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Abstract

The capacity for social reasoning is essential to the de-
velopment of social intelligence in humans, which we eas-
ily acquire through study and experience. The acquisi-
tion of such ability by machines, however, is still chal-
lenging, even with the diverse deep learning models that
are currently available. Recent artificial social intelligence
models have achieved state-of-the-art results in question-
answering tasks by employing a variety of methods, includ-
ing self-supervised setups, multi-modal inputs, and so on.
However, there is still a gap in the literature regarding the
introduction of commonsense knowledge when training the
model in social intelligence tasks. In this paper, we propose
a Multi-Modal Temporal Correlated Network with Emo-
tional Social Cues (MMTC-ESC). In order to model cross-
modal correlations, an attention-based mechanism is used,
and contrastive learning is achieved using emotional social
cues. Our findings indicate that combining multimodal in-
puts and using contrastive loss is advantageous for the per-
formance of social intelligence learning.

1. Introduction
Humans can develop intelligence by understanding dif-

ferent modalities of verbal and nonverbal social cues to rea-

son about the underlying mental feelings, thoughts, and in-

tentions of others [1]. When a person being questioned by

someone looks around in a hesitant manner, for instance,

we can recognize that the person may not be certain of the

answer based on their own experiences and thought pro-

cesses. This is an example of a well-known term in psychol-

ogy known as the Theory of Mind [15], which is the ability

to comprehend others by attributing mental states to them.

Figure 1. A scenario of using common sense knowledge for mod-

eling the multimodal social intelligence challenge. The process of

cross-modal correlation will enrich the information of the overall

contextual feature, while the underlying emotional and social clues

are employed for contrastive learning. The purpose of introducing

emotional cues is to pull the contextual feature vector away from

the incorrect answer with atypical affective states.

Theory of Mind is also related to empathy [25], where em-

pathy is the capacity to understand another person’s feelings

and emotions. Although such social reasoning abilities are

easily learned and developed by humans, the current bench-

marks for the task of understanding social interaction are
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comparatively low-resource [31]. Consequently, this raises

the question of whether we can use the characteristics of

social reasoning abilities to enhance the effectiveness of su-

pervised learning models for the task of enhancing social

intelligence.

Recent studies have demonstrated the utilization of

large-scale pre-trained models for the downstream task of

question-answering (QA) [5, 29]. Despite these significant

advancements achieved by large pre-trained models, these

models remain deficient in the ability to reason about social

situations when performing various tasks [14, 21]. This is

partially due to the fact that the training text corpora include

inherent biases, which restrict the depth of commonsense

knowledge [6]. To overcome this, a recent study inves-

tigated capturing relationships among different modalities

using commonsense reasoning [36]. Other research has also

shown that integrating multi-modal inputs can enhance the

performance of different tasks [30, 34]. Besides leveraging

multi-modal information, deeper reasoning skills, including

evidence and commonsense reasoning, were also explored

to advance the video QA task [11]. A language model could

also improve their understanding of the underlying com-

monsense knowledge through the strategy of introducing

domain knowledge and semantic information [35].

In this paper, inspired by the concept of incorporating

multi-modal inputs and the strategy of utilizing domain

knowledge for improving the understanding of common-

sense knowledge, we propose to develop a novel framework

named Multi-Modal Temporal Correlated Network with
Emotional Social Cues (MMTC-ESC). MMTC-ESC ex-

hibits an attention-based mechanism to model cross-modal

correlations and utilizes contrastive learning for reasoning

about emotional and social cues.

2. Related Work

2.1. Video Question Answering

Video QA is a popular vision-language task that has been

researched for years. Some of the previous datasets [7, 28]

collected short video clips regarding everyday activities that

are performed by humans. Additionally, other datasets also

collected long-term videos from movies or TV series, such

as TVQA [10] and MVQA [22], to understand the under-

lying meaning of dialogues from the videos. Nevertheless,

the Social-IQ [18] dataset contains various videos with a

greater focus on social interaction, which aims to evaluate

the model’s social intelligence abilities. The primary focus

of this study is on the development of a model that incor-

porates social intelligence and the evaluation of that model

with Social-IQ 2.0 [26], which is the second generation of

the Social-IQ dataset [31].

