table 1.

The results clearly demonstrate the feasibility of patch-

based attacks when the patch size is sufficiently large (typ-

ically 10 × 10 patches in our experiments) and when the

patches are prevalent in the majority of images. In our in-

vestigations, utilizing ten source views, attacks were gen-

erally successful if at least four of them contained a patch

large enough to cause significant impact.

It is essential to highlight that in this experiment, the

Attack L2 ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Low (2/10) 0.022 19.75 0.537 0.242

Low (4/10) 0.016 21.83 0.841 0.168

Low (10/10) 0.011 24.72 0.910 0.163

Patch (2/10) 0.022 18.43 0.588 0.256

Patch (4/10) 0.017 21.60 0.792 0.173

Patch (10/10) 0.011 24.33 0.903 0.114

Table 1: Within this table, one can find evaluations of attack

methodologies showcased across diverse attributes. The rows la-

beled as ”Low” exhibit outcomes of low-intensity adversarial at-

tacks, whereas those designated as ”Patch” reveal findings from

attacks rooted in patch patch based attack ( with size 20x20). Each

entry corresponds to L2, PSNR, SSIM, and LPIPS metrics (in dif-

ferent columns accordingly). These analyses involve 10 source

views (indicated by the second value in brackets following the at-

tack methods) while the quantity of attacked images is denoted by

the first figure (2, 4, or 10). These measurements were calculated

on the average of 10 independent runs and conducted on ten dif-

ferent scenes.

patches were independently optimized for each source im-

age. Consequently, the pixel values at the same location

could differ across different images, enabling the attacker

to tailor their patches specifically to exploit the vulnerabili-

ties in each individual source view.

These findings underscore the potential threat posed by

patch-based attacks and emphasize the importance of de-

veloping robust defenses against such manipulation tech-

niques. Understanding the adaptability of these attacks to

various scenarios is crucial for strengthening the security of

neural network systems in real-world applications.

These preliminary results demonstrate the feasibility of

patch-based attacks on GeNeRFs. However, our simula-

tions deviate from real-world setups in the following as-

pects:

• The patches are consistently positioned at the center of

images, and their locations remain unchanged regard-

less of the viewpoint.

• The pixel values within the patches are optimized in-

dependently from each other and can vary across dif-

ferent input images.

Addressing these differences in the future is essential to

simulate scenarios where an attacker introduces a real ob-

ject into a scene. Despite these limitations, we are opti-

mistic that this research paves the way for real-world adver-

sarial applications, such as stickers on GeNeRFs.

5. Conclusion
We have demonstrated targeted adversarial attacks on

GeNeRF, revealing important insights into the security vul-
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Figure 4: This plot illustrates how the attack quality is influenced

by the number of source views and the size of the patch applied

during the attack. The Y-axis represents the average �2 distance

between the pixels of the ground truth image and the image gener-

ated by the network after the attack. Lower values indicate more

successful attacks, as they result in the network output being closer

to our desired output. On the other hand, the X-axis represents the

number of attacked images, while the various colored plots depict

outputs generated from different patch sizes. The results demon-

strate that attacks are not successful (they generate a larger dis-

tance) until the number of attacked views encompasses the major-

ity of the source views or when the patch size is too small. These

measurements are based on the average of 10 independent runs

and conducted on ten different scenes.

nerabilities of these networks. The success of the at-

tacks, utilizing methods commonly employed in classifica-

tion tasks, emphasizes the ease with which malevolent at-

tackers can manipulate the generated images. However, our

findings also demonstrate the relative robustness of NeRFs

when multiple views are utilized and not all source images

are accessible to the attacker. In such cases, the effec-

tiveness of the attack diminishes, indicating the importance

of safeguarding access to critical source images. In cases

where the attacker has access to the majority of the views

the quality of the attacks increases significantly.

Additionally, we explored patch-based attacks, where

limited regions of the image are targeted, but arbitrary val-

ues can be introduced. Remarkably, these attacks are not re-

stricted to local neighborhoods, as even distant regions can

be manipulated with such modifications. The position and

view angle of these patches proved to have little impact on

their efficacy, further accentuating the potential threat posed

by these attacks.

While our results indicate that these attacks have the po-

tential to be robust enough for real-world applications, it is

essential to acknowledge that further investigations are nec-

essary to fully comprehend their implications and develop

effective countermeasures. As the field of NeRFs contin-

ues to advance, addressing security concerns and improving

defenses against adversarial attacks becomes imperative to

ensure the trustworthy deployment of these technologies in

various domains.
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