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Abstract

The ability to point to objects for sharing social purpose
or attention is known as one of the key indicators in distin-
guishing children with typical development (TD) from those
with autism spectrum disorder (ASD). However, there is a
lack of datasets specifically tailored for children’s pointing
gestures. This lack of training data from the target do-
main becomes a major factor in the performance degra-
dation of conventional supervised CNNs due to domain
shift. Toward an effective and practical solution, we pro-
pose an end-to-end learning scheme for domain generalized
pointing gesture recognition adopting self-supervised regu-
larization (SSR). To prove the effectiveness of our method
in real-world situations, we designed a Social Interaction-
Inducing Content (SIIC)-based ASD diagnostic system and
collected an ASD-Pointing dataset consisting of 40 TD and
ASD children. Through extensive experiments on our col-
lected datasets, we achieved an ASD screening accuracy of
72.5%, showing that pointing ability can play a vital role as
an indicator in distinguishing between ASD and TD.

1. Introduction

Social intelligence, a fundamental aspect of human in-
teraction, is known to be significantly impaired in individu-
als diagnosed with autism spectrum disorder (ASD) [4,17].
Early diagnosis of ASD is critical in that the brain of in-
fants and toddlers is highly plastic providing an opportu-
nity to change to a normal form, as well as preventing sec-
ondary neurological damage and the accumulation of se-
rious behavior problems. However, the current diagnosis
system mainly relies on labor-intensive manual examina-
tions performed by medical experts, which causes a prob-
lem of missing early diagnosis, a crucial factor in prog-
nosis. To alleviate these problems, recent studies on the
computer-aided diagnosis of ASD based on several signs
such as gripping motions, repetitive behaviors, eye move-

ment, aberrant gait, and facial traits have gained significant
research interest [22–24, 32, 33, 36, 43]. In addition to these
indicators, pointing skills that first occur between the ages
of 8 and 10 months and account for the majority of ges-
tures [5] can also be a crucial indicator in the early diagno-
sis of ASD. In general, pointing can be categorized into two
types: Protoimperative and protodeclarative. Among these
types of pointing, protodeclarative pointing has the purpose
of sharing social attention or interest with others, and thus
its deficits can be an important diagnostic criterion in ASD
screening [3, 8, 13, 25, 29].

Based on this medical research, in this paper, we de-
vised a deep learning-based automatic diagnostic system
to recognize the pointing ability of children during the So-
cial Interaction-Inducing Content (SIIC)-based test for ASD
screening. Since few datasets can directly handle point-
ing gesture recognition of children, we propose to address
this problem by leveraging recent studies on self-supervised
learning (SSL) [8–11,19,20,39,40] and domain generaliza-
tion (DG) [7, 26]. To this end, we propose an end-to-end
deep learning framework for domain-generalized pointing
gesture recognition adopting self-supervised regularization
(SSR) where domain-agnostic models are trained only on
source domains and generalize to unseen test domains. Fi-
nally, to validate the effectiveness of our proposed method,
we collected and tested real-world ASD-Pointing datasets
from 40 subjects composed of TD and ASD children which
have not been directly used for training. Our contributions
can be summarized as follows:

1) To the best of our knowledge, we are the first to cast
the problem of aiding an early diagnosis of ASD based
on nonverbal behavior, especially children’s pointing
abilities using deep learning frameworks.

2) We propose a domain-generalized pointing gesture
recognition scheme with SSR so that the deep models
learn domain-invariant features, which can be applied
to various fields such as medical AI with limited access
to large datasets and fine-grained annotations.
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3) We designed SIIC-based tests and collected real-world
ASD-Pointing datasets composed of TD and ASD chil-
dren with video-level annotations from 40 individual
subjects. The dataset not only can be used to prove ex-
perimentally that pointing ability is closely related to
the early diagnosis of ASD but also be expected to be
valuable to the community involved.

2. Proposed Method
2.1. Description of the proposed method

Fig. 1 shows the overall architecture of the proposed
framework. The proposed framework in the training stage
consists mainly of four major parts: a hand detector that
crops the person’s hand region to discard unnecessary in-
formation such as background and body features; multiple
encoders with an identical network architecture that extract
latent feature embeddings; a self-supervised regularization
block (SRB) that makes the architecture asymmetric to pre-
vent collapse; a logit layer that outputs the raw probability
values for classification results. In the test stage, only the
single branch of the network is used to recognize pointing
gestures with an additional ensemble block to add the ro-
bustness of network predictions.