2.2. Multi-Modal Question Answering Models

In multiple previous studies, the long short-term mem-

ory (LSTM) model has been investigated for its capacity to

summarize or fuse multi-modal information in order to pro-

vide answers to questions in videos [32, 10, 33, 9]. How-

ever, LSTM training is hard, and there is no capacity for

transfer learning; which restricts its applicability to a va-

riety of different tasks. Additionally, the attention mecha-

nism [24] has also received a considerable amount of inter-

est in previous studies [8, 20, 5]. Dual attention combin-

ing late fusion on the latent representations of frames and

captions demonstrated increased performance on early fu-

sion [8]. Human-like attention signals were also utilized to

apply attention mechanism with questions and images dur-

ing training video QA models [20]. A model with a spatial-

temporal transformer was also found to be better suited in

the pre-trained models for long-form video QA tasks [5].

However, those studies are still insufficient in taking into

account commonsense knowledge reasoning. Other stud-

ies [11, 35] that consider the understanding of common-

sense knowledge are not yet fully adapted to the task of

social intelligence. Therefore, we aim to include common-

sense knowledge in the procedure of the training by making

use of the latent representation of the multi-modal outputs.

3. Method
Based on the Social-IQ 2.0 dataset [26], the goal of the

social intelligence task in this study is to predict the answer

y for a given media M with video and audio inputs, and a

question q, which is formulated as follows:

ỹ = argmax
y∈A

Fθ(y | q,M,A), (1)

where ỹ is the predicted answer chosen from multiple

choices, which is denoted by A, and θ is the trainable pa-

rameter of the inference model F .

Our approach uses three primary components to accom-

plish the goal: (1) feature extraction from multi-modal in-

puts; (2) cross-modal correlation modeling via attention

mechanisms; and (3) emotional social cues with contrastive

learning loss.

3.1. Multi-Modal Input Representation

Specifically, our multi-modal inputs for the task of social

intelligence QA include textual input T , audio input A, and

visual input V . The current models have the ability to ex-

tract distinguished features from short-term clips of video

or audio data. To adapt the long-term media inputs, we first

divide the media into N uniform-length segments, where

each segment contains an equal data length L.

We use modality-specific models to extract unimodal

features from different modalities of input. The Video-
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Figure 2. The overall framework of the MMTC-ESC. When given text with video or audio sequences as inputs, the cross-modal attention

module generates multimodal representations, V2T and A2T. In addition, a contrastive loss is created by bringing the contextual embedding

close to the textual embedding containing the correct answer.

MAE model [23], with frozen parameters, extracts the fea-

tures of all video segments from the video inputs, denotes

by xV =
{
x1
V , x

2
V , . . . , x

n
V

}
, where xn ∈ R

N×LV ×DV ,

and D is the dimension of the extracted features. Simi-

larly, the Wav2vec model [2], with frozen parameters, ex-

tracts the features of all audio segments from the audio in-

puts, denotes by xA =
{
x1
A, x

2
A, . . . , x

n
A

}
, where xn ∈

R
N×LA×DA .

For the textual information, we generate QA tuples

from the dataset. First, given the transcript from the

dataset, we use the T5 model [17] to generate summaries

from each video’s transcript and denote the summary as s.

Then, given a sample with a summary, a question q and

multiple-choice answers a =
{
a1, a

2, . . . , ak
}

, we tok-

enize each summary, question, and answer tuple as QA =
[{s, q, a1}, {s, q, a2}, . . . , {s, q, ak}], where i ∈ R

K , and

K is the number of answers. Then, we employ the pre-

trained model RoBERTa [12] to extract the feature vec-

tors for each QA pair. Then, the pooled outputs from the

RoBERTa model, the last layer hidden state of the first to-

ken of the sequence, are used for the downstream task of

predicting the correct answer.

3.2. Cross-Modal Correlations Modeling

To correlate different modalities of features with the

QA textual information, we apply a cross-modal atten-

tion mechanism to model the correlations between textual

modality and other modalities. Given the tokenized se-

quence {[CLS], w1, w2, · · · , wL} from a pair of QA, which

is fed into the RoBERTa, and the output vector, XT ∈
R

LT×DT , at the position of the [CLS] token is extracted

for the latter utilization.

In order to obtain the relevant sequential model outputs

for the video modality, we feed the sequential video seg-

ments into the video model. Then, we get the pooled out-

puts from the last hidden state of each model output and

stack them to produce the sequential video features, XV ∈
R

LV ×DV . Equivalently, the sequential audio features ex-

tracted by the audio model are denoted as XA ∈ R
LA×DA .

