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Abstract

Many medical or pharmaceutical processes have strict
guidelines regarding continuous hygiene monitoring. This
often involves the labor-intensive task of manually counting
microorganisms in Petri dishes by trained personnel. Au-
tomation attempts often struggle due to major challenges:
significant scaling differences, low separation, low con-
trast, etc. To address these challenges, we introduce At-
tnPAFPN, a high-resolution detection pipeline that lever-
ages a novel transformer variation, the efficient-global self-
attention mechanism. Our streamlined approach can be
easily integrated in almost any multi-scale object detection
pipeline. In a comprehensive evaluation on the publicly
available AGAR dataset, we demonstrate the superior ac-
curacy of our network over the current state-of-the-art. In
order to demonstrate the task-independent performance of
our approach, we perform further experiments on COCO
and LIVECell datasets.

1. Introduction

Regulatory bodies such as the European Medicines

Agency (EMA) and the U.S. Food and Drug Administra-

tion (FDA) mandate strict guidelines for continuous hy-

giene monitoring in the pharmaceutical, cosmetics and food

industries. As a result, a large number of Petri dishes must

be examined for microbial colonies on a daily basis by ex-

perienced biologists, which is time-consuming and error-

prone. Automating this process presents several challenges.

One is the high resolution required to reliably detect tiny

colonies. Another is that colonies vary widely in size and

shape and can overlap, making automated detection difficult

(see Figure 1). There are several open-source approaches

[17, 22, 39] that use classical computer vision techniques

such as image filters and intensity variations to differentiate

colonies from the agar-medium. However, these processes

are based on hand-crafted features and laborious to use.

Figure 1: The biggest challenges in hygiene monitoring are the de-

tection of particularly small organisms, the significant variation in

colony size, low contrast between foreground and background, as

well as a high number of colonies with large overlap. The images

show typical inference results of our method on the test data.

Colony detection can be automated through the use of

neural networks, such as Faster-RCNN [29], which have

proven to be more accurate and robust than traditional
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computer vision methods. Recently, transformer networks

[40] were introduced, outperforming their convolutional-

counterparts in most tasks [28, 46]. This success is partly

due to the self-attention mechanism, which enables trans-

formers to model information spatial dependencies within

large receptive fields. A drawback of standard self-attention

is its quadratic complexity, resulting in large memory re-

quirements and computational costs, especially when ap-

plied to high-resolution images for hygiene monitoring.

In this paper, we present an innovative approach to

colony detection in the field of computer vision. Our

method, called AttnPAFPN, leverages a novel efficient-

global self-attention mechanism to improve the perfor-

mance of a path aggregation feature pyramid network

(PAFPN) [26] for object detection. In combination with

further optimizations, our efficient-global self-attention

achieves superior accuracy and performance, especially

when processing high-resolution images. Furthermore, we

introduce new high-resolution prediction-heads to improve

the detection of tiny objects. A hallmark of our AttnPAFPN

is its flexibility, as it can be integrated into almost any top-

down object detection method. To demonstrate this flexibil-

ity, we integrate our method into two general object detec-

tors [15, 33, 19]. Augmented with our AttnPAFPN, these

networks show superior performance in terms of accuracy

over the current SoTA on the AGAR dataset [29] for colony

detection. In addition, we include an extensive ablation

study of our method with varying image resolutions. To

demonstrate the task-independent performance of our ap-

proach, we also conduct experiments on COCO [25] for

general object detection and on LIVECell [13] for the seg-

mentation of cells in microscope images.

2. Related Works

2.1. Detecting colonies

Automated colony counting has been of interest since the

late 1950s [1, 30]. Nowadays, there are several tools avail-

able, such as OpenCFU [17] and AutoCellSeg [39], which

assist in the detection of microorganisms, based on con-

ventional computer vision methods. The main drawback

of these tools is their limited automation, requiring hand-

crafted features for colony detection. Setting these features

requires expert knowledge, similar to manual counting.