Following recent studies exploring the importance of
body parts in action and attribute classification [18], our
framework firstly detects a person’s hand using a hand de-
tector D(·) from each frame x of the input videos which
drives the network to only focus on the hand region by dis-
carding unnecessary background and body features. Given
a detected hand region, D(x) of the input frame, k-th ran-
domly augmented views xk are generated as follows:

xk = Tk(D(x)), (1)

where Tk(·), k = 1, · · · , N represents the transformation
function.

To learn domain-invariant features, these randomly aug-
mented images are fed into the encoders followed by SRB
that makes the distance between randomly augmented im-
ages become close to each other as follows:

fk = Ek(xk; Θ
k
e), (2)

Lreg = SRB(f1, · · · , fk), (3)

where Ek(·), k = 1, · · · , N , represents an encoder of the
network with trainable Θk

e parameters, fk, k = 1, · · · , N ,
are the latent feature embeddings, and Lreg is the self-
supervised regularization (SSR) loss induced from SRB, re-
spectively. Note that the number of applied transformations,
N , can be extended to arbitrary sizes, but following most
self-supervised learning methods [9, 10, 19, 20, 40], it is set
to two in our papers.

We also adopt the binary cross-entropy loss function to
the first branch of the network for training the task of binary
classification, i.e. pointing or no-pointing, as follows:

y1 = P(E1(x1; Θ
1
e); ΘP), (4)

Lc = −
2∑
i

tilog(s(y1))i, (5)

where P is the logit layer with trainable parameters ΘP , s
is the softmax activation function, and ti denotes the i-th
component of one-hot ground-truth vector t, respectively.

Thus, we define the total loss functions for jointly train-
ing our network which consists of classification loss Lc and
SSR loss Lreg as follows:

L = Lc + λLreg, (6)

where λ is a weight parameter to control the two losses. For
Lreg , it can vary depending on which SSL method is se-
lected. For example, when selecting SimSiam [10] as the
SRB, the loss function Lreg with the negative cosine simi-
larity Dcos is defined as:

Dcos(f1, h2) = − f1
∥f1∥ 2

· h2

∥h2∥ 2

, (7)

Lreg =
1

2
(Dcos(sg(f1), h2) +Dcos(h1, sg(f2))), (8)

where ∥·∥2 denotes l2-norm, f and h represent a latent fea-
ture and its transformed feature from predictor, respectively.
sg(·) denotes the stop-gradient for preventing collapse.

Unlike common approaches where the network is pre-
trained with a self-supervised learning (SSL) scheme and
fine-tuned to learn the linear classifier [9, 19, 40], we uti-
lize the SSR as an auxiliary constraint to drive the network
to learn not only class-specific but also domain-invariant
feature representations. Furthermore, the proposed learn-
ing framework can be compatible with any existing SSL
methods, and the whole network can be easily trained in
an end-to-end manner.

2.2. Ensemble block

In the test stage, to reduce the risk of per-frame predic-
tion which is vulnerable to noise, and incorporate the tem-
poral information from input sequences, we adopt a simple
voting scheme called ensemble block as in [2]. The ensem-
ble block takes current and previous frame-level predictions
using a temporal sliding window. To predict the final video-
level result for pointing gestures, each frame-level predic-
tion is aggregated as:

y = A(yt1, y
t−1
1 , · · · , yt−T

1 ), (9)

where A(·) is a temporal ensemble block, t is the current
time step, and T is the number of previous frames within a
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Figure 1. The overall framework of the proposed method for pointing gesture recognition.

Datasets NTU RGB+D
No. of Images(train) 48.7k
No. of Images(val) 12.2k

Table 1. Configurations of re-organized and re-purposed datasets
for training the proposed network.

Groups Gender Age (years)
Male Female 1-2 2-3 3-4 4-5 5-6

ASD(N = 26) 20 6 1 3 12 10 0
TD(N = 14) 4 10 4 1 3 2 4

Table 2. Subjects, gender, and age distributions for ASD-Pointing
dataset.

sliding window which is set to two in our paper. In other
words, when all the recent three consecutive frames are
agreed upon, it is determined that a final positive pointing
reaction has occurred.