Using the multi-head attention mechanism proposed by

Vaswani et al. [24], for the given query Q, key K and value

V , the attended output is formulated as below:

Y = softmax

(
QKT

√
d

)
V. (2)

In this study, query Q represents the textual information,
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which is defined as QT = XTWQT
. Key K and value V are

the information from another modality, take audio modality

as an instance, KA = KAWKA
and VA = VAWVA

. There-

fore, the attended contextual output modeling the temporal

correlations between text and audio modalities is denoted as

YA2T . It is noted that YA2T has the same shape as the textual

feature XT , but also a representation vector in the feature

space of VA. Specifically, YA2T is a linear weighted combi-

nation of the value VA, representing the modeling temporal

correlations between the modalities. Applying the multi-

head attention mechanism is motivated by the idea that the

textual information Q can correspond to the target item,

where K and V from the audio or video modality are the

sources. Based on the textual input Q, we expect that atten-

tion outputs can retrieve the most relevant information from

the source modalities.

Finally, the overall representation vector containing the

original textual information and the other contextual fea-

tures vector is represented as:

Xall = ReLU(XT ||YM ), (3)

where || denotes the concatenation of feature representa-

tions. The multimodal representation YM = YV 2T ||YA2T

is also the concatenation of the features from two modali-

ties.

3.3. Emotional Causal Cues with Contrastive
Learning

To provide a model with commonsense reasoning abili-

ties, we propose employing emotional characteristics as an

indicator to generate positive and negative pairs from data, a

process known as contrastive learning. Given the multiple-

choice QA pairs QA = [{q, a1}, {q, a2}, . . . , {q, ak}],
assuming the index of the correct answer is c, we ex-

tract the emotion embeddings from each QA pair by us-

ing the T5 [17] model fine-tuned on emotion recognition

dataset [19], and denote them as Ei, where i ∈ R
K , and

K is the number of answers. Thus, the pair-wise compari-

son function using cosine similarity to compare the Ec with

other emotion embeddings is given as:

ē =
[
cosine

(
Ec, Ê:i

)]K
i=1,i �=c

∈ R
K , (4)

where ē represents the within similarity scores between the

emotion embedding from the correct answer and the embed-

dings from other incorrect answers. We select two negative

samples based on the scores alongside the lowest similarity

rankings as the negative sample sets.

The intuition behind the “reasoning” of explicit com-

monsense knowledge is to select the hard negative samples

to avoid the confusion of computing and finding correct an-

swers. It is also a common strategy in general question-

answer completion on TV shows, where participants have

the chance of removing two incorrect answers from the list

of four potential answers in order to increase the probability

that they will select the correct answer from the remaining

options. Regarding training the model, we wish to make

the multimodal embedding representation close to its cor-

rect QA embedding according to the emotional states of

different answers. A contrastive loss objective related to

the well-known InfoNCE loss [3] is given as:

LC = − log

(
e(Y

�
MX+

T )

e(Y
�
MX+

T ) +
∑2

i e
(Y �

MX−
Ti

)

)
, (5)

where X+
T denotes the positive QA embedding for the cor-

rect answer, and X−
Ti

denotes the negative QA embedding

for the incorrect answer.

3.4. Supervised Training for Answer Prediction

After the feature extraction and modeling of correlations

are complete, we fine-tune the language model and train the

attention layers and subsequent feed-forward layers to ob-

tain the final predictions. The cross-entropy loss is used to

optimize the predictions:

LCE = −
K∑
c=1

ys,c log(ps,c), (6)

where K is the number of answers, and y indicating if class

label c is the correct answer for sample s, and p is the pre-

dicted probability.

In the case of multiple-choice tasks, the set of negative

training samples represents the false classes. The final loss

is the combination of the cross-entropy loss and the con-

trastive loss:

Lall = αLCE + βLC , (7)

where α and β are the hyperparameters for weighting both

loss objectives, and their choices will be discussed in an

ablation analysis of the Results section.

4. Experiments
4.1. Dataset

We used the Social-IQ 2.0 dataset [26] to train the model,

which is the second generation of the Social-IQ dataset [31]

and the benchmark for evaluating social intelligence via the

question-answering tasks in videos. Similarly, videos of

Social-IQ 2.0 also contain various social situations where

people interact with each other and come with several ques-

tions asking about the interactions based on the social scene.

4.2. Implementation Details

We trained our language model with the basic configu-

rations and pre-trained weights of RoBERTa [12]. The pre-

trained weights of Video-MAE [23] and Wav2vec [2] are
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Table 1. The comparison results on the validation accuracy of

the Social-IQ 2.0 dataset for text-modality only (upper) and multi-

modal (lower) results. T, A, and V represent the modalities of text,

audio, and video. For the multi-modal results, T is the RoBERTa

model, and A and V are the corresponding modality-specific mod-

els as discussed in Section 3.1.