In addition to these conventional methods, several deep

learning-based approaches [14, 16, 29, 18, 36] have been

proposed for detecting colonies of microorganisms on

agar plates. Ferrari et al. [16] utilize convolutional

neural networks (CNNs) for bacterial classification, re-

sulting in significant improvements compared to hand-

crafted feature-based support vector machine (SVM) sys-

tems. Andreini et al. [2] use k-means clustering to perform

foreground-background segmentation, rather than classifi-

cation or counting colonies. Multiple methods [4, 14, 32]

approach colony detection by using modified U-Net [35]

structures. Mask-RCNN [19] has also been adapted multi-

ple times [27, 31] for detecting and segmenting microor-

ganisms in agar dishes. Majchrowska et al. [29] used

an image-patch approach, dividing high-resolution images

into smaller overlapping areas to perform individual object

detection [6, 33] and then merging the resulting bounding

boxes. However, a common drawback of these methods is

that they were developed either for low-resolution images

or for image slices.

2.2. Object detection

In recent years, deep learning approaches have made sig-

nificant progress in the field of object detection [24, 33, 10],

outperforming classical methods by a large margin, high-

lighting the potential of the current SoTA to improve ac-

curacy and speed of colony detection. Two stage detectors

such as Faster-RCNN [33] and its variants [6, 19] first de-

fine regions of interest and then perform object detection.

RetinaNet [24] introduced Focal loss to address the class

imbalance problem in one-stage detectors. FCOS [38] and

VariFocalNet [44] locate objects of interest by using anchor

points and point-to-boundary distances. TOOD [15] pre-

sented a task-aligned learning strategy for explicitly align-

ing the two tasks of classification and localization in a

learning-based manner. All these methods have in com-

mon that they focus on the prediction-head. As a neck, a

Feature Pyramid Network (FPN) [23] is usually used to im-

prove accuracy by creating multi-scale features. The Path

Aggregation Feature Pyramid Network (PAFPN) [26] ex-

tends the FPN approach by adding a bottom-up path to en-

hance FPN features with accurate localization signals from

low levels. YOLOv4 [5] introduces further bottlenecks into

the PAFPN for more diverse representations. ResFPN [34]

enhances FPN by integrating multiple residual skip connec-

tions to leverage information from higher scales for stronger

and more localized features. The transformer-based DETR

[7, 46] works entirely without FPN and achieves still SoTA-

results. The methods mentioned are designed for the COCO

dataset [25], which is known for its diversity and mainly

consists of medium-sized images and objects. Therefore,

the benchmark does not adequately represent the challenge

of high-resolution hygiene monitoring, with its numerous

tiny colony growths and homogeneous backgrounds. Ac-

cordingly, the aforementioned methods are only condition-

ally suitable for solving the task of colony detection.

To address these drawbacks, we investigate cutting-edge

object detection techniques and incorporate a specialized

Attention-based Path Aggregation Feature Pyramid Net-

work (AttnPAFPN) for high-resolution feature extraction in

order to detect colonies on agar dishes (see Figure 2). The

goal of our work is to provide a solution specific to the chal-
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Figure 2: Architecture overview. Our object detection network consists of a backbone network, a neck and a prediction-head. We use

our AttnPAFPN as the neck, which consists of self-attention extended CSP-Bottlenecks (SA-CSP). Almost any method can be used for the

final prediction by the head (e.g. TOOD [15]).

lenges of colony detection, improving both the accuracy and

efficiency compared to SoTA methods.

3. Method

This section outlines the design choices of our proposed

AttnPAFPN to specifically address the limitations of cur-

rent SoTA methods in processing high-resolution images.

The proposed detection network consists of three key com-

ponents: a backbone for extracting image features from the

input, our neck (AttnPAFPN) for generating a hierarchical

feature representation at different scales, followed by a de-

tection head for the final predictions (e.g. TOOD [15]).

3.1. AttnPAFPN

Our primary contribution is the novel AttnPAFPN net-

work neck, tailored to high-resolution images and small ob-

jects. AttnPAFPN utilizes our efficient-global self-attention

mechanism and a new high-resolution output, allowing the

network to focus on essential features, even for extremely

small objects. Our streamlined method is further optimized

using concepts from CSP-Net [41], resulting in improved

performance, lower parameter counter, and reduced com-

plexity. The end-to-end trainable encoder-decoder is shown

in Figure 2.

