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Abstract

Abdominal pain is one of the most common symptoms
for a wide range of conditions in children, under the age of
16 years. Due to the limited ability of X-ray to distinguish
between structures in soft tissue, physicians often rely on
Computed Tomography (CT) scan to diagnose the underly-
ing cause of abdominal pain. A CT scan exposes the pa-
tient to 70-150 times the radiation used for an X-ray. More-
over, CT scanning equipment is often not available in low-
resource countries, leading to improper diagnosis and treat-
ment. Children are more susceptible to the harmful effects
of radiation than adults and might have limited language
skills, based on age, and hence limited ability to describe
their symptoms to the physician. In this work, we show that
it is possible to use a Machine Learning (ML) model, ca-
pable of generating synthetic CT scans, from orthogonal X-
ray scans, to improve the automatic prediction of abdomi-
nal anomalies. In particular, we focus on the detection of
structural anomalies such as malformed organs, cysts, and
appendicitis. On average, we are able to improve the per-
formance of the prediction model by 9.75%, with respect to
the model trained on only X-ray and 4.55%, with respect to
the model trained on only generated CT scan, by training it
on both the generated CT scan and X-ray.

1. Introduction

Abdominal pain (APN) is a very common symptom

among children, accounting for around 5-10% of children

brought to the emergency department (ED) [8]. APN, orig-

inating from a non-traumatic cause and lasting more than 5

days is called acute APN. APN may have a wide variety of

causes, ranging from self-limiting ones to life-threatening

ones. The causes are also classified as urgent, requiring im-

mediate medical attention, and non-urgent, which do not
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progress in severity very rapidly. An effective diagnosis of

the underlying cause(s) of APN allows early and more accu-

rate management and leads to more positive outcomes and

lower morbidity.

Accurate diagnosis in the medical field is the process

of identifying a medical problem by analyzing the pa-

tient’s symptoms and the results of medical imaging tests.

There are many different types of medical imaging tech-

nologies available, including ultrasound (US), X-rays, MRI,

CT scans, and NMR. X-ray was discovered by Wilhelm

Roentgen in 1895 and it allows us to non-invasively look

inside the human body. While a single 2D X-ray image is

able to accurately represent the structure of hard tissue, such

as bones, cartilage, and teeth, it does not produce an easily

discernible representation of soft tissue. To address this is-

sue, Computed Tomography (CT) imaging was developed.

CT scan uses a large number (at least 100) of 2D X-ray im-

ages to construct a 3D volume representing the structures

inside the body. While this makes it easier to discern soft

tissue structures, the dose of radiation, to which the patient

is exposed is increased by a factor of 70 to 150. While this

is harmful to any human being, children are especially sus-

ceptible to such a high dose of radiation [35].

As mentioned earlier, APN stems from a wide range of

causes, that vary according to the age and sex of the pa-

tient. The lack of classical expression of specific symptoms

in some instances makes it more difficult to accurately di-

agnose the cause. This leads to a higher need for imaging

or exploratory surgical procedures [32, 6, 47].

Apart from the risks associated with such practices, CT

scanning equipment is expensive and inaccessible to pa-

tients in resource-constrained areas [34, 36]. Due to a lack

of infrastructure, such as sanitation, APN is quite common

among children in such areas. Physicians who are unable

to access a CT scan often have to rely on their best judg-

ment and provide a diagnosis based on their past experience

alone. Hence, pediatric patients, with relatively rare condi-

tions, get misdiagnosed, leading to morbidity or mortality.
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Even if they have access to CT scanning equipment, reports

are often delayed due to repair, and lack of sufficient radi-

ologists or radiology technicians.

Synthetic CT scans can not only improve access to radi-

ology but also reduce radiation exposure. Recently, a vari-

ety of methods have been proposed to automatically iden-

tify anomalies in medical images using deep learning (DL)

[27]. In this work, we use DL algorithms to generate CT

scans from 2 orthogonal X-ray images [53]. X-ray images

are produced by passing X-ray through the body of the pa-

tient, onto a 2D surface, producing a 2D image. In CT scan,

a rotating X-ray tube is used to capture multiple 2D im-

ages which are combined by computer algorithms to pro-

duce a 3D representation of the internal structures of the

body. Given, the low variability of the human body, a DL

model, trained on sufficient data, can generate a CT scan

from an X-ray image. Generative Adversarial Networks

(GANs) have been proven to be very effective in generating

synthetic data [16]. Such data can be used by physicians or

automatic classification algorithms. In this study, we used

a Machine Learning (ML) model to classify image data as

normal or abnormal. We show that we are able to improve

the performance of the classification model by 9.75%, with

respect to the model trained on X-ray and 7.55%, with re-

spect to the model trained on only generated CT scan, by

training it on both the generated CT scan and X-ray. The

patients whose images are classified as abnormal may then

be asked to undergo further investigation in the form of a

CT scan.

