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Abstract

Non-blind deconvolution aims to restore a sharp image
from its blurred counterpart given an obtained kernel. Ex-
isting deep neural architectures are often built based on
large datasets of sharp ground truth images and trained
with supervision. Sharp, high quality ground truth images,
however, are not always available, especially for biomedi-
cal applications. This severely hampers the applicability of
current approaches in practice. In this paper, we propose
a novel non-blind deconvolution method that leverages the
power of deep learning and classic iterative deconvolution
algorithms. Our approach combines a pre-trained network
to extract deep features from the input image with itera-
tive Richardson-Lucy deconvolution steps. Subsequently,
a zero-shot optimisation process is employed to integrate
the deconvolved features, resulting in a high-quality recon-
structed image. By performing the preliminary reconstruc-
tion with the classic iterative deconvolution method, we can
effectively utilise a smaller network to produce the final
image, thus accelerating the reconstruction whilst reduc-
ing the demand for valuable computational resources. Our
method demonstrates significant improvements in various
real-world applications non-blind deconvolution tasks.

1. Introduction

Image deconvolution is a classic problem in computer vi-

sion and imaging sciences. It aims to recover a sharp image
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x out of a blurred and noisy representation

y = x ∗ k + b, (1)

where k is the blur kernel, b is additive noise and ∗ denotes

the convolution operator. Traditionally, methods that solve

this problem are split into two steps: first, the blur kernel

k is obtained either through estimation or imaging system

calibration. Then, image restoration is performed (i.e., non-

blind deconvolution). Given the reduction or removal of

high frequencies caused by convolving an image with a blur

kernel and unknown noise caused by measurement errors,

image deconvolution is essentially a challenging ill-posed

inverse problem.

Recently, multiple studies of deep neural networks de-

signed for sharp image recovery have been conducted

[7, 20, 50, 18, 10, 33, 8]. While those methods are able to

achieve impressive performance on computer vision bench-

marks [25, 22, 41, 29], the pre-trained models are not di-

rectly applicable to scientific imaging given the arising do-

main gap, and therefore it decreases their generalisation per-

formance. Additionally, re-training or fine-tuning is often

not possible given the sparsity of ground truth sharp images

in scientific imaging fields such as medical or biological mi-

croscopy [1, 54, 17]. This problem cannot be alleviated by

using images from other scientific fields due to the image

diversity, which results in large domain shifts and gaps be-

tween different types of microscopy images.

To address the limitations arising from insufficient train-

ing data, various deep self-supervised techniques have been

developed for deblurring and denoising tasks, as evidenced

in previous works [42, 13, 32, 3]. However, these meth-

ods primarily cater to general image restoration tasks and

do not account for the distinctive features and complexities
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inherent in scientific images. Scientific images often ex-

hibit unique noise patterns, intricate structures, and special-

ized imaging modalities, necessitating tailored restoration

approaches. Therefore, the development of specialized deep

self-supervised methods becomes imperative to effectively

tackle restoration challenges specific to scientific images.

Moreover, it is important to emphasize that existing meth-

ods often neglect the consideration of computational costs

and model size. In the context of scientific image restora-

tion, these aspects hold crucial importance due to limited

computational resources and the need for efficiently pro-

cessing large quantities of data. Therefore, the development

of deep self-supervised methods that also take into account

computational efficiency and model compactness is highly

beneficial in real-life scientific applications.

Given the reasons stated above, in many scientific fields

deconvolution is still handled by classic algorithms [34, 23,

47] that are fast, but known to be prone to degradation and

noise amplification. To improve the image quality, total

variation (TV) has become the standard for noise reduc-

tion and regularisation in image reconstruction, but in re-

cent years its limitations such as loss in textures, changes

in smooth intensity or patchy artefacts have been reported

[2, 15, 21].

