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Abstract

Understanding human behavior in social environments
provides valuable insights and information. When individ-
uals require interaction with others, they rapidly assess the
likelihood of engagement based on social signals and the
displayed activity of the potential partner of interaction. We
refer to this cognitive process as the Interaction Acceptance
Belief (IAB). The concept of IAB finds application in various
social robotic scenarios, including service tasks, proactive
approaches, and reactive methods. In this paper, we present
a comprehensive definition of Interaction Acceptance Belief
and propose a methodology for its realistic modeling within
real-world scenarios. Our approach aims to enhance the
capabilities of social robots to effectively infer and adapt
to human preferences, leading to efficient human-robot in-
teractions. By conducting experimental evaluations, we es-
tablish the feasibility of developing a model that captures
and represents the Interaction Acceptance Belief within a
specific social context.

1. Introduction

The research on human-robot social interaction aims at

modeling the concept of social intelligence through a robot.

Replicating human behaviour in a social environment is a

challenging task. A human-robot interaction (HRI) system

should be able to naturally interact with a person while be-

ing able to respond to stimuli from its environment. Thus,

taking action for the agent is performed through the analy-

sis of signals emitted by people within reach, carried out by

means of multimodal perceptions. The processes and abili-

ties involved in perceiving, interpreting, and understanding

social information are named social recognition [37] and its

importance has been emphasized by Sandini et al. [19] in

the context of HRI.

When it comes to initiating an interaction with some-

one, the human brain rapidly assesses the likelihood of its

success. A stranger is less likely to accept the interaction,

similar to a person already engaged in another interaction or

occupied with a task unrelated to the agent. This scan of the

person’s availability helps to decide to engage or wait for a

better opportunity. The person’s behavior plays a significant

role in this evaluation as we can estimate around 60-65% of

all interpersonal communication or interaction is made up

of nonverbal behavior [5].

The activity of the user may also give some clues about

the person’s availability. Furthermore, the activity and non-

verbal behaviour can be visually observed. Unlike some

other features, such as the individual’s mental state or their

personal proximity to the agent, these features are too in-

tricate to deduce solely from an image. In this paper, we

propose the concept of Interaction Acceptance Belief (IAB)

which commonly answers the question ”What chances are

my interaction to be accepted by the targeted user?”. This

is a measure of uncertainty about the level of acceptance of

potential interaction with an agent. Its expression may be

manifested through the user’s passive or active behaviour

towards the agent.

The IAB opens up many possibilities for research on

human-robot social interaction with the aim of modeling the

concept of social intelligence through a robot. It brings cru-

cial information for robots that may need to proactively [11]

initiate an interaction with someone. The need for trans-

parent reasoning [4] for robot actions based on perceptions

and beliefs is an important subject in the human-robot in-

teraction, and understanding why a robot would engage one

person instead of another in a scenario with proactive inter-

action is carried out by the IAB.
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2. Related Work
Engagement, as referred to by [22], in HRI is described

as ”the process by which two participants establish, main-

tain, and end their perceived connection to one another”.

Behavioural engagement is characterised by active partic-

ipation in the moment of interaction, such as making eye

contact, blinking at an abnormal rate, maintaining an ap-

propriate body posture, and using hand gestures appropri-

ately [25]. These indicators have been identified in stud-

ies of on-task behaviour and attention. Affective engage-

ment refers to the emotional attachment of a user to the

agent [17].

This perceived connection of the engagement shows a lot

of similarity with IAB except that it occurs once the interac-

tion has started. However, it can be inferred that the features

utilized for the engagement should also be applicable to the

IAB.

[26] defines this concept of interaction readiness as ”the

extent to which a human prefers to have an interaction. The

interest towards an interaction is measured by the interac-

tion expected by a particular human. This interest is evalu-

ated by using the observable cues displayed by that human.”

The level of visual focus of attention has been introduced

by Das et al. [8] to help the agent decide to start an inter-

action. It is modelled through gaze patterns and contextual

cues. Webb et al. [35] defined a visual social engagement

metric and tested it in a simulation. This concept is de-

rived from two social signals, proxemics (roughly position-

ing in the social space, management of this position) and

mutual gaze, and is assessed in a simulation of group so-

cial interactions. The interaction readiness definition and

social engagement metric do not represent the case where a

person isn’t actively showing any particular interest and in-

stead expresses their readiness or engagement in a passive

way through their activity. It can be described as a subtle

or latent expression of interest. Therefore, in this study, the

primary focus will revolve around incorporating the key ele-

ments of social signals and action recognition as the central

features.

