
PRAT: PRofiling Adversarial aTtacks
(Supplementary Material)

1. Overview
We include the following details in this supplementary,

1. Motivation: elaborates the motivation and applica-
tions of PRAT.

2. AID creation: discusses the details and methodology
opted while creating the dataset

3. Signature Extractor: detailed working of the signa-
ture extractor, GLoF block and the T2I blocks.

4. Experiments & Analysis: includes further analysis
on the performance of the proposed method, dictionary
based indexing for novel attack identification.

2. Motivation
One principal application of PRAT is to provide informa-

tion about the attacker which can be used to develop a de-
fense beyond the abilities of the attacker, this will also nul-
lify the possibility of an adaptive attack, hence making the
target system more robust. For example, any existing large-
scale vision model can be analyzed under PRAT problem to
identify attackers and devise a defense technique(possibly
by including more of those attacked samples in the adver-
sarial training) to improve it. In most real-world scenarios
the deep model would be presented with an image without
any knowledge of the attacker. We agree that additional
details like targeted/untargeted, black box/white box could
possibly help the ML practitioner to build a better defense
system, but for this work, we take a step to identify a new
problem, provide extensive research analysis, and develop
GLOF based model to address it. As part of future work,
we expect to release a much larger version of AID with a
much wider problem statement while the current version of
AID still remains the baseline.

3. AID Creation
Benign images for the creation of adversarial samples are

obtained from the validation set of ImageNet2012[6]. The
validation set is split into two parts of size 45k and 5k sam-
ples corresponding to the train and test partitions of AID.

Parameter Details

Dataset size 187.2k
Training samples 156k
Testing samples 31.2k
Per network train set 52k
Per network test set 10.4k
Total attacks 13
Toolchain families 3
Target networks 3
||ρ||∞ range {1, 16}
||ρ||2 range {1, 10}

Table 1: AID statistics: AID includes several variants
of adversarial perturbations generated by launching popu-
lar attacks on different networks using varied perturbation
norms.

We consider 13 different adversarial attacks targeting 3 dif-
ferent networks. For the train set, we randomly choose 4k
images per attack per network and execute the attack strate-
gies. Similarly, for the test set, we consider 800 images per
attack per network. All the images are resized and cropped
to a standard size of 224x224x3. Generated perturbations
along with the information of the original benign sample
used to generate the sample are saved to the disk. We sum-
marize the details of AID in Table 1.

The attacks/families and the corresponding hyper-
parameters have been chosen in accordance with the exist-
ing literature. To make the PRAT problem more interesting
and challenging we have also included perturbations with
budget as small as {1/255}. While there is always scope
for including more attacks, we have chosen AID to con-
sider maximum possible variations. In future, versions of
AID could include PRAT problem focusing on other do-
mains such as videos etc.

4. Signature Extractor
In this section, we give a detailed overview of the signa-

ture extractor highlighting the working of the GLoF block.

The signature extractor serves the purpose of disentan-
gling the perturbation for the adversarial sample. Several
GLoF blocks in series help reconstructing the benign sam-
ple which in turn generates the signature.

Consider an input adversarial image Ĩ ∈ RH×W×3 (H,
W correspond to image height and width and 3 corresponds
to the RGB channels). The standard GLoF block receives a
series of token embeddings and a 2D feature map of the im-
age. The input adversarial image Ĩ is reshaped into a series
of 2D patches Ĩp ∈ RN×P 2×3, where P is the height and
width of each patch and N is the number of patches/tokens
N = HW/P 2. The patches are flattened along the fea-
ture dimension Ĩp ∈ RN×(P 2·3). The attention arm along
the GLoF blocks expects a constant embedding dimension,
hence the patches are projected onto the embedding space
of dimension D1. As proposed in [2], adding position em-
beddings E ∈ RN×D1 to the patch embeddings help in re-
taining the relative position of the patches in the 2D space.
The resulting patch embedding is termed T0 ∈ RN×D1 (0
referring to the initial feature level and N referring to the
number of patches).

T0 = Ĩp +E; Ĩp, E ∈ RN×D1 (1)

Alongside, the input image is projected to an embedding
dimension D2, by applying a 3×3 Conv with D2 features.
We term these features Z0 ∈ RH×W×D2 (0 referring to
the initial feature level). Features extracted from previous
level(l − 1) are passed on to the next GLoF block.

Tl,Zl = GLoF (Tl−1,Zl−1); l = 1...L (2)

Where L is the number of GLoF blocks. The output
of the final GLoF block corresponding to the convolutional
arm Zl is transformed to RGB space by applying a 3 × 3
Conv with 3 feature maps resulting in the rectified image
Ir ∈ RH×W×3. Finally, to extract the signature from the
rectified image, difference of the rectified and the original
image is considered ρ̃ = Ĩ − Ir.

4.1. GLoF Module

Global-LOcal Feature extractor(GLoF) module com-
bines CNN’s ability to extract local features with vision
transformer’s global connectivity.