The core contributions of this paper can be summarised

as follows:

1. We propose CiDeR1 (Classic Deconvolution and Fea-

ture Extraction for Zero-Shot Image Restoration), a

self-supervised approach for non-blind deconvolution

embedding the Richardson-Lucy algorithm, a classic

method for image deconvolution, into a deep learning

model.

2. We integrate the continuity prior as a form of Hessian

regularisation into the loss function, reducing the noise

in the resulting sharp image while preserving the un-

derlying image structures.

3. We apply our proposed CiDeR to real microscopy im-

ages, addressing a variety of image restoration tasks

across different microscopy modalities, achieving en-

hanced visual quality and improved image details.

2. Related Work

In this section, we discuss various classic and deep im-

age deconvolution methods and their shortcomings. We also

mention methods used in specific scientific domains where

image enhancement plays a key role.

1https://github.com/ctom2/cider

2.1. Classic Deconvolution Algorithms

One of the earliest methods for non-blind deconvolution

are the Wiener filter [47] and Richardson-Lucy [34] that im-

pose assumptions that image noise follows Gaussian and

Poisson distributions, respectively. Besides, Landweber it-

eration [23] is another popular algorithm for sharp image

recovery, which is a special case of gradient descent. While

those methods are fast and simple in their implementations,

they are prone to degradation and noise amplification. To

improve the reconstructed image quality, multiple optimi-

sation methods employing various priors, such as Lapla-

cian, hyper-Laplacian [24, 19] or total variation regulari-

sation [36, 43], have been developed. Yuan et al. [49] pro-

posed an inter-scale and intra-scale non-blind deconvolu-

tion method to obtain fine details while suppressing image

artefacts. Manually designed priors usually rely on statisti-

cal features of the natural images, which is not suitable for

all image types and can lead to inference problems.

2.2. Deep Deconvolution Models

Recently, deep models have been used for image de-

convolution problems [51, 50, 38, 48] to learn the fea-

tures needed for image restoration instead of engineering

them. Gong et al. [14] incorporated deep neural net-

works into a fully parameterised gradient descent scheme

to learn an implicit image prior. The combination of the

Wiener filter and CNNs into a deep supervised method was

proposed by Dong et al. [7], where the deconvolution is

performed on learned image features and not in the im-

age space to improve the level of detail and noise suppres-

sion. Jointly learning spatially-variant data and regulari-

sation terms within the MAP framework, as proposed by

Dong et al. [8], better captures the properties of clear im-

ages. While those methods achieve impressive performance

on benchmark computer vision datasets, they require large

quantities of ground truth data to train that are not accessi-

ble in biological or medical imaging sciences. Additionally,

using models trained on images from a domain that differs

from the target domain introduces a domain shift, which

could significantly reduce the performance in the target do-

main and therefore the overall model usability.

Moreover, there has been a growing interest in the devel-

opment of deep restoration methods that leverage classic de-

convolution algorithms for volumetric data reconstruction,

aiming to enhance processing efficiency [26, 4]. These ap-

proaches combine the principles of classical deconvolution

with advancements in deep learning and optimisation tech-

niques to efficiently restore volumetric datasets.

The concept of deep image prior (DIP) [42, 13] has been

successfully applied to denoising, super-resolution and de-

convolution [32]. Chen et al. [3] applied an ensemble of

DIP models for image deblurring. These generative models

alleviate the need for training datasets as they are optimised
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Figure 1: The architecture of CiDeR, a novel non-blind deconvolution model that integrates the Richardson-Lucy algorithm

into a zero-shot optimisation framework.

only given an input image and a kernel, hence being more

flexible and adaptive. While these methods perform well in

general image restoration, they often overlook the distinc-

tive features and attributes of scientific images, demanding

customised solutions to effectively tackle their specific chal-

lenges. It is worth noting that these methods do not take into

account the importance of limited computational resources.

Therefore, developing tailored solutions for scientific image

restoration remains essential.