2.3. Train dataset construction

As far as we know, most of the publicly available
datasets for human action or hand gesture recognition, in-
cluding pointing classes, cannot be directly used to train
pointing gesture recognition networks with binary annota-
tion (pointing or no-pointing). Therefore, we re-purposed
and re-organized existing action recognition datasets, NTU
RGB+D [34] for training our proposed network. The
NTU RGB+D dataset contains 60 action classes and 56,880
video samples. Among the NTU RGB+D dataset, the hand
regions obtained from point to something class were de-
fined as positive samples, and the hand regions randomly
obtained as many as the positive sample in the remaining

action classes were defined as negative samples (i.e. One-
vs-Rest strategy). To detect the hand region, we use a
hand detector of MMPose (cascade rcnn x101 64x4d fpn
1class) [14], and the detected hand region is resized to the
size of 256 × 256. The configurations of the dataset are
described in Table 1 and we will make the dataset publicly
available.

2.4. ASD-Pointing dataset construction

To validate the effectiveness of our method in ASD
screening, we designed and developed a Social Interaction-
Inducing Content (SIIC)-based diagnostic system. The sys-
tem aims to prompt well-known social behaviors associated
with early signs of ASD children, such as joint attention,
eye contact, social smile, pointing gestures, and response to
name-calling. The SIIC-based system uses four Microsoft
Azure Kinect cameras to record children’s social interac-
tions while they watch the SIIC being played on three mon-
itors as shown in Fig. 2. Fig. 3 shows examples of the SIIC
for inducing pointing gestures of children. We constructed
an ASD-pointing dataset using recorded video clips during
the pointing gesture induction intervals in the SIIC. The
length of the content for pointing gestures induction is 5
seconds, and it’s repeated three times for each subject with
different instructions (e.g. Look for a tiger, apple, and air-
plane). Fig. 4 shows examples of captured images through
our SIIC-based system from four different viewpoints. In
addition to ASD diagnosis, the presence or absence of a
positive response to a pointing gesture in the SIIC-based
examination is annotated by medical experts after all exam-
inations have been done. Therefore, the final constructed
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Figure 2. SIIC-based diagnostic system that triggers social behaviors related to early signs of ASD children in three living lab spaces.

Figure 3. Example images of SIIC-based tests for inducing pointing gestures of children.

dataset contains 480 test video clips from 40 subjects, in-
cluding 26 ASD and 14 TD children, from three living lab
spaces. The details of the ASD-Pointing dataset are de-
scribed in Table 2. All the above studies were approved
by Institutional Review Board at Seoul National University
Hospital and Pusan National University and were signed by
all participants on a consent form with detailed descriptions
of the research.

3. Experiments
3.1. Implementation details

We adopt ResNet-50 [21] and Vision Transformer (ViT-
B/32) [16] as the base network for the encoder with the
ImageNet-1K weight initialization. For training our net-
works, we use the SGD optimizer with an initial learning
rate of 1e − 4, and a weight decay of 1e − 4 with a batch
size of 8. The learning rate is multiplied by a factor of 0.1
after every 20 epoch. Our model is trained for 50 epochs
with a single NVIDIA RTX A6000. Then, the best model
on the validation set during the training is chosen for fi-
nal testing. For a weight factor λ, we set it to 0.5 which
shows the best results. During training of our proposed
networks, each input image is transformed twice to gen-
erate augmented images with random cropping of output
size 224, and horizontal flipping. For the baseline with-
out SSR, the same augmentations on the input images are
applied. In the test stage on the real-world ASD-Pointing
dataset, to identify children among the people present in the
scene and robustly detect the hand region in practical situa-
tions, we utilize OpenPose [6] with depth information from
the Kinect sensor instead of using MMPose as in the train-
ing stage. Specifically, we lifted the 2D body coordinates
obtained by OpenPose to 3D coordinates using the depth
information and camera parameters given in the Kinect sen-

sor. The 3D bone length between shoulders is calculated,
and the person with the shortest bone length in the image
is selected as a baby which is a target person in our ex-
periment. To crop the hand region, following the method
in [35], we approximated the hand position using the elbow
and wrist position, assuming that the hand is about half the
length of the forearm in the same direction. A fixed-size
cube of size 150mm around the hand location is extracted,
projected into the 2D image space, and then resized to the
size of 224 × 224 image. For each frame, hand gesture
recognition is performed on both detected hands, and the
final predictions are made through OR operation.

Crop224 H-Flip ColorJitter Grayscale G-Blur Acc(%)
✓ ✓ 86.5
✓ ✓ ✓ 83.1
✓ ✓ ✓ 86.3
✓ ✓ ✓ 84.2
✓ ✓ ✓ ✓ ✓ 76.5

Table 3. Ablation study on the effect of adding data augmentation
technique on the ASD-Pointing dataset.

