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Abstract

Vision-Language models (VLMs), i.e., image-text pairs

of CLIP, have boosted image-based Deep Learning (DL).

Moreover, Visual-Question-Answer (VQA) tools and open-

vocabulary semantic segmentation provide us with more de-

tailed scene descriptions, i.e., qualitative texts, in captions.

Images from surveillance, auto-drive, and mobile phone

cameras have been used with segmentation and captions.

However, unlike indoor scenes, outdoor scenes with uncon-

trolled illumination and noise can degrade the accuracy of

segmented objects. Moreover, unpredictable events such as

natural phenomena and accidents can cause dynamic and

adverse scene changes over time. This greatly increases

unseen objects due to sudden changes. Therefore, only a

single state-of-the-art (SOTA) VLM and DL model cannot

sufficiently generate and enhance captions. Even one time

VQA is limited to generate a good answer. This paper pro-

poses RoadCAP for refined and enriched qualitative and

quantitative captions by DL models and VLMs with differ-

ent tasks in a complementary manner. In particular, 2D-

Contrastive Physical-Scale Pretraining (CPP) is also pro-

posed for captions with physical scales. An iterative VQA

model is proposed to further refine incomplete segmented

images with the prompts. Experimental results outperform

SOTA DL models and VLMs using images with adverse con-

ditions. A higher semantic level in captions for real-world

scene descriptions is shown as compared with SOTA VLMs.

1. Introduction

Deep Learning (DL) and Vision Language model

(VLM) have become the most useful and effective for real-

world applications, i.e., surveillance cameras in the cities

and highways, auto-driving, and drone cameras [54, 6, 16,

38, 19, 50, 31]. Like DLs, VMLs are useful in various ap-

plications, such as object detection [13, 51, 62, 14, 77, 42,

30, 89, 99, 53, 44], segmentation [46, 10, 33, 88, 95, 49,

41, 86, 73, 82, 43], and classification. Various things and

stuff such as roads, vehicles, pedestrians, buildings, nature,

rivers, and waves have been used to train and infer by DLs

and VMLs.

VLMs can understand vision and text, allowing them

to perform tasks requiring multimodal understanding, i.e.,

Visual Question Answer (VQA), image captioning, or im-

age retrieval. Moreover, VLMs can be pre-trained on large

datasets [61, 52, 34] and fine-tuned on smaller datasets

for specific tasks, allowing for efficient transfer learning

[83, 21, 78, 36]. Notably, VLMs present higher perfor-

mance than DLs and Computer Vision when unseen im-

ages that have not been pretrained have been recognized

[98, 97, 48, 2, 45, 9, 101, 22, 4, 75, 20, 11, 25, 74, 1, 90,

71, 28, 83, 91, 56, 76, 27, 58, 93, 21, 78, 96, 36, 61, 34].

Most state-of-the-art (SOTA) papers in DLs and VLMs

apply images with objects under stable and visible weather

conditions, i.e., clear or cloudy. However, DLs and VLMs

are still vulnerable to illumination changes, i.e., sunbeams,

headlights, and reflection, and weather changes, i.e., rain-

fall, snowfall, and fog. In DLs, these have been tackled

by Dynamic changes have been dealt with by De-raindrops

[59], Defog, and Dehaze [31, 38, 19]. For heavier snow-

fall, rainfall, and fog at twilight and night, incomplete seg-

mentation cannot be avoided. For this issue, SOTA papers

[64, 63] show switching different pre-trained domain mod-

els, but they require a manual selection of domain models

to different scenes. To solve this, SOTA papers [64, 63]

have been proposed to auto-adapt such adverse scenes by

switching different DLs.

On the other hand, the performance of VLMs with VQA

(input of an image and text: output of an answer) and image

captioning (input an image: output text) can be degraded by

dynamic natural phenomena and dramatic scene changes,

i.e., adverse conditions. Since a single VLM with a sin-

gle VQA deals with limited tasks, more modifications to

multiple elements of such adverse conditions are needed.

Since a single question is predefined, an answer cannot be

updated according to such scene changes. It is also noted

that SOTA VLMs rely on segmentation by DLs, but incom-

plete segmentation is obtained. Therefore, incomplete im-
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age2text results are shown accordingly. Moreover, since

non-physical scale-based segmentation is made, resulting

captions do not contain physics-based texts. SOTA VLM

[3, 15, 37, 69, 72, 102, 61] paper presents indoor objects

to describe captions with two-dimensional relationships be-

tween objects. 2D adverbs, i.e., left and next, have been

used. However, three-dimensional relationships between

objects, i.e., distance, will help capture outdoor objects

more clearly using depths.