2.3. Domain Specific Deconvolution

Increasing the spatial resolution through deconvolution

is a widely studied problem in the microscopy imaging

field. Zhao et al. [53] proposed a processing pipeline for

fluorescence microscopy consisting of background removal,

upsampling reconstruction based on sparsity and continu-

ity priors and iterative deconvolution with Richardson-Lucy

[34]. Image deconvolution algorithms in domains such as

optical, electron and X-ray microscopy [45, 40, 37, 11, 53]

rely on a specific imaging setup or image features charac-

teristic for the target domain. This prevents the use of such

algorithms in different fields and makes their window of ap-

plicability extremely narrow.

3. Proposed Method
We propose a combination of a classic non-blind itera-

tive deconvolution algorithm and deep learning. The ob-

jective of the method is to restore a representation of the

sharp image based purely on the blurry input image and the

appropriate kernel in a self-supervised manner. By embed-

ding the Richardson-Lucy algorithm [34] into the method

we omit the need for using an extensively large neural net-

work to produce the sharp image.

3.1. Richardson-Lucy Algorithm

The Richardson-Lucy algorithm is a restoration tech-

nique widely used in various fields, including astronomy

[46], microscopy [53], and medical imaging [5]. The pri-

mary objective of the method is to enhance the quality of

images degraded by blur and noise during the acquisition

process (following Equation 1). The algorithm works iter-

atively and at each iteration it estimates an intermediate re-

stored image x(i), where i represents the iteration number.

The update rule is as follows,

x(i) = x(i−1) ·
( y

x(i−1) ∗ k ∗ k�
)
. (2)

The restoration begins with an initial estimate of the original

image x(0) which can be set to the observed image y or any

other reasonable initialisation. The algorithm iterates until

a convergence criterion is met or a predefined number of it-

erations is reached. One of the significant advantages of the

Richardson-Lucy algorithm is its ability to handle decon-

volution even in cases where the noise characteristics are

unknown or complex.

3.2. Feature Deconvolution With Richardson-Lucy

Similarly to [7], we address the deconvolution task by

utilising deep features instead of the conventional image

space representation. The standard image space deconvo-

lution often proves to be insufficient in effectively remov-

ing artifacts and restoring fine details in degraded images

[6, 39]. To overcome these limitations, we exploit deep fea-

tures, which capture high-level abstract information learned

from convolutional neural networks, to guide the restoration

process more effectively.

Incorporating a set of linear filters {fj}nj=1 generated

through deep neural networks, that are designed to extract
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feature information from the degraded input, we can estab-

lish the relationship between y, x, and k within the feature

space as follows,

Fjy = KFjx+ Fjb, (3)

where Fj , K, y, x, and b denote the matrix/vector forms of

fj , k, y, x, and b. Then, the Richardson-Lucy algorithm can

be directly applied to the latent features {Fjy} as follows,

Fjx
(i) = Fjx

(i−1)

(
K�

Fjy

KFjx(i−1)

)
. (4)

Upon completing the iterations, we acquire the features of

the desired latent clear image denoted as {Fjx̂}.

3.3. Self-Supervised Image Synthesis

In order to produce high-quality images, we adopt the

DIP assumptions [42, 13, 32] and utilise a generative net-

work Gx. This network takes the features of the latent clear

image as input and it has the structure of an asymmetric

Autoencoder [35] with skip-connections [42]. Unlike tradi-

tional DIP approaches, where the generative network must

possess significant modeling capacity to generate images

with rich textures and salient structures, we can reduce the

overall model size. This is because the deconvolution ob-

jective has already been performed in the latent space, and

thus, the purpose of the network shifts to image synthesis

rather than performing the deconvolution process itself.