3.2. Ablation studies

In general, SSL methods are known to be dependent on
the choice of data augmentation. To select the best combi-
nation of data augmentation in our proposed method, fol-
lowing SimSiam [10], we experimented with the data aug-
mentation techniques: random cropping of size 224, ran-
dom horizontal flipping, random color jittering, random
grayscaling, random Gaussian blurring. For our ablation
studies, we select SimSiam as the SRB with ResNet-50
backbone. As shown in Table 3, the best results are achieved
when the random crop of size 224, and horizontal flip
(i.e. weak augmentations) were used. In contrast to re-
sults reported in papers [19, 40], the classification accuracy
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Figure 4. Examples of result images from different camera views where pointing is performed (top row) or not (bottom row) during the
SIIC-based testing. Due to privacy issues, the human area was blanked through segmentation.

Model NTU RGB+D → ASD-Pointing
Accuracy Recall Precision F1-score

ResNet-50 (baseline) 84.8 66.2 53.5 59.2
ProposedBYOL 86.3 63.7 58.0 60.7
ProposedSimSiam 86.5 76.2 57.0 65.2
ViT-B/32 (baseline) 61.9 98.7 30.3 46.3
ProposedBYOL 75.0 97.5 39.8 56.5
ProposedSimSiam 75.2 98.7 40.1 57.0

Table 4. Performance evaluation of pointing gesture recognition
on real-world ASD-pointing datasets. Bold and underline indicate
the best and second-best results, respectively.

was rather dropped when random color jittering, random
grayscaling, and random Gaussian blurring (i.e. strong aug-
mentations) were added. We speculate that these results can
be attributed to the distortion of the inherent appearance of
training images caused by strong augmentation techniques
which could potentially harm the training process. Follow-
ing the results, unless otherwise noted, we used random
cropping and horizontal flipping in the rest of the papers.

3.3. Performance evaluation of pointing ges-
ture recognition on real-world ASD-Pointing
datasets

The results of pointing gesture recognition on the ASD-
Pointing datasets in terms of average accuracy, precision,
recall, and F1-score are listed in Table 4. Note that we
only used re-organized NTU RGB+D dataset described in
Section 2.3 for training, and tested on unseen ASD-Pointing
dataset to validate the generalization ability of the proposed
method. Any existing SSL methods can be adopted in our
frameworks, but for applicability and scalability, we adopt
SimSiam [10] and BYOL [19] in SRB which do not require
negative samples. As shown in the results, adopting our pro-

posed learning scheme on the baseline network boosts the
overall classification performance. As for the ResNet-50
backbone, the ProposedSimSiam and ProposedBYOL improve
the accuracy of Vanilla ResNet-50 by 1.7%p and 1.5%p,
respectively. As for the transformer-based architecture, the
overall accuracy of the networks using the ViT backbone
is lower than that of the ResNet-50. We speculate that
this is due to the difficulty of learning for transformer net-
works that rely on a large amount of training data in the
lack of inductive bias. Nevertheless, the ProposedSimSiam
and ProposedBYOL reduce the domain gap and dramatically
improve the accuracy of the Vanilla ViT network by 13.3%p
and 13.1%p, respectively. The experimental results demon-
strate that adopting our proposed learning scheme with SSR
leads to a domain-robust feature representation that consis-
tently improves the generalization ability of the deep mod-
els without depending on a particular choice of backbone
networks or SSL methods.

3.4. Screening of ASD children based on the point-
ing ability

We present the results of screening ASD children based
on their pointing ability during the SIIC-based test in Ta-
ble 5. For the test, we use the ProposedSimSiam with ResNet-
50 backbone which shows the best performance on pointing
gesture recognition. Each column marked 1st, 2nd, and 3rd

denotes the average of the pointing probability (i.e. soft-
max prediction values) from four camera views for each of
the three pointing activities. As can be seen in the results,
ASD children had less positive responses to pointing ges-
tures than TD children, and only one in 26 ASD children
recorded a higher pointing probability value than 50. Ta-
ble 6 shows the screening results of ASD/TD based on the
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Subjects 1st 2nd 3rd Avg.(%) Subjects 1st 2nd 3rd Avg.(%)