At the initial stage of our AttnPAFPN, we use the lowest

resolution backbone features (e.g. with a total stride of 32).

These features are passed through a CSP-Bottleneck block

to create high-level features, which are then used in both the

top-down and bottom-up pathways. In the top-down path-

way, the features are first upsampled by a factor of 2, then

concatenated with the backbone features of corresponding

size, before being processed again by a subsequent CSP-

Bottleneck. This process is repeated until the last stage

(stride of 4) is reached, which enables AttnPAFPN to rec-

ognize tiny objects due to its high-resolution features. To

reduce computational complexity and the number of param-

eters, we compress the depth of the backbone features by

applying a 1× 1 convolutional layer before passing them to

the feature pyramid. The bottom-up path of our AttnPAFPN

also utilizes CSP-Bottleneck blocks, but instead of upsam-

pling, a strided convolutional layer is used to process the

features. This path also includes a final strided 3 × 3 con-

volutional layer to generate an output with a factor of 1
64 of

the original image size and enables the network to recog-

nize large objects. Our final AttnPAFPN predicts objects at

five different scales, with total strides of {4, 8, 16, 32, 64}.

3.2. Self-Attention augmented CSP-Bottlenecks

One of the key contributions of our work is the integra-

tion of transformers [9, 40] into CSP-Bottlenecks [41] (Fig-

ure 3a,3c), similar to the approach taken by BoTNet [37]

integrating transformers into ResNet for image classifica-

tion [20]. The structure of CSP-Bottlenecks can be seen in

Figure 3a. First, the incoming featuremaps are divided into

two parts in depth. The first part is passed directly to the

output after a single pointwise-convolution operation. The

other half is processed N times by a residual bottleneck

(see Figure 3b) and then concatenated with the first half.

Finally, a pointwise convolution is performed to enable
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Figure 3: Illustrations of the used network modules.

communication between the channels. To integrate self-

attention mechanisms into these structure, we replace the

convolutional bottleneck with our self-attention augmented

version (see Figure 3c. However, the use of standard self-

attention is limited by its quadratic complexity, especially

when applied to high-resolution images, such as those of

hygiene monitoring. To address this challenge, we compare

two resolution-optimized transformers: our novel efficient-

global self-attention and local-window self-attention similar

to Swin Transformer [28]. In general, a transformer-layer

[40] can be described as

y∗ = Self-Attention(LN(x)) + x,

y = FFN(LN(y∗)) + y∗,
(1)

with x as its input and y as output features. LN refers to

layer normalization [3], and FFN to a linear feed-forward

layer. Self-attention [28] can be formulated as

Self-Attention(q, k, v) = Softmax( qk
T

√
d
+ b)v, (2)

where q, k, v are query, key and value matrices generated

from input-features, d is a scaling factor and b is a train-

able relative position bias term. Inspired by SegFormer

[43], we extend our feed-forward-network (FFN) by CNN-

layers, adding an inductive bias for finer localization using

additional positional information:

y∗ = GeLU(LN(PWConv(x))),

y = PWConv(GeLU(LN(DWConv3×3(y
∗)))) + x,

(3)

where GeLU [21] corresponds to Gaussian Error Linear

Unit activation, PWConv to a point-wise convolution and

DWConv3×3 to a depth-wise 3× 3 convolution.

Local-window self-attention splits input features into

non-overlapping windows with limited receptive fields, be-

fore applying multihead self-attention. As a result, the com-

putational effort of self-attention is linear to the window-

size. One downside is that information cannot pass between

the windows within a layer. Several successive layers with

shifting windows is necessary to create a global receptive

field. In our experiments we follow the window partition-

ing strategy of Swin Transformer [28]. In contrast, our

efficient-global self-attention reduces the spatial resolution

of the input to a fixed global size by performing adaptive

max-pooling on the input. The size of the global window

is freely selectable, but we have set the window size in all

our networks to 1
64 of the original resolution. In case of

1024 × 1024 resolution, the fixed global window would

be 16 × 16. Regardless of the input resolution, it is also

possible to set the global window to a fixed size. This re-

sults in a network complexity that is completely indepen-

dent of the image resolution. With our efficient-global self-

attention we create a single window with a global receptive

field to which self-attention is subsequently applied. These

and many more transformer variants can be easily inserted

into the bottleneck structure as shown in Figure 3c.