To impose regularisation on the generator, our primary

approach involves utilising the structural similarity index

(SSIM) [44]. In conjunction with the SSIM, we incorpo-

rate a regularisation term R(·) aimed at capturing important

image priors as follows,

L(x, k, y) = α · LSSIM(x ∗ k, y) + λ · R(x). (5)

This combination facilitates an effective means of enforc-

ing structural coherence and enhancing the overall quality

of the generated outputs. The integration of SSIM and the

image prior regularisation empowers our generator to pro-

duce more visually appealing and contextually meaningful

results, ensuring the preservation of essential characteristics

present in the original data. Specifically, we adopt the Hes-

sian prior, which operates effectively in the image space,

R(z) = ‖zxx‖1 + ‖zyy‖1 + 2‖zxy‖1, (6)

where zi denotes the second-order partial derivatives of z
along the x and y axes. The purpose of the regularisation is

to reduce the noise artifacts arising from the deconvolution

steps and to preserve the underlying image structure. Figure

1 illustrates the full model architecture used to synthesise

the restored image.

3.4. Enhancing Microscopy Image Restoration

In the context of real microscopy image restoration, we

initiate the process with a pre-processing step involving

background removal. This step helps in enhancing the clar-

ity of the images and preparing them for further restoration.

Additionally, to optimise the synthesis process, we modify

the loss function by introducing sparsity as an additional

prior, alongside the Hessian continuity prior. The inclu-

sion of the sparsity prior is well-founded, as it has demon-

strated significant improvements in the reconstruction of

super-resolution microscopy images [52]. By leveraging

both the Hessian and sparsity priors, our approach aims to

achieve superior results by enhancing the visual quality of

the microscopy images, and providing more accurate repre-

sentations of the underlying structures.

3.4.1 Background Removal

To address background interference in microscopy images,

such as light diffraction or scattering effects, we utilise the

modified iterative wavelet transform method [12], as de-

scribed by Zhao et al. [52]. This approach is applied to

improve the reliability and visual quality of the subsequent

image restoration processes.

We use the residual image arising from setting the values

over the mean value of the original image y to zero to esti-

mate the background as follows: (i) The background is iter-

atively estimated from the lowest frequency wavelet bands

related to the input image using 2D Daubechies-6 wavelet

filters to decompose the signal up to the 7th level. (ii) An in-

verse wavelet transform on the lowest band of the frequency

information to the spatial domain is performed to prevent

the unintended removal of important information. The re-

sult is then combined with
√
y/2 into a single image whose

pixels consist of the minimum of those two. (iii) The output

of the previous step is then used as the input in the next iter-

ation. Following [52], we set the number of iterations to 3

to estimate the background. The final estimated background

is then subtracted from the original input image y.

3.4.2 Sparsity Prior

To cater specifically to the unique characteristics of mi-

croscopy data, we adapt our approach by augmenting the

loss function L with sparsity regularisation. The sparsity-

aware loss function ensures that the reconstruction process

not only preserves continuity but also encourages the fi-

nal result to align with the sparse characteristics typically

exhibited in microscopy data. It is important to note that

this sparsity regularisation is deliberately included for mi-

croscopy image restoration, and may not be utilised in gen-

eral image reconstruction scenarios. This approach allows
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us to achieve superior synthesis results by yielding more ac-

curate representations of the underlying content.

To quantify sparsity, we utilise the �1 norm on the syn-

thesized image, which leads to the following adapted loss

function,

L(x, k, y) = α · LSSIM(x ∗ k, y) (7)

+ λ · R(x) + β · ‖x‖1. (8)

Algorithm 1: CiDeR image synthesis

Input: y,k
Output: x̂
F1:ny ← feature extractor(y)
F1:nx̂ ← Richardson-Lucy(F1:ny)
for i ← 1 to T do

x ← Gt−1
x (F1:nx̂)

Compute the gradient w.r.t. Gx

Update Gt
x using the NAdam algorithm [9]

end
x̂ = GT

x (F1:nx̂)

4. Experimental Results
We implemented CiDeR using PyTorch [30]. For ex-

tracting features from the degraded images, we employed a

pre-trained model from [7], that was fine-tuned on images

from the Berkeley segmentation [28] and Waterloo Explo-

ration [27] datasets. This feature extractor consists of one

convolutional layer and three residual blocks [16], enabling

the extraction of n = 16 features.