Model Accuracy (%)

Random Baseline 55.54

GPT 70.26

RoBERTa-base 71.41

RoBERTa-large 73.55

T+V 74.35

T+A 74.01

T+A+V 74.91

MMTC-ESC 75.94

frozen for feature extraction only. We used the AdamW [13]

optimizer with layer-wise learning rates. We used a learning

rate of 5e−6 to train the model and used a linear decrease

scheduler. We trained with a batch size of 16 and 10 maxi-

mum epochs, with an early stop after 3 epochs. We divided

each video or audio input into 30 segments to generate se-

quential embeddings. We used PyTorch and Huggingface

Transformer [27] to train the model. The training was per-

formed on a workstation with an Intel i9-10980XE core,

four NVIDIA RTX A5000 GPUs with NVLink, and 256

GB of memory over 8 hours.

4.3. Evaluation

In light of the fact that the Social-IQ 2.0 dataset is struc-

tured as a multi-choice QA task and that each question con-

tains the candidate answers, we report the accuracy for the

purpose of evaluating the model. As a result, making an ac-

curate prediction can be considered as selecting the correct

answer from all possible answers. We also used the follow-

ing baselines for the comparison.

T5 [17] is an encoder-decoder model that has already

been trained on a variety of tasks that are both supervised

and unsupervised and are each adapted into a text-to-text

format. We fed the textual information from the dataset to

the model and got the predicted answers, which served as

the random baseline.

GPT [16] is a causal transformer that has been pre-

trained on a substantial corpus using language modeling.

We used it in the same settings as our previously introduced

language model training method, but without multimodal

inputs and contrastive loss.

RoBERTa [12] is built on BERT [4] but without next-

sentence pre-training objectives and training with signifi-

Figure 3. Histogram of the emotional difference between correct

and incorrect answers is shown by this bar graph. We documented

the number of times the emotions from the incorrect responses

differed from the emotions of the correct answers for each QA

pair.

cantly larger mini-batches and learning rates. We used it

in the same setting as our previously introduced language

model training method, but without multimodal inputs and

contrastive loss.

5. Results

Table 1 shows the results of our MMTC-ESC network

performance with Social-IQ 2.0 based on the validation

set. We first found that the GPT showed lower perfor-

mance during the experiments compared with RoBERTa

so we used RoBERTa as the backbone model and the lan-

guage model for the latter experiments. This finding might

be explained by the fact that the pre-trained datasets for

GPT and RoBERTa are distinct from one another, and the

sources used by RoBERTa contain more information about

social interactions. Second, we found that the performance

could be improved by including either the video or the au-

dio modalities, and that the performance could be enhanced

even further by integrating both of these modalities jointly.

We also looked into the feasibility of employing emo-

tional features as social cues to distinguish between correct

and incorrect answers. We counted the number of emotions

from the incorrect answer choices that were not identical to

the emotions of the correct answer. As shown in Figure 3,

it should be noticed that 72.82% of the samples had at least

one incorrect response that did not belong to the same emo-

tional category as the correct response, and these incorrect

responses could have contributed as effective negative sam-

ples. An ablation analysis of choosing the ratios of β and

α for the weights of cross-entropy and contrastive loss is
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Table 2. An ablation analysis of the effect of choosing different

ratios of α and β for cross-entropy and contrastive losses. The

main objective of the model is to predict the correct answer, so we

set α = 1 and tune the ratio of β and α for analyzing the effects.

β:α Accuracy (%)

0.1 75.71

0.3 75.94

0.5 73.96

0.7 74.12

1 73.67

given in Table 2. When β : α is greater than 0.3, which

demonstrates the sensitivity toward the final performance,

it can be seen that increasing the weight of the contrastive

loss could result in a degradation of the performance.

6. Conclusions
In this paper, we demonstrate our model, Multi-Modal

Temporal Correlated Network with Emotional Social Cues

(MMTC-ESC), for the task of social intelligence question-

answering. Our results indicate that combining multi-modal

inputs can enhance overall performance, and introducing

contrastive loss based on commonsense knowledge can fur-

ther improve performance. The results also imply that the

model’s performance is dependent on the selection of the

weight for contrastive loss. In this current work, we have

only considered manual tuning of loss weights; however,

our future work will take into account adaptive tuning of

the weights over the course of training.
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