4. Evaluation

Our evaluation focuses on demonstrating the benefits of

our AttnPAFPN in high-resolution object detection. For this

purpose we use the public AGAR dataset [29], containing

high-resolution images of five different types of bacteria on

agar plates. The data is divided into the higher-resolution

(HR) and lower-resolution subsets (LR). The HR subset

contains approximately 5k training images and 2k test im-

ages, with a resolution of around 4, 0002 pixels. The LR

subset has around 3.5k training images and 1k test images

with a resolution of 2, 0482 pixels. In addition to these two

subsets, a third mixed-resolution subset is created by com-

bining both subsets.

We perform an ablation study to determine the effect in-

dividual components have on our methods accuracy. Re-

sults are shown in Tables 1 and 2. Furthermore, we imple-

ment our AttnPAFPN in current SoTA methods (e.g. TOOD
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Table 1: Ablation study on the effectiveness of the components of our AttnPAFPN. TOOD [15] is used as head for evaluation on AGAR-

dataset [29]. We evaluated onthe high-resolution and low-resolution subset with a image-size of 1536× 1536.

Method Params HR-Subset LR-Subset
mAP AP50 AP75 R50 mAP AP50 AP75 R50

TOOD-Baseline [15] 32.0 M 57.7 82.6 68.2 83.0 67.2 95.9 80.0 96.5
+ CSP-PAFPN 74.3 M 63.3 90.2 74.8 90.8 68.0 95.8 81.1 96.5
+ Attn-Bottleneck 64.4 M 66.5 95.3 78.1 96.0 69.1 97.5 82.6 98.3
+ Extra Detection-Scales 66.3 M 67.7 96.1 80.3 96.8 69.7 98.0 83.8 98.9
+ Feature-compression-layer 32.8 M 68.1 96.2 81.0 96.8 69.3 97.6 82.8 98.4
+ Multiscale-Training 32.8 M 68.2 96.3 81.1 96.8 69.5 98.0 83.4 98.6

Table 2: Ablation study on the effectiveness of the local-window (v1) and efficient-global self-attention (v2) for our AttnPAFPN. TOOD

[15] is used as the detection head for evaluation on the AGAR-dataset [29]. We evaluated on both subsets with a image-size of 1536×1536.

Method Params HR-Subset LR-Subset
mAP AP50 AP75 R50 mAP AP50 AP75 R50

TOOD-Baseline [15] 32.0 M 57.7 82.6 68.2 83.0 67.2 95.9 80.0 96.5

+ AttnPAFPNv1 84.1 M 66.5 95.1 78.5 95.7 69.0 97.4 82.6 98.1
+ Extra Detection-Scales 87.0 M 67.2 95.7 79.5 96.5 69.7 98.0 83.3 98.8

+ AttnPAFPNv2 64.4 M 66.5 95.3 78.1 96.0 69.1 97.5 82.6 98.3
+ Extra Detection-Scales 66.3 M 67.7 96.1 80.3 96.8 69.7 98.0 83.8 98.9

[15]) and compare it with five different object detection

models, listing the results in Table 3. All methods are imple-

mented in the MMDetection-Framework [8] and we use the

mAP metric to evaluate their performance. mAP provides

a comprehensive assessment of accuracy and recall, aver-

aging the maximum precision score for each recall value of

all classes. In hygiene monitoring, detecting all colonies is a

priority over precise localization. Hence, we use the Recall

at an IoU threshold of 0.5 (R50) as an additional metric.

4.1. Ablation Study

In our first experiment, we assess the impact of our

method by comparing AttnPAFPN with a baseline model

(TOOD [15] + FPN [23]) as shown in Table 1. All net-

works are trained for 20 epochs with the SGD optimizer, a

batch-size of 8, and use a pre-trained ResNet50 [20] as their

backbone. The learning rate starts at 5 · 10−3 and decreases

by a factor of 10 after 8 and 16 epochs.