The generator Gx for the synthesis of the final image

is optimised over T = 3000 iterations using the NAdam

algorithm [9]. The initial learning rate is set as 0.01 and

is decayed by multiplying 0.5 when reaching 2, 000, 2, 300
and 2, 700 iterations.

4.1. Results with Real Degradation

We assess the performance of CiDeR on two real

microscopy modalities: light-sheet and underwater mi-

croscopy with simulated microscopy kernels. In Figure

2, we present the primary comparison between the raw

light-sheet image and the restoration result obtained using

CiDeR. The restoration with CiDeR enhances the separa-

tion between cells, elevates the contrast, and improves the

overall image quality. Additionally, Figure 3 provides a

comparison between CiDeR and SelfDeblur [32] on an ad-

ditional light-sheet image. Both methods employ a self-

supervised approach for image restoration, but SelfDeblur

is susceptible to overfitting, leading to the introduction of

artifacts and image distortions that degrade the final result.

In contrast, the incorporation of more fitting image priors in

Image SelfDeblur [32] CiDeR (ours)

1 0.8619 0.9108
2 0.8935 0.9043
3 0.9026 0.9174
4 0.7876 0.8496

Average 0.8614 0.8956

Table 1: Quantitative comparison of CiDeR and SelfDeblur

[32] on the dataset introduced by Levin et al. [25], employ-

ing the structural similarity index (SSIM) as the metric. For

each row, the value represents the average per image over 8

different degradation models.

Image SelfDeblur [32] CiDeR (ours)

1 29.10 30.99
2 30.35 30.71
3 32.05 32.92
4 26.73 27.89

Average 29.56 30.63

Table 2: Quantitative comparison of CiDeR and SelfDeblur

[32] on the dataset introduced by Levin et al. [25], employ-

ing the peak signal-to-noise ratio (PSNR) as the metric. For

each row, the value represents the average per image over 8

different degradation models.

SelfDeblur [32] CiDeR (ours)

No. parameters 2,357,345 322,913

Table 3: Overview of the number of learnable parameters.

the optimisation objective of CiDeR prevents such degrada-

tion, yielding a more faithful and visually pleasing restora-

tion outcome.

In Figure 4, we present a comparison between the clas-

sic Richardson-Lucy algorithm [34] and CiDeR. The raw

image obtained by an underwater microscope exhibits low

contrast, and many features of the biological object re-

main obscured. After restoration, both methods enhance

the visibility of the features, but CiDeR outperforms the

Richardson-Lucy algorithm in significantly improving the

clarity of the object. With the ability of CiDeR to maintain

object structures while elevating the overall image quality, it

demonstrates its potential as a robust and effective solution

for microscopy image restoration tasks.
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(a)

(b)

Figure 2: A comparison between the original raw light-sheet microscopy image of a starfish (a) and the deconvolved output

obtained using CiDeR (b) reveals significant improvements. The deconvolved image effectively reduces haze and light

diffraction artifacts within the sample, resulting in clearer and more accurate structures that were previously distorted due to

image degradation.

(a) (b) (c)

Figure 3: Visual comparison involving three images: (a) the

raw image of a starfish embryo captured by a light-sheet mi-

croscope, (b) the deconvolution of a background-subtracted

image using SelfDeblur [32], and (c) the image restoration

result obtained using CiDeR.

4.2. Results with Simulated Blur

We compare CiDeR with SelfDeblur [32], which is

the state-of-the-art self-supervised non-blind deconvolution

method, using the dataset of Levin et al. [25]. The dataset

comprises 32 images, that were generated using 4 sharp im-

ages and 8 distinct kernels to simulate various image degra-

dations. Since both models are evaluated in a non-blind set-

ting, we utilise the kernels estimated by [25] to facilitate the

restoration process. Tables 1 and 2 list the average SSIM

and PSNR metrics per each image. In terms of both met-

rics, CiDeR outperforms SelfDeblur while having signifi-

cantly less parameters as shown in Table 3.