Adverse weather conditions impact environments and

objects, where rainfall and fog cause low visibility to hu-

man drivers and auto-driving systems. Extremely disastrous

events happen on roads with flooding and landslide. Such

complicated visual conditions on roads may lead to severe

traffic accidents. However, such physical scalings, i.e., me-

ters and volumes of small or large objects, are important to

estimate their depths, widths, and heights. In traffic scenes,

road conditions, i.e., dry, wet, and snow, are the most impact

on any automobile. During rush hours or disaster events, we

can see heavy traffic jams. Therefore, counting of them on

the road becomes helpful in understanding the scene. How-

ever, SOTA DLs and VLMs fail to count far and tiny ob-

jects, i.e., pedestrians, vehicles, birds, and fishes.

Data augmentation is the standard method for enhanc-

ing the performance of DLs and VLMs. However, it is

difficult to collect a sufficient number of training images

in all weather conditions and adverse conditions. On the

other hand, adverse conditions like lens reflection, blur, and

strong illumination may require several times larger image

datasets than normal conditions when enhancing the gen-

eralization performance of DLs and VLMs. Therefore, it

becomes more difficult to collect them. For this, rejection

of such difficult images has been shown efficient and effec-

tive approach [64, 63]. This greatly eliminates to recognize

errous objects.

In order to maximize the recognition capabilities of DLs

and VLMs, tasks to them should be minimized. The sim-

plest architecture is a cascaded model. However, all DLs

and VLMs are necessarily used for a specified task. More-

over, the complementary modules between DLs and VLMs

may boost overall performance. Therefore, the complemen-

tary combination of different DLs and VLMs with different

tasks may be enhanced overall recognition accuracy in im-

ages and texts.

To this end, this paper proposes RoadCAP with multiple

Deep Learning (DL) and Vision Language Models (VLMs)

for the enrichment of captions from many scenes, particu-

larly in adverse weather conditions. DLs and VLMs with

different tasks are complementary in branched architecture

so that each DL and VLM can work in a maximum mode.

Contributions of this paper are fourfold:

1. RoadCAP consists of thirteen modules, i.e., Deep

Visual Language Classification (Dvlc), Deep Vi-

sual Language Segmentation (Dvls), Deep Visual

Language Detection (Dvld), Visual-Query-Answer

(VQA), Contrastive Physical scale Pretraining (2D-

CPP), Deep Visibility estimation (Dvis), Deep Road

conditions (Droad), Deep Depth (Ddepth), Deep

anomaly (Danomal), Deep water-level (Dwater), Deep

snowfall (Dsnow), and Deep Count (Dcount). Most of

the modules are based on transformers. The branched

architecture allows us to maintain and upgrade effi-

ciently. Moreover, progressively processing each mod-

ule at CPU/GPU is helpful to reduce excessive mem-

ory usage of overall modules at one time.

2. In DL modules, Dcount is proposed to count vehicles

in heavy traffic jams, where the number of far tiny ob-

jects is predicted. Dwater is applied to estimate the

physical depth of flooding.

3. In VLM modules, 2D-CPP is proposed with a 2D con-

trastive learning model. Iterative VQA is proposed for

enhancing captions more than one-time VQA.

4. Many experimental results show the superiority of the

proposed RoadCAP over SOTA DLs and VLMs. The

proposed RoadCAP will help notify detailed scene de-

scriptions, i.e., more quantitative texts, to drivers, auto-

driving, and rescue workers from camera images.

2. Related Work

This section briefly describes Deep Learning (DL) and

Vision Language Model (VLM) concerning methods and is-

sues in scene understanding of camera images under various

conditions. Visibility levels are one of the most important

visual factors to estimate for monitoring and auto-driving.

To estimate visibility, segmentation-based DL models have

been reported and used by Dvis [64] and Droad [63].

An all-in-one image restoration network for unknown

corruption has been proposed [32]; however, this method

can be degraded heavy fog and snowfall, as shown in Dvis

[64] and Improved Droad [63]. Dehazing in [16] is limited

to closer views of daytime lighter foggy scenes, i.e., indoor

and garden, unlike the proposed method [64] for far scenes

with heavy fog at night, i.e., highway. A unified framework

for depth-aware panoptic segmentation has been reported

[29] under clear weather conditions.