For generating the synthetic CT scans, we use an existing

DL model called X2CT-GAN [53]. This model is trained

to generate CT scans from posterior-anterior (PA) and op-

tionally lateral X-ray(s). It was trained on X-rays gener-

ated from CT scan using digitally reconstructed radiographs

(DRR) technology [33]. The model was further trained to

accept real X-ray images using style transfer by CycleGAN

[56]. Further information about the X2CT-GAN model can

be found in [53]. We use this synthetic CT scan, along with

the X-ray images to train an ML algorithm to classify them

as normal or abnormal. Due to the lack of large-scale ab-

dominal X-ray datasets, we also used DRR to generate X-

ray images from abdomen-pelvis CT images and then re-

fined the model by training it on a smaller dataset of real

X-ray images. The contributions of this work are as fol-

lows:

• We show that synthetic CT scans can be used to signif-

icantly improve the performance of an algorithm for

the automatic classification of abdominal imaging as

normal or abnormal.

• We provide an extensive evaluation of the proposed ap-

proach with convincing quantitative and qualitative re-

sults.

• We create a small-scale dataset of pediatric abdominal

X-ray images, labeled as normal or abnormal.

2. Related Work
2.1. ML for Disease Classification

Artificial intelligence (AI) for automated image-based

disease detection and segmentation has gained significant

traction over the last decade [7, 40, 45, 55] from traditional

ML methods such as applying logistic regression to heart

disease prediction to achieve early detection of heart dis-

ease [24] to DL models achieving high success in classi-

fying diseases from medical images [4]. In the context of

heart diseases, Ansari et al. [2], for example, offered an

automated coronary heart disease diagnosis system based

on neurofuzzy integrated systems where as with the advent

of DL in the subsequent years, Miao et al. [31], offered a

DL-based technique to diagnosing cardiotocographic fetal

health based on a multiclass morphologic pattern. Along

the similar lines of solving disease classification using AI,

there have been a substantial number of research studies

that have focused on other types of diseases, such as kid-

ney disease [29, 1], breast cancer [3, 48], diabetes [52], and

Parkinson’s disease [51, 15]. In recent times, these models

have been used to classify COVID-19 [17], and other infec-

tious diseases from X-ray images [43]. CT images have also

been used for disease classification [12], as they provide ad-

ditional context [58]. In particular, neural networks have

been shown to be effective in classifying structural anoma-

lies from CT scans [5, 38]. Multi-modal models, which fuse

information from multiple sources, have also been shown

to be effective for disease classification [28]. For exam-

ple, models that fuse CT and electronic health records have

been shown to improve prediction accuracy [20]. Similarly,

models that fuse different views of chest X-rays have also

been shown to improve prediction accuracy [19, 57]. One

such study [37] presents a model which uses an intermedi-

ate bidirectional fusion architecture to extract and fuse the

spatial correlation between the frontal and lateral views of

X-rays. The fusion of X-ray and CT has been shown to

be particularly effective for automatically diagnosing infec-

tious diseases, such as COVID-19 [30].

2.2. Synthetic Data Used in Medical Imaging

Generative models, such as GANs [14] have made it pos-

sible to create realistic synthetic medical data [9, 13, 18,

23, 22]. This data has been used to address limitations

on real data availability, such as limited availability [11]

or class imbalance [25]. For example, synthetic images

have been shown to be effective in chest pathology clas-

sification [41] and the localization of important anatomical

landmarks [49]. [26] generated synthetic glioblastoma mul-

tiforme (GBM) in 2D magnetic resonance images with a
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segmentation mask while [46] used a conditional GAN to

generate synthetic polyp data from real edge-filtered images

and a randomly generated mask. Another study [50] intro-

duces a synthetic data generation pipeline that can be used

to produce alternative artificial segmentation datasets with

corresponding ground truth masks. Synthetically generated

CT images have been widely applied for multiple medical

image analyses, such as super-resolution [54], classification

[11], and segmentation [42]. In this work, we use a recent

GAN-based approach [53] to generate CT images from X-

rays to improve the detection of structural anomalies in ab-

dominal imaging. To the best of our knowledge, we are the

first to use synthetically-generated CT images for the anal-

ysis of structural anomalies in abdominal imaging.