5. Discussion & Future Work

Image degradation is a common problem in a wide range

of field, including telescope imaging, microscopy imaging,

or medical imaging. Leveraging the Richardson-Lucy algo-

rithm and DIP assumptions, our image restoration technique

proves to be a valuable tool for reconstructing images in

these diverse fields, with a potential to significantly improve

the accuracy of downstream tasks. In addition to its restora-

tion capabilities, our method benefits from the incorporation

of a classic deconvolution algorithm, which results in a sub-

stantial reduction in the model size. This reduction proves

particularly advantageous in fields where computational re-
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(a)

(b)

(c)

Figure 4: Visual comparison involving three images: (a) the

raw image captured by an underwater microscope, (b) the

deconvolution of a background-subtracted image using the

classic Richardson-Lucy algorithm [34], and (c) the image

restoration result obtained using CiDeR. The result from

CiDeR exhibits improved visual features and fidelity.

sources are scarce, as it significantly lowers the overall com-

putational cost involved in image restoration. As a result,

our approach not only produces high-quality reconstruc-

tions but also offers an efficient and resource-friendly so-

lution for restoring images, making it better-suited for ap-

plication in resource-constrained environments compared to

existing methods.

Unlike the feature-based Wiener deconvolution model

[7], CiDeR takes a different approach by not relying solely

on an end-to-end trained feature refinement model. As a re-

sult, it effectively addresses the issue of domain gap, since

the final image generator is directly optimised on the in-

put image. This direct optimisation mitigates potential chal-

(a) (b)

(c) (d)

Figure 5: Visual comparison of the deconvolution results of

an image from the dataset of Levin et al. [25]. Subfigure (a)

shows the degraded image, while subfigure (b) displays the

ground-truth sharp image. Subfigures (c) and (d) demon-

strate the reconstruction results obtained from SelfDeblur

[32] and CiDeR, respectively.

lenges associated with domain mismatches, ensuring a more

faithful image restoration process. Furthermore, the use of

the Wiener filter introduces computational bottlenecks, pri-

marily due to its reliance on the Fourier transform. Such

computational costs are particularly evident when dealing

with volumetric or 3D data processing [31]. In contrast,

using Richardson-Lucy algorithm offers a significant ad-

vantage in terms of computational efficiency, especially for

volumetric data [26, 4]. This efficiency opens up excit-

ing possibilities for future work to explore feature-based

2.5D or 3D image restoration tasks, allowing for more ex-

tensive and sophisticated applications in three-dimensional

data processing.

6. Conclusion

In this paper, we propose a novel zero-shot image

restoration method called CiDeR that effectively combines

a pre-trained feature extraction network with a classic de-

convolution algorithm, namely Richardson-Lucy. Our ap-

proach leverages deconvolved features to synthesize a re-

constructed image, offloading the actual deconvolution task

to the classical algorithm. As a result, the self-supervised

generator solely focuses on learning the synthesis process,

allowing us to design a smaller network compared to exist-

ing state-of-the-art methods. This reduction in model size
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proves beneficial as it conserves computational resources,

making our approach particularly well-suited for scenarios

where such resources are limited.

Furthermore, our method is designed to be self-

supervised, a crucial advantage in biomedical fields where

data scarcity is prevalent, and building end-to-end networks

is often not possible. Through extensive testing on a clas-

sic computer vision benchmark dataset and real microscopy

images, the results demonstrate that our method excels in

image restoration tasks. This enhanced image quality is

particularly crucial for downstream tasks, where accurate

images with high fidelity play an important role. Overall,

CiDeR exhibits promising potential for various practical ap-

plications, which makes it a valuable tool that addresses the

challenges of image restoration in domains where data is

scarce and computational resources are limited.
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