Although Cityscapes with 3000 images [7], Foggy

Cityscape DBF with 500 synthetic foggy images [67], and

Foggy Zurich with 3800 real light foggy images [68] are

publicly available, they are almost all daytime and lighter

fog data. These datasets do not include specific physical

values; instead, they provide relative position values. More-

over, image datasets for road conditions have not been built,

unlike Droad [64, 63].
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In recent years, the VLM field has experienced signif-

icant progress [92, 98]. But most of them are pre-trained

with large-scale training datasets and fine-tuned with task-

specific annotated training data. The pre-training of VLMs

has been explored using three main approaches: contrastive

objectives [60, 39, 8], generative objectives [79, 24], and

alignment objectives [17, 85, 47]. VLMs are transferred

by Text-Prompt Tuning [98, 97, 48]. Besides finetuning,

knowledge distillation is a method to improve VMLs for

downstream tasks, including object detection [94, 44] and

semantic segmentation [95, 100, 49, 73].

Unseen images that have not been pre-trained have be-

come recognized by VLM frameworks [3, 15]. More di-

verse and out-of-distribution data for pre-training and eval-

uation are used [23]. Prompt learning to adapt VLMs to

new tasks without fine-tuning is also shown [26]. Contents

of captions have been enhanced for better descriptions of

real-world objects [15].

Geometric reasoning or depth estimation to infer 3-D

information from 2-D images [87, 92] is shown using 3D

point-cloud data and indoor scenes. Pretraining VLMs re-

quire over 100 million image-text paired datasets for high

accuracy, more than DL models require. Therefore, many

efficient models have been proposed [3, 37, 69, 72, 66, 65].

However, laborious and time-consuming tasks remain un-

solved in pretraining VLMs.

Visual ChatGPT API tool has become famous as the

image-text captioning tool. The advantage of Visual Chat-

GPT [81] is that it can produce acceptable results on the

general scene and unseen classes. However, since Visual

ChatGPT [81] is trained on the limited data of the year

2021, it generates captions under older datasets. So far,

Visual ChatGPT [81] is weak at generating dynamic scene

descriptions, i.e., natural phenomena and sudden events.

Therefore, as aforementioned, no SOTA VLM papers and

API tools have challenged images with the physical scale

outside.

3. Proposed Method

This section describes the proposed RoadCAP

method/system for refinement and enrichment of cap-

tioning and classes from a single image input. Instead

of using only vision models or a single vision-language

model, this paper proposes a new architecture that inte-

grates multiple Deep Learning (DL) and Vision Language

models (VLMs). Figure 1 shows an overview of the

proposed RoadCAP. Since this paper deals with many

challenging scenes with disasters and traffic accidents,

adverse conditions are taken into account. Further detailed

explanations of each module will be given in the following

sub-sections 3.1 to 3.8.

Figure 1. Overview of the proposed RoadCAP model.

3.1. Proposed Danomal

In real-world conditions, camera images suffer from

unexpected illumination conditions, i.e., local strong sun-

beams. When no-filtered images are input, detection and

recognition accuracy become unstable, or targeted objects

may interrupt to detect. The extra-illumination issue may be

eliminated if the optic filter-like darkening can be provided

at the camera lens. However, it is expensive to implement

and the darker cloudy days and nighttime degrade overall

object recognition performance.

Therefore, Danomal [64, 63] is designed to prefilter dif-

ficult input single images before applying the following DL

and VLM modules. Such difficult images are called adverse

image patterns, i.e., lens reflection, strong headlight, and

raindrops, as shown in Figure 2. These are assumed to be

major factors that degrade normal recognition processing.

In this paper, fine-tuned Danomal using 2500 collected im-

ages is proposed to make it more robust to such adverse im-

age patterns. In training, image experts define and classify

two classes of rejection and no rejection. When an image

is rejected, it will be pushed to the caption storage without

undergoing processing, i.e., replacing the stored caption.

(a) (b) (c)

Figure 2. Examples of rejected images: (a) Lens reflection. (b)

Strong headlight. (c) Raindrops.

3.2. Proposed Dvlc, Dvls, and Dvld

Dvlc is a VLM trained on image and text pairs that can

predict the most relevant text given an image. It does not

need to be directly optimized for this task and can perform

“zero-shot” learning like GPT-3 and -4. Dvlc matches the

performance of the original ResNet50 on ImageNet “zero-

shot” without using any of the original 1.28M labeled ex-

amples.
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Dvlc utilizes the input texts of five distinct disaster cate-

gories: car crashes, flooding, fog, landslide, and rain. Tai-

lored text-input descriptions are employed for each disas-

ter category to enhance Natural Language Processing tech-

niques in analyzing disaster-related data. These scenes are

associated with domain-specific terms to improve the accu-

racy of automated disaster detection and classification.