Social signals processing (SSP) works at modeling, anal-

ysis, and synthesis of social signals in human–human, and

human–machine interactions [32]. Gaze is a cognitive com-

ponent of engagement considered the primary cue of atten-

tion [21, 12, 18]. Gesture analysis in SSP brings informa-

tion about the connectedness between people [13]. Facial

cues such as blink rate [3], facial action units [36], emo-

tions [29], carry the affective state of participants. Mod-

els such as EMONET developed by [30] have increased the

ability to continuously estimate variance and arousal. Spa-

tial behaviour, or proxemics, constitutes the dynamic pro-

cess by which individuals position themselves in social in-

teractions [14]. The social proximity of a person can be

indicated by body posture with the orientation of the face

and body towards an interlocutor [20, 38].

Recognition of human action has shown growing interest

in the last two decades with the emergence of deep learn-

ing. It aims at predicting the current activity of a person

through a stream of images. Different architectures have

been proposed in the last years, two streams CNN-based

methods [24, 34] composed of dual spatial flow and tem-

poral flow, RNN-based methods [9, 15] which take advan-

tage of RNN temporal properties, 3D CNN-based meth-

ods [31, 6] where video frames with spatial and temporal

dimensions are used as input for a 3D CNN model then

conveyed to Transformers-like models with attention mech-

anism [16, 1].

Hence to complement the prior work described above,

our study aims to give a definition of IAB, propose a mod-

elization for it, and address the prediction of IAB in real

time within the context of proactive HRI scenarios. To

achieve this goal, we explore the various modalities. By

presenting our approach within a practical use-case sce-

nario, we strive to demonstrate the applicability and effec-

tiveness of the proposed methodology.

3. IAB Model
This section presents a model of the IAB, which is

amenable to implementation in a real-life standard scenario.

3.1. IAB Modeling

We aim to perform IAB prediction in a conducive envi-

ronment within the context of proactive HRI, such as a hos-

pital waiting room. Patients wait for their turn in a rather

static manner, they can be standing or sitting on a chair, us-

ing their phone, or simply listening to some music. People

raising their hands are asking for an interaction; this interac-

tion has almost no chance to be rejected except in some rare

cases of wrong calls. A person smiling at the agent may

lead to a successful proactive interaction. Both situations

yield a similar outcome, where the interaction is accepted.

However, the level of uncertainty varies between them.

An observation window is defined as a time interval

[t−τ, t], which captures the last τ seconds of user behaviour

leading up to time t. This window serves as the basis for

generating a feature vector [xt − τ, ..., xt−1, xt], which in-

cludes the frames within the interval. This feature vector is

used as input for the classifier. The output of the classifier

assigns a label to each observation window, indicating the

degree to which the user can be engaged during that time

period.

At time step t, we construct a model that classifies the

observed user behaviour within the interval [t − τ, t] as

either ”may accept an interaction” or ”may not accept an

interaction”. Let X = [x1, x2, ..., xT ] represent the se-

quence of multimodal user behaviour feature vectors, and

let Y = [y1, y2, ..., yT ] denote the corresponding sequence
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of binary output labels, with yt = C([xt−τ , ..., xt−1, xt]),
C being the classifier.

3.2. Pre-processing

To predict IAB levels, a multi-level approach is used, in-

volving the extraction of four different levels of perceptions.

These perceptions include:

Head features The first level of perception involves ana-

lyzing the eye gaze, head position and action unit of

the individual. Action Units (AUs) refer to facial mus-

cle movements or configurations associated with spe-

cific facial expressions [28]. This information provides

insights into where the person is looking and the orien-

tation of their head. One possible tool to infer gaze ori-

entation and head pose is OpenFace1, a popular open-

source facial behavior analysis toolkit [2].

Body key points The second level of perception investi-

gates the impact of body key points in the image, and

how they relate to particular body poses, to enable a

deeper understanding of the relationship between body

language and IAB levels. These features are extracted

per frame with the YoloV7 model [33].

Action Features The third level of perception involves ex-

tracting features related to the person’s actions. This

could include analyzing gestures, body movements, or

other behavioral cues that provide information about

the individual’s ongoing activity, including engage-

ment or interaction. An I3D model [6], pre-trained

on the Charades dataset [23], extracts action features

through a sliding window of 64 frames on images of

users delimited by their bounding boxes. Extracted

feature vector has a length of 1024.