ASD

1 83.3 84.3 40.1 69.2

ASD

22 5.8 35.4 66.5 35.9
2 41.8 35.4 18.9 32.0 23 1.4 0.6 21.6 7.8
3 2.3 16.8 21.3 13.5 24 4.5 21.8 5.1 10.5
4 2.3 1.4 3.2 2.3 25 1.3 1.5 1.3 1.3
5 43.0 19.9 3.0 22.0 26 2.8 4.6 29.1 12.1
6 1.5 4.7 66.6 24.3 Avg. probability 12.2 17.2 18.7 16.1
7 17.9 22.5 18.4 19.6

TD

1 62.2 84.3 60.0 68.9
8 2.8 4.2 90.5 32.5 2 21.0 5.2 3.5 9.9
9 2.8 3.5 1.4 2.6 3 66.7 93.6 75.9 78.7

10 2.1 2.8 3.0 2.6 4 74.4 78.9 68.3 73.8
11 23.6 45.3 21.8 30.2 5 77.7 16.4 19.6 37.9
12 4.3 5.4 2.7 4.1 6 73.4 89.2 67.9 76.8
13 1.5 0.7 14.7 5.6 7 2.1 2.8 2.6 2.5
14 1.5 17.0 3.1 7.2 8 2.5 2.9 3.0 2.8
15 2.6 3.0 2.7 2.8 9 1.0 19.3 6.1 8.8
16 2.2 1.5 1.6 1.7 10 0.9 1.3 1.1 1.1
17 3.8 3.5 5.7 4.3 11 3.7 1.4 1.3 2.1
18 3.6 47.1 18.6 23.1 12 21.7 55.8 3.2 26.9
19 3.5 4.1 2.1 3.2 13 6.7 6.5 6.0 6.4
20 53.7 58.5 21.8 44.6 14 1.1 0.9 0.9 0.9
21 1.7 3.0 2.7 2.5 Avg. probability 29.6 32.7 22.8 28.4

Table 5. Probability of positive pointing response during the content-based tests.

N=40 ASD TD Predicted
ASD 25 1 Recall: 96.2%
TD 10 4 -
Actual Precision: 71.4% - Accuracy: 72.5%

Table 6. Confusion matrix for ASD screening, with a probability
threshold of 50.

probability threshold of 50. Here we obtained screening
accuracy, recall, precision, and F1-score of 72.5%, 96.2%,
71.4%, and, 82.0%, respectively. The ASD screening ac-
curacy of 72.5% with only a short test time of about 15
seconds in the SIIC-based test proves a high potential of
pointing ability to be used as a key indicator in discriminat-
ing between ASD and TD children. Furthermore, given the
characteristics of the medical field where classifying pos-
itive samples as negative has more risk than the opposite
case, the relatively high recall rate of 96.2% can be con-
sidered to have the advantage of being able to be used as a
primary screening tool.

4. Conclusion
In this paper, we explored a method for predicting the

diagnosis of children with ASD and TD based on the ability
to perform pointing gestures through the Social Interaction-
Inducing Content-based test. Toward a practical approach
in the field of medical AI where access to large datasets is
limited, we designed a simple but effective training scheme
with self-supervised regularization. We also collected a
real-world ASD-Pointing dataset from 40 subjects com-
posed of 14 TD and 26 ASD children. Our experiments
on ASD-Pointing dataset show that adopting the proposed
learning scheme improves the generalization ability of the
base networks, alleviating the challenge of the unavailabil-
ity of datasets. Furthermore, a screening accuracy of 72.5%

based on the pointing ability during a short testing time of
15 seconds indicates a high potential for pointing gestures
to be used as a key indicator in discriminating between ASD
and TD children.

5. Limitation
1) Screening ASD with only one behavioral indicator has

a limitation in reliability, even if it shows a certain de-
gree of accuracy. Even TD children may not perform
behaviors that are a target indicator due to unfamil-
iar test environment, and on the contrary, ASD chil-
dren may have the ability to perform a specific behav-
ior. Combining key features that distinguish children
with ASD from TD children, such as joint attention,
social smiling, eye contact, response to name calling,
and repetitive behavior can not only increase the accu-
racy of ASD screening but also make a high reliable
diagnosis.

2) As shown in the result in Section 3.4, most of the ASD
children (14 out of 15 children) did not perform point-
ing, but even some cases of TD children also did not
point. We speculate that the unfamiliar testing envi-
ronment may have hindered TD children from mak-
ing positive responses to pointing gestures, which is
expected to be addressed in our future work through
improvements to SIIC-based tests, such as adding a
warming-up section.
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