Dvls is suggested as a means to achieve semantic seg-

mentation for these scenes. It is built upon the fine-tuned

version of OvSeg [41], with the addition of a new physical

constraint to the loss function. This proposed loss function

will be explained in the next section. In order to obtain

disaster descriptions for Dvlc, a classification task is under-

taken, employing keywords that correspond to each disaster

scene. These textual inputs are utilized to generate fixed text

descriptions of the disasters, specific to each scene type.

Dvld is a VLM with open-vocabulary object detection

[18]. Unlike traditional object detection models which rely

on fixed categories, Dvld can detect objects based on arbi-

trary text inputs from Dvlc. The model achieves this ca-

pability by leveraging the knowledge extracted from a pre-

trained open-vocabulary image classification model. This

knowledge is then utilized to create a two-stage detector, en-

abling Dvld to accurately identify and localize objects based

on the textual descriptions provided.

Therefore, since Dvlc, Dvld, and Dvls recognize texts,

objects, and segmentation from single imagea, all the out-

puts are integrated into captions. By this, more enriched

captions are available than single VLMs.

3.3. Proposed 2D-CPP

Contrastive Physical-Scale Pretraining (CPP) is a vari-

ation of CLIP that incorporates inputs from a depth map,

object location derived from image-text description pairs,

and a modified contrastive loss function. Unlike SOTA

VMLs that lack physical models in their contrastive loss

functions, this paper introduces CLPP, which integrates ad-

ditional physical constraints, as illustrated in Figure 3. The

original contrastive loss function of CLIP [61] is defined by

L =
1

2
(1− Y ) ∗D2 +

1

2
Y ∗max(0,m−D)2 (1)

where * denotes a multiplication, Y is the binary label indi-

cating whether the text and image are similar or dissimilar,

D is the distance between the learned embeddings of the

text and image, and m is the margin hyperparameter, i.e.,

0.2. In order to incorporate the physical scale, including the

size and location of objects, i.e., meters, a similarity metric.

The proposed 2D Contrastive Physical-Scale Pretrain-

ing (CPP) is a VLM with inputs from object locations from

pairs of images and text descriptions and a modified con-

trastive loss function. Unlike SOTA VLMs with no physi-

cal models in contrastive loss functions, this paper proposes

CPP with additional physical constraints, as shown in Fig-

ure 3.

The modified contrastive loss is then defined as

L =
1

2
(1−Y )∗D2

∗ (1− sim)+
1

2
Y ∗max(0,m−D)2 ∗ sim (2)

where sim is the physical similarity between the text de-

scription and the image with object location. sim is com-

puted as the Euclidean distance between the location of ob-

jects in the image and its description in the text. sim is

defined by

sim = ws ∗ E(ST , SI) + wl ∗ E(RT , RI) (3)

where: ws is the weight of an object physical size, and wl

is the weight of object’s physical location, normally, ws and

wl are both set equal to 0.5. E(ST , SI) is the Euclidean dis-

tance between the physical size in image SI and in the text

description ST . E(RT , RI) is RMSE: Root Mean Square

Error between the physical object location in the image RI

and in text description RT . The physical size of the object

is determined based on the ratio between the object size in

pixels and the object size in meters as labeled in the dataset.

When using cosine similarity as the distance metric D

in the contrastive loss function, which ranges from −1 to 1,

the margin hyperparameter is typically set to a small value,

i.e., 0.2 to 0.5.

Figure 3. Proposed contrastive language for pre-training in physi-

cal scale.

3.4. Dscene, Dsnow and Dvis

This section introduces Dscene, Dsnow and Dvis [64,

63]. Dvis [64] is trained by known synthetic and real foggy

images for visibility distances, i.e., 0 m − 1000m, in a re-

gression manner. Dsnow classifies snowfall from light to

heavy, which is trained by real snowfall images.

Dscene [64, 63] recognizes things and stuff in images

within pretrained model, i.e., COCO or ADE20K. For ex-

ample, things are car, pedestrians, mountain, road (dry/wet),

building, and wall. Stuff contains snow, sky, and light. It is

noted that road from Dscene cannot recognize road condi-

tions of dry or wet. However, snow on roads, buildings, and

cars is also recognition.
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3.5. Proposed Part2All for Road Segmenation

Even with SOTA segmentation models, segmentation

can be incomplete. In particular, illumination, shadow,

noise, and weather impact segmentation quality. This sec-

tion devotes to proposing the refinement of incomplete

to complete segmented objects. Under dynamic scene

changes, there are various factors impacting the perfor-

mance of Droad. In such conditions, Droad is able to par-

tially recognize the condition of the road only. Therefore,

refinement to such incomplete road conditions cannot be ig-

nored. Droad [63] is trained on labeled three road condi-

tions by experts. In this paper, over 1500 images are added

to train DL model. The original Droad has been improved,

called improved Droad (iDroad). However, since iDroad is

still weak in snow conditions, further refinement is required.