3. Structural Anomalies in the Abdomen
Children are often born with congenital anomalies. In

some instances, there is an absence of an expression till

several years after birth. For example, atrial septal defect

(ASD) is often first detected after the child starts having

physically demanding activities. Some defects never have

an expression during the life of the individual, such as re-

nal agenesis i.e. being born with a single kidney. The other

kidney is able to perform the necessary functions and the

individual may never experience any difficulty.

Another congenital structural anomaly is inguinal hernia,

which makes up about 80% of hernias in children. The pro-

truding part of the intestine may enter the scrotum, in males

or the labia, in females, causing pain [44]. Some other

forms of pediatric hernia are Umbilical hernias, Epigastric

hernias, Hiatal hernias, and Incisional hernias. Umbilical

hernias occur in babies, younger than 6 months, when the

opening where the umbilical cord exits the abdomen fails to

close. Epigastric hernias occur, mostly in males, as a protru-

sion through the abdominal muscle, between the chest and

belly button. Hiatal hernias occur when the upper part of the

stomach protrudes through a weak part of the diaphragm,

where the esophagus meets the stomach. Incisional hernias

occur after surgery, when the intestine protrudes through the

abdomen, close to the incision site.

Cysts can occur at various locations inside the abdomen.

Some common ones include ovarian cysts, renal cysts, and

adrenal cysts. These might express in the form of symp-

toms like difficulty breathing, APN due to intestinal block-

age, jaundice, etc. Cysts may or may not grow with time

and may or may not cause any major problems in the long

run. It is important to detect and, if necessary, remove the

cyst early, before it causes any major issue or becomes more

difficult to remove surgically. While cysts are often hollow,

filled with fluids, tumors are solid masses of cells. A tumor

may be benign or malignant. A benign tumor stays where it

is and may or may not grow in size. A malignant tumor has

a high probability of metastasizing i.e. spreading to other

organs. Hence management of malignant tumors is more

time sensitive than that of benign tumors.

4. Proposed approach
We use a generative model, designed to synthesize CT

scans using orthogonal X-ray images [53], to test if the im-

ages produced by it can improve the accuracy of an ML

model in classifying abdominal X-ray images. For an image

to be classified as abnormal, we considered some common

structural anomalies, namely, malformed organs, hernias,

cysts, and tumors.

Let, xi be an image in the X-ray dataset, consisting of

a posteroanterior (xPA
i ) and a lateral (xL

i ) view of the pa-

tient. Hence, xi=[x
PA
i , xL

i ]. Let, c be the generative model

to produce synthetic CT scans. For a given xi, ci is the CT

scan produced. Hence, ci = c(xi). Let, ci contain N slices

and let si be a subset of all the slices in ci. We train an

ML model f to classify whether an image is normal or ab-

normal, using 3 different subsets si. These are described as

follows:

• 50 % of slices are randomly removed. → (s1i )

• Only odd-numbered slices are considered. → (s2i )

• We consider exponentially decreasing number of

slices, moving from the slice at the center to either end.

Hence, if there are N slices, centre = N/2 and if jth
slice is considered, the next slice to be considered is

the (j + αeabs(j−centre))th slice. The value of α is

determined such that the total number of slices consid-

ered ≈ N/2. → (s3i )

Let the predicted value be gi such that gi = f(vi), where

vi ∈ {(si, xi), (si, x
PA
i ), (si, x

L
i )} and si ∈ {s1i , s2i , s3i }.

Here, gi is a binary variable such that a value of 1 indicates

that the image is abnormal and a value of 0 indicates that it

is normal. The ML model f used is described in the follow-

ing sections.

5. Experimental setup
5.1. Dataset

Abdominal X-ray is seldom used for diagnosing the

cause of non-traumatic APN. Therefore, to our knowledge,

there are no large-scale pediatric abdominal X-ray datasets.

For this study we use the CT scan dataset provided by [21].