The GLoF block at any level receives the local and global
features from the previous level. The GLoF block at level
l receives the image features Zl−1 ∈ RH×W×D2 and the
embedded tokens Tl−1 ∈ RN×D1 where
Tl−1 = {T 1

l−1,T
2
l−1, ...,T

N
l−1} (N being the number of

tokens) as inputs.
Global features: Embedded tokens are fed to attention
mechanism. Tokens are interpreted as Query Q ∈ RN×D1 ,
key K ∈ RN×D1 and value V ∈ RN×D1 . Attention is

Figure 1: T2I Block Overview: Input token sequence is
transformed to a 2D representation. Convolutional layers
are applied to obtain the 2D feature map.

calculated by measuring the weighted sum over all values
as,

Attention(Q,K,V) = softmax(QKT /
√
d)V (3)

Multi-head attention performs the attention num heads
times in parallel, concatenates and linearly projects it. A
residual skip connection connects the tokens with the atten-
tion map.

T a
l = Add(Attention(Norm(Tl−1)),Tl−1) (4)

T f
l = GELU(T a

l W1 + b1)W2 + b2 (5)

where W1 ∈ RD1×D and W2 ∈ RD×D1 are weights of the
two linear layers. The first linear layer projects the token to
a higher dimension D for better learning. b1 ∈ RD and
b2 ∈ RD1 are the bias terms for the two linear layers.
Local features: Embedded 2D image features from the pre-
vious layer Zl−1 are fed to a standard ResNet block with
convolutional, batch norm and activation layers.

Zc1

l = Act(Norm(Conv(Zl−1))) (6)

Zc2

l = Act(Norm(Conv(Zc1

l))) (7)

Zc
l = Add(Zl−1,Z

c2

l) (8)

where Conv, Norm and Act refer to convolutional layer, nor-
malization layer and non-linear activation.

T2I Block: T2I block transforms the patches to a 2D fea-
ture map which allows merging with convolutional feature
maps. Fig.1 shows the overview of a T2I block.

T h
l = T2I(T f

l) (9)

T h′

l = Transform(T f
l); T h ∈ RH×W×d′

(10)

T h′

l = Act(Norm(Conv(T h′

l))) (11)

T h
l = Act(Norm(Conv(T h′

l))) (12)

where Transform function rearranges the series of tokens to
form a 2D feature map Th′

l ∈ RH×W×d′
. Conv., Norm

and Act layers are applied over Th′

l resulting in Th
l ∈

RH×W×D2 which is merged with the features from the con-
volution arm of the GLoF block.

Zl = Add(Zc
l ,T

h
l) (13)

The merged features Zl in conjunction with tokens Zl are
passed on to consecutive GLoF blocks.

Signature: To extract the signature ρ̃, the output of the final
GLoF block is subtracted from the input adversarial image.

ρ̃ = Zl − Ĩ (14)

The generated signature is fused with the input adversar-
ial image and fed to the attack classifier.

5. Experiments & Analysis
We explore how different attack classifiers affect the

overall performance. As seen in Table 3, the signature ex-
tractor paired with DenseNet121 [4] yields the best results.
It can be observed that the attack classifiers paired with sig-
nature extractor (Table 3) performs significantly better com-
pared to training stand alone classifiers. This supports the
claim that extracting input-specific signature form the ad-
versarial input to identify the attack is a better strategy.

We analyze class wise scores and the confusion matrix
of the predictions from the proposed approach in Fig ?? and
Table 2. From the confusion matrix, we observe the com-
mon trend of relatively high scores for all decision based
attacks except for boundary attack. With scores close to 1,
these attacks have distinctive patterns which are being eas-
ily identified by the signature extractor. Boundary attack do
not always have specific patterns because of the way they
are generated. Starting from a point that is already adver-
sarial, boundary attack performs a random walk on the deci-
sion boundary minimizing the amount of perturbation. Sim-
ilarly, universal attacks generate discernible patterns mak-
ing it easier for detection. Major confusion occurs in the
gradient based attacks among NewtonFool, DeepFool and
CW attack. These attacks being highly powerful, are tar-
geted on generated nearly imperceptible perturbations spe-
cific to the input image, making it difficult for the method
to identify and distinguish. Similar trends observed in the
confusion matrix can be seen in Table 2.

5.1. Detecting clean vs. perturbed

While the core idea of PRAT is to profile the attacker
given an adversarial image, it is likely for the signature ex-
tractor to be tested with clean images in real world scenar-
ios. We devise an experiment to analyze the performance

label Attack Method Precision Recall F1-score

0 PGD 0.90 0.82 0.86
1 BIM 0.95 0.85 0.89
2 FGSM 0.86 0.90 0.88
3 DeepFool 0.49 0.51 0.50
4 NewtonFool 0.59 0.64 0.61
5 CW 0.48 0.46 0.47
6 Additive Gaussian 1.00 1.00 1.00
7 Gaussian Blur 0.90 0.91 0.90
8 Salt&Pepper 0.97 0.94 0.95
9 Contrast Reduction 0.92 0.97 0.94

10 Boundary 0.49 0.53 0.51
11 UAN 1.00 1.00 1.00
12 UAP 0.95 0.88 0.91

Table 2: Classification report(Precision, Recall, F1-score)
of the proposed network on AID.