The proposal of refinement on road conditions consists

of several steps. Overall Part2all module is shown in Fig-

ure 4. Firstly, Dscene is applied to a single image, where

cars, roads, buildings, and pedestrians are recognized. Sec-

ondly, iDroad is used to segment road surfaces into three

classes. The condition of the road surface is segmented as

snow, however, this recognition is limited to the part region

of the road that is in proximity to the camera, illuminated

by the headlights. It is assumed that road conditions are

homogeneous. Therefore, part of the snow region is over-

lapped onto the road surface of Dscene. Next, extrapolation

from partial snow conditions in yellow is conducted to the

remaining purple regions. Finally, all yellow regions over

the road surface can be obtained by Part2All.

Figure 4. The proposed Part2all for refining road conditions.

3.6. Proposed Dwater

Dwater is a transformer-based classifier, i.e., the ViT

[12] classifier. Through a two-step process, the water level

is estimated based on the physical size, i.e., the height of

recognized objects, i.e., cars, buses, humans, trees, poles,

and traffic signs. In Step 1, Dvls is employed to extract ob-

jects from the image. In Step 2, the extracted objects are

classified according to their pre-defined water levels. Table

1 displays the physical height of the reference objects for

each water level.

Table 1. Physical height of reference objects.
Level/Objects human (m) car (m) pole (m)

Lv1 0.3 0.3 0.5

Lv2 0.6 0.6 1

Lv3 0.9 0.9 2

Lv4 1.3 1.2 3

Lv5 1.7 1.5 4

3.7. Dcount

Road scenes are dynamically changing by traffic flow.

The number of vehicles varies from 0 to over tens. In ad-

dition, there may be pedestrians and many other objects as

well. Therefore, counting the number of objects is one of

the most basic methods for the enrichment of captions. For

this, this section proposes Dcount to count such objects. It is

known that counting tasks become more difficult when the

spatial density of objects becomes heavier, i.e., traffic jam.

Therefore, a single counting model can fail to correctly de-

tect objects. Based on this, Dcount consists of two different

tasks: segmentation and object detection. Such two differ-

ent modules are expected to be complementary due to their

respective strengths.

As depicted in Figure 5, the inputs of Dcount consist of

segmentation masks by Dvls and bounding boxes of objects

by Dvld. The number of objects is estimated as the ratio

between A and B of union classes of segmentation and de-

tection. A represents the mask of each class in the number

of pixels, and B represents the average of bounding boxes

in the number of pixels.

Figure 5. Flowchart of the object counting algorithm.

3.8. Caption Refinement

The caption refinement process involves utilizing a large

language model (LLM), namely GPT-4 [55], which incor-

porates the segmentation outcomes from Dvls, the physical

scale from 2D-CPP, and the captions generated by VQA.

The output of Dvls comprises semantic segmentation along

with corresponding locations and descriptions, expressed in

a language-based segmentation format as a list of {object

description: bounding box of the object in pixels}. The out-

put of 2D-CPP is a caption that includes details about the

physical scale, i.e., object size, distance, water level, and

visibility.

VQA contributes additional descriptions that capture the

overall dynamic conditions, including adverse weather con-

ditions, to provide contextual information for the LLM. The

final result of caption refinement is an enriched caption that

encompasses information about road conditions, water lev-

els, and relative object locations.

4. Experiments and Discussion

This section devotes many experiments and discussions

on DL and VLM modules of the proposed RoadCAP by
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comparing related SOTAs. Particularly, complementary en-

hancements by DLs and VLMs are confirmed.

4.1. Danomal for Adverse Conditions

This section evaluates the performance of the proposed

Danomal. This Danomal is designed to prefilter difficult in-

put single images before applying the following many main

DL and VLM modules. For this, several main modules of

Droad, Dsnow, Dvis, and Dvlc are selected. Droad, Dsnow,

Dvis, and Dvlc are expected to apply for various road condi-

tions, snowfall or not, visibility distance, and classification,

respectively. These are used with and without Danomal as

a prefiltering by inputting various test images.