The dataset consists of abdomen-pelvis and chest-

abdomen-pelvis CT scans, collected from 359 pediatric sub-

jects, with ages ranging from 5 days to 16 years. The aver-

age age of the subjects is 7± 4.5 years and the median age is

6 years. The cohort included 179 female and 180 male pa-

tients. The data was collected from three scanners, namely

Somatom DefinitionAS+(Siemens Healthineers AG, Erlan-

gen, Germany), LightSpeed VCT (GEHealthcare, Chicago,
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Figure 1. Examples of different types of structural anomalies considered in abdominal CT scans. These are, malformed organs, such as

a missing kidney (renal agenesis), hernia, cysts, and tumors. The slice in which an anomaly is most distinct is shown, with the anomaly

depicted in red, for representation purposes only. The slices used for training and testing are as described in Section 4

.

Illinois, USA), and Revolution (GE Healthcare, Chicago,

Illinois, USA), at Children’s Wisconsin. Twenty-five struc-

tures in the pelvis, abdomen, and thorax were retrospec-

tively and manually contoured by four expert medical an-

alysts. However, these scans didn’t have any labels for

anomalies. Hence, five radiologists, with over 10 years of

experience, labeled each CT scan as ”normal” or ”abnor-

mal”, according to the criteria mentioned in the previous

section. If any major structural anomaly, not included in

these selection criteria, existed in an image, the radiologists

were free to exercise their judgment to label that image as

”abnormal” as well.

Digitally reconstructed radiographs (DRR) technology

[33] was used to obtain the PA and L X-ray images from

each CT scan. These were then used to generate synthetic

CT scans using [53].

The dataset was divided into training and test sets in the

ratio 9:1. For testing our approach, in addition to 10% of

the data, mentioned above, we also used abdominal X-ray

images collected at 10 rural medical centers located in dif-
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ferent parts of the state of West Bengal in India. The size

of the dataset was equivalent to 10% of the dataset provided

by [21]. The ages of the subjects for this dataset ranged be-

tween 1 year and 14 years, with an average age of 10 years

and a median age of 9 years. The cohort was 49% male

and 51% female. The data was collected from random pe-

diatric cases based on routine clinical indications, using a

3.5kW machine, operating at 55kVp. These X-ray images

were labeled by the same 5 radiologists, who labeled the

[21] dataset, according to the same criteria.

5.2. ML model architecture and training

5.2.1 Synthetic CT scan generation

We used a publicly available pre-trained version of X2CT-

GAN [53] for generating CT scans using biplanar (PA and

L) X-ray images. The model is trained on pediatric abdomi-

nal CT scans, provided by [21]. The training was performed

in the same manner as in [53].

5.2.2 Image classification

For the classification of multimodal images (slices from the

synthetic CT scan + biplanar X-ray images), we use the

TransMed architecture, proposed by [10]. ResNet34 is used

as a backbone for the CNN branch and DeiT-Small (DeiT-

S) for the transformer branch. The generated CT scan, with

50% of the slices discarded, and the biplanar X-ray images

were used. The images were first preprocessed using OTSU

[39]. They were resized to 448x448. Data augmentation

was performed using random flip, with a probability of 0.5,

and Gaussian noise, with a mean of 0 and variance of 0.1.

We train the model with stochastic gradient descent

(SGD) optimizer, with a momentum of 0.7, a learning rate

of 10−3, and a batch size equal to 2.

The model is tested on a dataset consisting of biplanar X-

ray images, obtained using DRR, from 10% data of the [21]

dataset and an equal number of real biplanar X-ray images.

The real X-rays are transformed to match the style of the

generated X-rays, using a CycleGAN [56].

6. Results

6.1. Quantitative analysis

We analyze the performance of the model, for classify-

ing images as normal and abnormal, in terms of accuracy,

sensitivity, and specificity. The results are shown in Table

1. We see that the model performs slightly better when X-

ray images, along the PA plane, are provided along with the

generated CT scans, than when X-ray images, along the L

plane, are provided with the generated CT scans.

The best performance is obtained from using 50% of

slices from the generated CT scan. As shown in Table 2,

Data Accuracy Sensitivity Specificity
s1i + xi 0.72 0.7 0.76

s2i + xi 0.79 0.74 0.89
s3i + xi 0.83 0.81 0.87

s3i + xPA
i 0.77 0.73 0.85

s3i + xL
i 0.76 0.73 0.82

s2i + xPA
i 0.74 0.69 0.84

Table 1. Evaluation of the performance of the model in classifying

images as normal or abnormal, in terms of accuracy, sensitivity,

and specificity. The variables, namely s1i , s2i , s3i , xi, x
L
i , and xPA

i ,

used to describe the different types of data used are explained in

Section 4. The best results are shown in bold.