Emotions The fourth level of perception focuses on ex-

tracting emotional states. This involves analyzing the

person’s facial expressions to determine their emo-

tional valence and arousal. Additionally, the five pri-

mary expressions, namely Neutral, Happy, Sad, Sur-

prise, and Fear, can be detected. The detection of emo-

tions is provided through an implementation of [30]

and the extraction is performed per frame.

To achieve synchronized feature vectors, we employ

temporal integration (also known as temporal pooling)

by applying a common integration window to all fea-

ture streams. The integration process involves applying a

specific integration function, such as mean and variance,

over sliding integration windows of length L seconds. In

this study, statistics-based integration functions are used.

Specifically, the mean and variance functions are utilized.

The integration window length L is set to 500 ms, and there

is no overlap between the integration windows.

1https://github.com/TadasBaltrusaitis/OpenFace

4. Experiments and Results
In this section, the experiments and results are reported,

after the dataset creation process has been described along

with the metrics used.

4.1. Dataset

The dataset 2 utilized for this project was collected to cre-

ate a simulation of patients in a waiting room. To achieve

this, we employed non-professional actors who were in-

structed to play behaviors while being recorded. A ded-

icated actor, representing the agent’s perspective, moved

around the room with a camera positioned at the torso level.

At times, the actors were requested to switch their behavior

scenarios to introduce variety within the scene and be repre-

sentative of real-world situations. The scenes’ durations fall

within a range of 30s to 2mn, for a total duration of around

one hour. The following enumeration presents a compre-

hensive list of potential actor behaviors considered in this

study:

• Engage in conversations with individuals seated adja-

cent to them.

• Active use of mobile phones, such as playing games or

browsing the Internet.

• Exhibit passive behaviour, where they remain idle and

appear to be waiting without any specific engagement

or activity.

• Show signs of interest and attentiveness towards the

agent.

• Seek the agent’s attention or assistance, requesting in-

formation, guidance, or support.

A diverse group of actors, comprising 12 individuals of

varying genres but all aged in [20, 30], was selected to por-

tray the role of patients in the study. To simplify the process

and ensure reproducibility experiences are recorded with

the front camera of an Apple iPhone 13 at 30fps. The IAB

level of each actor in the video has been meticulously la-

beled on a scale of 1 to 5 by two annotators. The instruction

given to data annotators is for each point, the closer it is

to one, the more unlikely it is to accept interaction. Con-

versely, the closer it is to five, the more likely it is to accept

an interaction. An example is also provided to the annota-

tors for each level. After labeling, the Cohen Kappa coeffi-

cient score between annotators is 0.88. Examples of behav-

iors from the datasets are pictured in Figure 1, for which the

IAB labels are from top to bottom left to right: 3, 5, 2, 1 for

both actors, 4 and 2.

2The dataset is available for research purposes with a simple request to

the authors.
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Figure 1. Examples of behaviors from the dataset.

IAB 1 2 3 4 5

#duration (s) 1532 1295 1521 391 322
Table 1. IAB values representation in the dataset (in seconds).

The dataset exhibits a significant class imbalance, with

IAB labels 4 and class 5 representing approximately 14%

of the overall class distribution. Yet at the same time it

aroused naturally from the human playing their scenarios,

and choosing their moment to express interest in an interac-

tion.

4.2. Metrics

The initial investigation focuses on evaluating the perfor-

mance of a classic recurrent neural network (RNN) across

different modalities. To evaluate the results, we compute

the Area Under the ROC Curve (AUROC) and F1 score.

The AUROC serves as an indicator to assess the perfor-

mance of binary classification models [10]. It provides a

comprehensive assessment of the model’s ability to differ-

entiate between classes across various threshold values. By

considering the balance between recall (proportion of cor-

rectly identified positive cases) and specificity (proportion

of correctly identified negative cases), the AUROC quanti-

fies the model’s overall discriminative power. The F1 score

quantifies the balance between precision (proportion of pre-

dicted positive cases that are correctly identified as positive)

and recall, providing a more robust measure when dealing

with imbalanced data sets [27].

4.3. Experiments

The model used in our experiment is based on the many-

to-one GRU architecture, as introduced by Cho et al. [7]

GRUs are a type of RNN with additional gating mecha-

nisms that help control the flow of information within the

network. These gating mechanisms enable GRUs to better

manage the flow of information through time and mitigate

the vanishing gradient problem, allowing them to capture

long-term dependencies more effectively than traditional

RNNs. The architecture consists of a single GRU layer with

128 hidden dimensions, which act as memory cells to store

and propagate information over time.