The results in Table 2 show higher accuracy using

Danomal (in bold) than without using Danomal. It is

noted that any thresholding has been offered like Com-

puter Vision applications. Thus, the proposed Danomal has

demonstrated effectiveness for rejecting difficult input im-

ages leading stable image data processing, i.e., recognition

and classification.

Table 2. Comparison of accuracy for Droad, Dsnow, Dvis, and

Dvlc with and w/o Danomal using difficult images with adverse

conditions.
Without Danomal (%) With Danomal (%)

Droad 81.31 86.07

Dsnow 72.90 78.22

Dvis 75.58 80.86

Dvlc 91.78 92.65

4.2. Scene Recognition Capability of 2D-CPP and
Dvlc

This section evaluates the performance of the proposed

2D-CPP and Dvlc qualitatively and quantitatively. The test

dataset comprises six carefully selected categories, includ-

ing a car crash in snow conditions, flooding with rain, low

visibility with fog, landslide, wet road with rain, and traf-

fic flow. These images are shown in Figure 6 (a)-(f). For

the test dataset, ground truth captions have been manually

annotated, encompassing key criteria such as the number of

vehicles, scene category, and road conditions. A total of

3500 images have been collected for this purpose. The ex-

periments are evaluated the performance of captioning us-

ing VLMs on dynamic scenes. The BLIP [35] model has

been chosen as a point of comparison due to its high transfer

capability for both VL understanding and captioning tasks.

Table 3 presents the ground truth captions, captions gen-

erated by the proposed 2D-CPP (with m = 0.4 in equation

2), and BLIP [35], for the six images depicted in Figure 6.

2D-CPP and BLIP [35] exhibit the ability to recognize the

contextual information and key objects in the scenes, such

as traffic conditions and various objects. However, com-

pared to 2D-CPP, BLIP [35] falls short in capturing detailed

scene features.

In (a), (b), and (f), 2D-CPP improves the accuracy of

vehicle counting by identifying multiple vehicles instead of

Table 3. Comparison of captions among ground truth, proposed

2D-CPP, and BLIP [35].
Ground truth 2D-CPP BLIP [35]

(a)

7 cars under

heavy snowfall in

a crashed scene

7 cars on the frozen

road, 1 severely

damaged car

A car is stuck in

the snow

(b)
4 vehicles under

flooding scene

Cars and motorcycle

on the flooded

highway

A man is crossing the

street in the rain

(c)

Empty highway

under heavy foggy

scene

Highway under heavy

foggy at daytime

Foggy road in the

mountains

(d)

One car on

the road, in

a landslide scene

One car on the

damaged road

occluded by the rock

A tractor is parked on

the side of a road next

to a pile of rocks

(e)
One car on the

rainy road

A street under a light

rain at night

The image is of a

street intersection at

night

just one. In (b), BLIP [35] fails to recognize the road con-

ditions, whereas 2D-CPP accurately identifies the flooding

highway. In (e) and (f), 2D-CPP successfully recognizes the

presence of rain and sunny conditions, respectively. On the

other hand, BLIP [35] does not provide any weather infor-

mation. In (c), 2D-CPP accurately recognizes the degree of

fog as heavy fog over time. In (d), 2D-CPP identifies that

the road is obstructed by a rock, while BLIP [35] describes

it as a pile of rocks. Consequently, the proposed 2D-CPP

demonstrates more refined and enriched captions compared

to BLIP [35].

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Results of captions in images: (a) Car crash. (b) Flood-

ing. (c) Fog. (d) Landslide. (e) Rain. (f) Traffic flow. (g)(h)(i)

Street.

4.3. Refined Semantic Segmentation by Prompt En-
gineering

This section denotes the proposed Dvls and how to ob-

tain the final refined captions using prompt engineering.

The prompt for each scene is pre-defined as a list of words,

i.e., (1) car crashes: [”pedestrian”, ”car”, ”car crash”,

”road”, ”bike”, ”tree”]; (2) flooding: [”water”, ”car”, ”per-

son”, ”tree”, ”sky”]; (3) fog: [”foggy”, ”mountain”, ”road”,

”car”, ”wet”]; (4) landslide: [”landslide”, ”debris flow”,

”rocks”, ”road”, ”dirt”]; (5)rain: [”water”, ”rain”, ”um-

brella”, ”road”, ”person”]. Prompts are selected respec-

tively by classification results from Dvlc.

