
Fair Robust Active Learning by Joint Inconsistency
Supplementary Material

Tsung-Han Wu1 Hung-Ting Su1 Shang-Tse Chen1 Winston H. Hsu1,2

1National Taiwan University 2Mobile Drive Technology

1. Implementation Details
We introduce our computing infrastructure and training

details in the supplementary material.

1.1. Computing Infrastructure

All experiments are conducted on an 8-core CPU per-
sonal computer with an NVIDIA RTX3090 GPU. The com-
putational comparison shown in Tab. 4 in the main paper is
evaluated on this machine.

1.2. Training Details

The overall framework of our proposed Joint INconsis-
tency method (JIN) is provided in Algo. 1 in the main paper.
Here we focus on the more detailed model training process,
including the implementation of attack and defense meth-
ods as well as a conventional deep neural network pipeline.

Adversarial Attack and Defense. For all experiments, we
utilize the python foolbox package [7] to achieve PGD-5
white-box adversarial attacks with maximum perturbation
range ℓ∞ = 4/255 and step size α = 2/255. We leverage
the official TRADES loss [12] implementation1 to realize
the adversarial training with the same perturbation settings
as the threat model and set the penalized term as β = 6.

It is important to note that our method is applicable to
various adversarial training techniques, like PGD [5], since
the phenomenon of joint inconsistency is widespread in all
adversarial robust models [2, 9, 10, 11] and our method do
not rely on any specific properties of the TRADES loss [12].

Deep Neural Network Pipeline. In the following, we elab-
orate on our deep neural network adversarial training and
fine-tuning pipeline (corresponding to the “Adv-TRAIN”
and “Adv-FINETUNE” in Algo. 1 of the main paper). For
three datasets, we leverage the SGD optimizer to train our
model with an initial learning rate of γ, a momentum of µ,
and a weight decay λ. The batch size is set to B. Initially,
we adversarially train the model for E0 epoch. Then, for
each active learning iteration, we adversarially fine-tune the

1https://github.com/yaodongyu/TRADES

model for E epochs. To make the whole training pipeline
stable, we utilize the cosine annealing learning rate sched-
uler with a warm-up stage of initial Ew epochs in both the
initialization and fine-tuning stage.

For the UTKFace dataset, we set γ = 0.1, µ = 0.9,
λ = 2e-4, E0 = 100, E = 70, Ew = 10, and B = 32. For
the CINIC-10 dataset, we set γ = 0.1, µ = 0.9, λ = 2e-4,
E0 = 110, E = 70, Ew = 10 and B = 64. For the HAM-
10000 dadtaset, we set γ = 0.02, µ = 0.9, λ = 2e-4,
E0 = E = 50, Ew = 5 and B = 32. Note that for a
fair comparison, all models used in our experiments are not
pre-trained.

Checkpoint Selection and Performance Evaluation. In
fairness studies, a common tradeoff exists between average
performance and fairness. This tradeoff can make it diffi-
cult to determine which model is the most representative, as
changes in model weight can lead to minor positive or neg-
ative changes in performance or fairness. To ensure fair and
reliable experimental results, we followed a protocol similar
to prior related work and our baseline [8], recording results
under fixed training epochs (when the model is converged)
and repeating experiments three times to report their aver-
age. During evaluation, we prioritized fairness over average
performance, as is consistent with mainstream fairness and
robustness studies [6, 10].

2. Extensive Analyses and Results

2.1. Generalization on multiple sensitive groups

To validate the efficacy of various active selection meth-
ods on non-binary sensitive attributes, we further conduct
experiments on the UTKFace gender prediction task and
treat the four different races as sensitive groups (White,
Black, Asian, and Indian). We use the same adversarial
training protocol mentioned before with five active data se-
lection rounds. The only difference is that we only ran-
domly choose 10% D to initialize DL and set merely 1%
|D| as the labeling budget for each round. The reason for
using less labeled data is that the gender prediction task is
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Figure 1. Active learning curves on the UTKFace dataset.

Figure 2. Active learning curves on the CINIC-10 dataset.

simpler than the 4-race prediction. As shown in Tab. 1,
we outperform all baselines in both fair-performance and
fair-robustness. The result demonstrates the generalization
ability of our method.

STD. Acc. (%) Rob. Acc. (%)
Worst (↑) Avg (↑) Worst (↑) Avg (↑)

Init. AT 77.74±0.66 81.03±0.33 67.61±0.21 70.84±0.36

RAND 78.57±0.31 82.34±0.10 69.14±0.30 72.34±0.14
ENT 80.70±0.59 84.01±0.10 69.79±0.14 72.67±0.21

G-RAND 81.08±0.22 82.95±0.31 70.38±0.23 73.39±0.29
FairAL 80.41±0.60 83.78±0.32 69.78±0.30 72.56±0.16

JIN 82.77±0.27 84.96±0.25 70.56±0.13 73.11±0.11

Table 1. Comparison on the UTKFace gender prediction task
under four ethnically sensitive groups. Under the setting of mul-
tiple sensitive groups, our method still outperforms existing base-
lines in standard and robust minimax fairness.

2.2. Active Learning Curves

To enhance the credibility of our findings, we present the
active learning curves for all tasks across multiple label bud-
get combinations, illustrated in Fig. 1, 2, and 3. Our pro-
posed JIN approach, leveraging the inconsistency properties
in adversarial training, deliver the best fair-performance and
fair-robustness across most label budget combinations.

We observed that among the baseline methods, FairAL
and ENT perform better in datasets with severe data im-
balance, such as UTKFace and Ham-10000. In contrast,
data selection techniques that prioritize diversity, includ-
ing RAND, CSET, and three group-aware methods, only
perform better on the fair-robustness metric on a balanced
dataset, CINIC-10. Notably, we found that group-aware
data selection methods, including G-RAND, MinMax, and
OPT, yielded very poor fairness results on HAM-10000, a
highly data-imbalanced dataset. Even random selection or
the initial adversarial training result performed better than



Figure 3. Active learning curves on the HAM-10000 dataset.

them. We infer that sampling bias can cause this negative
impact. These results further underscore the limitations of
the previous methods mentioned in the introduction section
of the main manuscript.

2.3. Limitations and Future Work

We build on prior research on fairness [1,3,8] to address
common biases through minimax fairness evaluation in dis-
crete and limited groups, such as gender and race. Our JIN
approach effectively reduces biases by primarily sampling
from the worst-performing group. However, while mini-
max fairness is a widely-used evaluation, we acknowledge
that this objective may have limitations [4]. Besides, we are
open to exploring alternative budget distribution strategies
among multiple groups, instead of solely sampling from a
single worst group in our approach. Additionally, our ap-
proach is not directly applicable to continuous attributes,
such as age, which we currently address by dividing them
into bins for analysis. Future work will focus on exploring
alternative budget distribution strategies and expanding the
approach to handle continuous attributes or those without
attribute information.
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