In the context of a small-sized dataset, the model can eas-

ily become overly sensitive to specific training examples,

causing instability during training. Minor variations or out-

liers in the limited data can have a significant impact on the

model’s learnt representation. It may also show difficulty

in capturing complex patterns: GRUs, are designed to learn

intricate patterns and relationships within the data. How-

ever, with too little data, the model may not have enough

diverse examples to capture the full complexity of the prob-

lem, leading to suboptimal performance. To address these

challenges, we employ an oversampling technique in the

training set to augment the data and achieve a more bal-

anced label representation. A 5-fold cross-validation is em-

ployed to leverage the available data, the best model is kept.

Models are then evaluated on a test set of 10 minutes.

4.4. Results

We conducted tests involving various features and their

combinations. The results obtained for each individual fea-

ture and the top 3 combination of features are presented in

Table 2.

Features/window length F1 AUROC

Head 6s 0.59 0.75

Bodypose 3s 0.52 0.72

Action 5s 0.37 0.61

Emotions 4s 0.36 0.5

Head+Bodypose 4s 0.61 0.8
Head+Bodypose+Emotion 2s 0.63 0.79

Head+Bodypose+Action+Emotion 6s 0.57 0.75

Table 2. F1 and AUROC scores of the various features in the opti-

mal window length.

The action and emotion features overall perform poorly.

The body key points provide some clues for the model to

evaluate the IAB of a situation. With an AUROC of 0.7,

the body pose model has a moderate ability to differentiate

between positive and negative cases.

Head and body pose features emerge as common ele-

ments among the top three feature combinations. This ob-

servation highlights the consistent significance of these per-

ceptual cues in contributing to the overall performance of

the predictive model. The presence of head and body pose

features in the top-performing combinations reinforces their

fundamental role in capturing relevant information and dis-

cerning interaction acceptance patterns. Action features do
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not exhibit a significant influence on the predictive perfor-

mance or contribute to the improvement of the overall pre-

diction when combined with other features.

A noteworthy observation arising from our experiments

is that a significant proportion of the top-performing models

demonstrate window lengths that are equal to or exceed 4.

This finding suggests that the task of predicting IAB bene-

fits from gathering more observations until a certain thresh-

old is reached. As the temporal context increases through

the use of longer window lengths, the predictive models

seem to gain an advantage in accurately discerning IAB dy-

namics.

The combination Head+Bodypose+Emotion yields the

best F1 score, achieved with a window length of only 2

seconds. This intriguing result suggests that this partic-

ular combination mitigated overfitting up to a certain ex-

tent while also facilitating the recognition of specific scenes

where the actor’s behavior transitioned to exhibit interest in

the agent and actively called for interaction. The utilization

of emotion cues in conjunction with head and body pose

features appears to slightly enhance the model’s capacity to

capture critical behavioral shifts and expressions of inter-

est, contributing to the successful prediction of interaction

acceptance in such instances.

5. Conclusion
This paper introduces and defines Interaction Accep-

tance Belief (IAB) in the field of Human-Robot Interac-

tion. We introduced a novel modelization approach for IAB

prediction and thoroughly validated it using a real-world

dataset comprising various scenarios. The obtained results

present promising and encouraging outcomes. Notably, our

research underscores the critical role played by head and

body pose, particularly when combined, in achieving accu-

rate predictions of IAB. The incorporation of these percep-

tual cues significantly contributes to the model’s ability to

discern and comprehend the dynamics of interaction accep-

tance in various real-world contexts.

Moving forward, our future work involves testing our

framework with a speech-enabled robotic agent in diverse

contexts or increasing complexity. Additionally, we aim to

enhance the modelization by considering the distinction be-

tween passive and active behaviors to more accurately es-

timate the IAB. This refined modelization is expected to

contribute to a more robust understanding of human-robot

interaction dynamics as a whole.
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Cross-dataset learning and person-specific normalisation for

automatic action unit detection. In IEEE International Con-
ference on Automatic Face and Gesture Recognition, 2015.

[29] Michael Thiruthuvanathan, Christ, Balachandran Krishnan,

and M. A. Dorai Rangaswamy. Engagement detection

through facial emotional recognition using a shallow resid-

ual convolutional neural networks. International Journal of
Intelligent Engineering and Systems, 14:236–247, 2021.

[30] Antoine Toisoul, Jean Kossaifi, Adrian Bulat, Georgios Tz-

imiropoulos, and Maja Pantic. Estimation of continuous va-

lence and arousal levels from faces in naturalistic conditions.

Nature Machine Intelligence, 3, 01 2021.

[31] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks, 2015.

[32] Alessandro Vinciarelli, Maja Pantic, and Hervé Bourlard.
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