Figure 7 illustrates the effectiveness of the proposed ap-

proach on images of foggy and traffic accident scenes. (a)

shows the input images, while (c) displays the segmentation

results generated by the transformer-based SOTA segmen-

tation model, i.e., Mask2former [6], which shows generic

3659



classes, i.e., ”sky-other-merged”, and ”car”. (b) presents

improved segmentation results, and achieved prompt engi-

neering, which provides more detailed semantic segmenta-

tion results, i.e., more detail from ”sky-other-merged” to

”foggy” for the foggy scene and from ”car” to “car crash”

for the traffic accident scene. It has been demonstrated that

prompt tuning for Dvlc helps detail segmentation results un-

der dynamic conditions.

(a) (b) (c)

Figure 7. Results of segmentation by SOTA and proposed Road-

CAP: (a) Original image. (b) Proposed refined semantic segmen-

tation. (c) Mask2Former [6].

4.4. Dynamic Captions with Weather and Road
Conditions by Improved Dvis, Dsnow, Droad,
and Proposed Dwater

This section explores more complex captions by con-

ducting experiments on traffic and disaster scenes under

various weather conditions. The proposed models, Dsnow,

Improved Droad, and Dvis, are compared with the SOTA

VL captioning model, BLIP [35]. Figure 8 illustrates five

scenes used in the experiments. The road conditions in-

dicated by Improved Droad (1)-(5) are represented as wet

(blue) and snowy (yellow). Dvlc recognizes objects in the

overall scene, such as mountains, rivers, rocks, sky, and

trees. The proposed Dvis [64], applied to images (1)-(5),

estimates the physical scale based on weather phenomena,

i.e., visibility in meters: 938, clear, 637, 512, and 812 me-

ters for the respective images. Therefore, the captions gen-

erated by Dvlc include information about road conditions

and visibility.

Table 4 summarizes the refined captions and the results

obtained by SOTA BLIP [35] model, using the five scenes

depicted in Figure 8. The comparison highlights that the

refined captions provide detailed descriptions of the scenes,

incorporating information about road conditions, snowfall

status, object locations, and exact visibility distances in me-

ters. In contrast, the captions generated by BLIP [35] lack

descriptive elements. These results have demonstrated that

the proposed method, integrating Improved Droad, Dsnow,

and Dvis, outperforms the single VLM model, BLIP [35].

Table 4. Comparison of the refined captions with BLIP caption.
Proposed method BLIP [35]

(1)

Rocks lay on the flooding road,

in front of river,

within 938m in visibility

A flooded road in the

rain

(2)
Rock debris lay on the wet road,

withinclear visibility

A road in the rain with

rocks and debris on

the side

(3)
15 vehicles on the wet highway, under

heavy snowfall and within 637m in visibility

A snowstorm on a

highway

(4)

A truck on the wet highway with

mountains in the rear,

snow on the side of the highway,

under heavy snowfall,

and within 512m in visibility

A snow plow clears a

road in the snow

(5)

12 people stand on a flooded road,

within 812m in visibility, and 0.5m

water level (Lv2)

A group of people on

flooded road

(1) (2)

(3) (4)

(5)

Figure 8. Results of proposed Dvls with refined and enriched cap-

tions in dynamic scenes: (1) Flooding road. (2) Landslide on the

road. (3), (4) Heavy snowfall on the highway. (5) Flooded scene

with the water level, Lv2.

4.5. Traffic Jams Detection by Dcount

To justify the proposed Dcount, SOTA objects counting

methods, i.e., ZSC [84], DMDC [80], and CLTR[40], are

compared. For robustness and stability evaluation, over one

hundred images with adverse conditions, i.e., covered snow

and fog, are selected.

Figure 9 shows the results of traffic jam recognition,

where objects on the road tend to be occluded from each

other, making it challenging to separate objects. CLTR[40]

could not recognize vehicles resulting in counted zero.

On the other hand, the proposed Dcound has successfully

counted vehicles, i.e., truck: 2 or 15 and car: 11 or 2, where

captions present ”crowded”. For the other SOTA results,

Table 5 summarizes accuracy, where Dcount obtains best

score, 86.54%.

Therefore, the propose Dcount has proven to enrich cap-

tions with traffic scenes even under adverse conditions over

SOTAs, i.e., ZSC [84], DMDC [80], and CLTR[40].