Method Accuracy

SigExt. +
ResNet50[3] 73.80%

ResNet101[3] 74.74%
ResNet152[3] 73.25%

DenseNet121[4] 80.14%
DenseNet169[4] 78.15%
DenseNet201[4] 76.69%
InceptionV3[7] 70.38%

Table 3: Performance of different attack classifiers with
Signature Extractor

of the signature extractor in distinguishing clean from per-
turbed images. We consider a subset of AID containing ad-
versarial images and similar size set of clean images. The
signature extractor is trained to extract signatures highlight-
ing the patterns in adversarial images. Extracted signatures
are used to train a binary classifier that identifies clean and
perturbed images. We use a standard ResNet50[3] as the
binary classifier in this case. The end to end pipeline yields
a 100% accuracy in distinguishing perturbed images from
clean images. This can act as a preliminary step, and if a
perturbation is detected, it can be passed to the attack clas-
sifier for identifying the specific attack category.

5.2. Success rate vs. Identifiability

While the stronger attacks like PGD have a 100% fool-
ing rate, the black box attacks have a success rate of at least
65% for the samples considered in AID. We also study the
identifiability vs success rate for the FGSM class and find
that our technique achieves 74.9% accuracy for an epsilon
as low as 2 and 94.5% for an epsilon of value 16. We ob-
serve an upward increasing trend as the epsilon increases
indicating an increasing level of perceptibility of the pat-
terns.

Figure 2: Results of considering individual classes as the unknown class

5.3. Enrolling novel classes

With the fast moving field of adversarial machine learn-
ing, it is highly likely for the signature extractor to come
across novel unseen attacks. While, it is difficult to retrain
the signature extractor and the attack classifier each time
a new attack is added to the system, we employ a dictio-
nary based toolchain indexing scheme to enrol novel attack
classes with limited data.

We use a simple indexing scheme which can work as
an addition to the existing signature extraction approach.
The extracted signature for the adversarial images is of size
24x224x3. Since, storing and indexing such large images
requires large amounts of memory and computations, we
project the signature to a 512-dimensional using the model
activations. These are extracted from the penultimate layer
of a standard DenseNet-121 network. To index these com-
pressed signatures into a dictionary, it is required to assign
the correct toolchain to the sample. To solve this problem,
we adapt a sparse and collaborative representation based
classifier[1]. This classifier expects training data, which is
our dictionary and the test sample that we need to index in
the dictionary. The produced label is the label of the ad-
versarial attack in our case, which is identifiable because
our dictionary is structured. We use Orthogonal Matching
Pursuit(OMP)[5] algorithm to compute sparse codes for a
given sample over a fixed dictionary. It tends to assign
large coefficient values in the sparse codes corresponding
to the dictionary elements that are closely correlated to the
test samples. The algorithm does not make any assumption
about the dictionary itself. Hence, it does not restrict us
from enrolling new attacks (or their families) to the dictio-
nary.

To enroll a novel attack, we adopt a similar strategy. The
main challenge for the indexing scheme is to register the
novel attack with limited data. Hence, the indexing chal-
lenge gets translated into maintaining reasonable classifica-
tion performance with one or very few samples for the un-
known class. For analysis, we sequentially consider each
of the thirteen attacks as the ‘unknown attack’ and note
the performance of indexing scheme with varied number
of samples available from the known attacks. We consider
a subset of 50 samples per class from AID for the experi-
ment. Starting with enrolling as little as a single sample for
the class, we analyze the performance when we have 10,
20, 30, 40 and 50 samples for a newly enrolled class. The
corresponding plots are shown in Fig 2.

From the plots, it can be observed for PGD, BIM and
FGSM the indexing technique achieves accuracies greater
than 60% with just 10 training samples. With as low as a
single training sample, accuracy is consistently above 30%.
For relatively simple classes like Gaussian Blur and UAP,
we were able to maintain 100%. For particularly challeng-
ing classes like NewtonFool, CW and UAN, more samples

resulted in better performance. These results demonstrate
that the degradation in performance of our indexing scheme
in the case of fewer training samples is graceful, to the
extent that average accuracy across all classes with a sin-
gle training sample is 46%. Hence, we can claim that the
scheme has the ability of enrolling new attack effectively
with as little as a single sample for most of the unknown
attacks.

References
[1] Naveed Akhtar, Faisal Shafait, and Ajmal Mian. Efficient

classification with sparsity augmented collaborative represen-
tation. Pattern Recognition, 65:136–145, 2017. 5

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 3

[4] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017. 3

[5] Yagyensh Chandra Pati, Ramin Rezaiifar, and Perinku-
lam Sambamurthy Krishnaprasad. Orthogonal matching pur-
suit: Recursive function approximation with applications to
wavelet decomposition. In Proceedings of 27th Asilomar
conference on signals, systems and computers, pages 40–44.
IEEE, 1993. 5

[6] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 1

[7] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2818–2826, 2016. 3