Data Accuracy Sensitivity Specificity
All slices of

synthetic

CT scan + xi

0.76 0.72 0.84

Original CT

scan + xi
0.87 0.83 0.95

Table 2. Evaluation of the classification performance of the model

when all the slides of the synthetic CT scan and those of the origi-

nal CT scan are used, along with the biplanar X-ray images.

Data Accuracy Sensitivity Specificity
X-ray (biplanar) 0.73 0.67 0.85

Generated CT 0.79 0.75 0.87

Generated CT +

X-ray
0.83 0.81 0.87

Table 3. Performance metrics for the model trained on biplanar

X-ray images, 50% of the generated CT scan (s3i ) and both.

the results are better than using all the slices of the gener-

ated CT scan. The difference, in accuracies, between the

two is 7%. This is probably because the slices towards the

center of the generated CT scan are more distinct than those

towards either end. This may be justified by the fact that

the PA and L views, of the X-ray images, used to generate

the CT scans, intersect at the center, providing much more

information to the X2CT-GAN model about the structures

at the center than those at positions away from the center.

We also observe that using the slides from the original CT

scan produces a difference in accuracy of 4% with respect

to the accuracy when 50% of slides from the generated CT

scan are used.

We test three approaches for selecting 50% of the slices

in the generated CT scan. Using an exponentially decreas-

ing number of slices, as we moved away from the center,

produced the best performance. This might be explained by

finding the projections of different slices on the two orthog-

onal planes (PA and L). The information density i.e. the
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Figure 2. Examples of normal and abnormal CT scans most often correctly and incorrectly classified by the model.

amount of structural information obtained from the PA and

L X-ray images, decreases according to a function that re-

sembles the exponential function for a limited range of val-

ues, as we move away from the center. Hence, reducing the

number of slices considered, accordingly, allows the model

to focus on more reliable data, towards the center.

Another interesting observation is that the model has a

higher specificity than sensitivity for all kinds of data used.

This indicates that the model is able to classify healthy pa-

tients, or normal images, more reliably than abnormal im-

ages.

As shown in Table 3, the model performs better, when

trained on both Generated CT scans and X-rays, as com-

pared to when it is trained on either X-ray or the Generated

CT scan.

6.2. Qualitative analysis

At last, we analyze the performance of the model qualita-

tively. As mentioned in the quantitative analysis, the model

is able to classify normal images more reliably than abnor-
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mal images. This is probably because the X2CT-GAN is

able to generate normal structural features more accurately

than abnormal ones. As shown in Figure 2, the images cor-

rectly classified most often are the normal images and the

abnormal images with large, distinct anomalies. The images

incorrectly classified most often are the ones with smaller,

more distributed anomalies.

7. Conclusion and future work
In this paper, we proposed using generated CT scans to

improve the detection of anomalies in pediatric abdominal

imaging. Furthermore, the generated CT scans may be used

by physicians to gain insight into the structural features in

the abdominal cavity. This would not only be able to im-

prove patient care in underserved areas, lacking access to

CT scanning equipment but also reduce radiation exposure

for pediatric patients by a factor of 70-150. It would also al-

low patients to avoid recurring costs and radiation exposure

during follow-ups.

We have considered only a small subset of the possible

structural anomalies that may cause non-traumatic APN in

pediatric patients. We didn’t consider any of the functional

anomalies, such as infection, allergy, or a condition such as

Crohn’s disease. Hence, the proposed approach is far from

a comprehensive diagnostic tool. The main purpose of our

approach is to predict which patients need further investiga-

tion by means o an actual CT scan or investigative surgery,

etc. To develop a comprehensive diagnostic tool, one might

use other modalities of clinical data, such as blood, urine,

and stool tests, in addition to imaging data.

In this work, we also labeled the images in the [21]

dataset as normal or abnormal. These labels would be pro-

vided to any researcher, upon request. We also created

a small-scale biplanar X-ray dataset, with the images la-

beled as normal or abnormal. This is made publicly avail-

able at https://github.com/Skshanawaz072/
Abdonimal-X-Ray-Dataset.
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