Table 5. Counting objects in accuracy among the proposed Dcount,

ZSC [84], DMDC [80], and CLTR [40].
Dataset/Method Dcount CLTR [40] ZSC [84] DMDC [80]

Accuracy 86.54 65.15 72.23 70.32

4.6. Overall Evaluation RoadCAP

This section presents an experiment that evaluates the

final output of all thirteen modules. The experiment mea-
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Figure 9. Object counting results in images with traffic jams. (1)

Winter traffic jam images. (2) Proposed Dcount. (3) SOTA:

CLTR[40].

sures performance using the BLEU score [57], a metric

for evaluation of machine translation and is conducted on

two datasets. The first publicly available dataset includes

the COCO Caption dataset [5] and the Conceptual Cap-

tions dataset [70], both of which contain image-text pairs.

The second dataset includes two images with accompany-

ing text descriptions describing snowfall status, water level,

and physical scale. These collections are disaster and traf-

fic accident datasets, with 1850 and 2130 image-text pairs,

respectively.

According to the results in Table 6, RoadCAP does not

perform as well as Visual ChatGPT. This could be since the

text descriptions in the public image set do not include in-

formation about road conditions, water levels, snow condi-

tions, or visibility, whereas RoadCAP is capable of gener-

ating captions with these details. However, Table 7 presents

different results, where RoadCAP outperforms Visual Chat-

GPT on datasets featuring disaster or traffic accident condi-

tions.

It has been proven that RoadCAP can provide detailed

semantics about the physical aspects of scenes. These can

be highly useful for tasks such as traffic coordination and

rescue operations. Moreover, the computational cost is an-

alyzed and compared with that of SOTA methods on the

same hardware device. Table 8 shows a comparison of the

computational cost and memory usage for these methods.

Table 6. Performance of proposed RoadCAP on public datasets.

Dataset/Method RoadCAP
Visual

ChatGPT

COCO Caption 0.3854 0.4415

Conceptual Caption 0.3659 0.4235

Table 7. Performance of proposed RoadCAP on collected datasets.

Dataset/Method RoadCAP
Visual

ChatGPT

Disaster 0.4521 0.3124

Traffic accident 0.4315 0.3254

Table 8. Computational cost and memory usage comparisons.

Perform/Model
Computational cost

(second)

Memory

usage (Mb)

Proposed method 9.423 11231

Visual ChatGPT 8.123 6132

BLIP[35] 1.432 3214

5. Ablation Study

Various experiments are added to justify the usability,

stability, and robustness of the proposed RoadCAP.

5.1. 2D-CPP with Different Loss Function Parame-
ters

This section provides an experimental comparison of

different parameters for the contrastive loss function (L) uti-

lized in the proposed 2D-CPP. 2D-CPP is implemented in

Sections 4.2 and 4.4 with m = 0.4 in equations 2 and 3.

This experiment selects m from an array list of values [0.2,

0.3, 0.4, 0.5]. A comparison is conducted between equa-

tion (1) and the proposed equations (2) and (3). Table 5

compares the modified loss function and the original one

for generating captions with physical scales. The results in-

dicate that the performance of 2D-CPP achieves the lowest

RMSE when m is set to 0.4. Therefore, this confirms the

optimal selection of m.

Table 9. RMSE of different values m with/without sim.
m Modified Original

0.2 0.1985 0.2214

0.3 0.2043 0.2375

0.4 0.1894 0.2018

0.5 0.1964 0.2145

5.2. Limit of SOTA Image Restoration Model

In order to confirm another possibility for further pro-

cessing images under adversarial conditions, image restora-

tion by SOTA: all-in-one DL model [32] has been applied.

Figure 10 shows results with (a) heavy snowfall, (b) rain-

drops on the lens, (c) light fog with a sunbeam at dawn,

and (d) a clear twilight scene. It is obvious that no image

restoration has been achieved by SOTA DL [32]. Instead,

false colors are generated in red and sky blue.

Therefore, it is suggested that the proposed DeepReject

plays an important role in avoiding visibility estimation in

difficult images. This can stabilize overall system perfor-

mance.

(a) (b) (c) (d)
Figure 10. Limit of an all-in-one deep learning model [32] for ad-

verse weather conditions and clear scenes: (a) heavy snowfall. (b)

raindrops on lenz. (c) light fog with a sunbeam. (d) clear twilight

scene.

6. Conclusion

This paper has proposed RoadCAP with multiple DL

and VLM models, which are complementary with branched

structures for efficiency in light of memory, training, and

maintenance. It is the first time to contain dynamic changes

in captions with physical scales, i.e., fog visibility dis-

tance. A 2D physics-based loss function generates more

refined and enriched captions at a contrastive loss. Road-

CAP will help notify detailed scene descriptions to drivers,

auto-driving, and rescue workers from camera images.
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