Replacing the standard FPN in TOOD with the con-

volutional CSP-PAFPN leads to an improvement in mAP

(+5.6/ + 0.8) and Recall (+7.8/ ± 0), but also increases

the number of parameters by more than 100%. By in-

troducing our efficient-global self attention (SA) into the

CSP-Bottlenecks, we were able to reduce the parameters by

over 15% and further boost mAP (+3.3/ + 1.1) and R50

(+5.2/ + 1.8) compared to the previous step. In these ini-

tial experiments, all network necks use only the backbone

scales {8, 16, 32} for predictions. To ensure better recog-

nition of particularly large and tiny colonies, we add two

more scales, so that we ultimately perform detection across

five resolutions: {4, 8, 16, 32, 64}. To address the heavy-

weight nature of our network, we implemented 1×1 feature-

compression layers in our AttnPAFPN, reducing the depth

C of backbone-features to C∗ = 256. Through this feature

reduction our method achieves a parameter count compa-

rable to the baseline FPN, while still achieving a stronger

performance in terms of mAP and R50. For a final increase

in performance, we utilize multi-scale training. Overall At-

tnPAFPN increases mAP by +10.5/ + 2.3 and Recall by

+13.8/+ 2.1 in comparison to the baseline.

In Section 3.1 of our study, we present two variants of ef-

ficient transformer layers that are specifically designed for

high-resolution images. Table 2 compares the performance

of local-window SA (v1) and efficient-global SA (v2). The

results indicate that efficient-global SA, which provides a

coarse-grained overview of the entire image, leads to a sig-

nificant improvement in accuracy. The differences in mAP

are only marginal on the HR subset; on the LR subset,

both networks achieve almost identical accuracy. The de-

cisive point here is the significantly lower complexity and

the lower number of weights of the global self-attention.

4.2. Quantitative Evaluation

In our final experiment, as listed in Table 3, we com-

pare the performance of our proposed method, AttnPAFPN,

with SoTA object detection methods [15, 24, 33, 44, 46].

The training process of all the networks is equal to the de-

scription in Section 4.1. The first few rows which are ti-

tled with ”Patches: 512 × 512” present the results of Ma-

jchrowska et al. [29]. They divide the images into patches

of size 512 × 512 and then detect the colonies in each of

these patches using Faster-RCNN [33] and Cascade-RCNN

[6] with ResNet50 [20] as the backbone, similar to our

setup. The following lines contain the results of the SoTA

and our method using the full image under different res-

olutions. Upon comparison with Faster-RCNN, our At-

tnPAFPN shows lower performance for lower resolution,

especially 1024 × 1024 for the HR-Subset. However, as

the resolution increases, AttnPAFPN outperforms all base-

lines by a large margin. Furthermore, our AttnPAFPN
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Table 3: Comparison of detection accuracy on the AGAR [29] validation set. Different SoTA methods [15, 24, 33, 44, 46] are compared

with our approach. We use TOOD [15] and Faster-RCNN [33] as head. The comparison is performed with different data-subsets.

HR-Subset LR-Subset MR-Subset
Method Params mAP AP50 AP75 R50 mAP AP50 AP75 R50 mAP AP50 AP75 R50

Patches: 512 × 512
Faster-RCNN [33, 29] 41.5 M 49.3 76.7 54.8 - 56.0 86.5 63.6 - - - - -
Cascade-RCNN [6, 29] 69.2 M 51.6 79.2 57.0 - 58.4 88.6 68.3 - - - - -

1024 × 1024
Faster-RCNN [33] 41.5 M 45.7 65.6 53.9 65.9 62.2 89.7 74.3 90.1 50.0 71.7 59.4 72.0
RetinaNet [24] 37.7 M 42.5 68.1 46.9 74.5 59.2 90.8 67.9 93.7 50.6 77.1 58.2 81.9
TOOD [15] 32.0 M 57.3 82.4 67.6 82.5 66.9 95.4 79.1 96.0 59.8 85.8 70.5 86.3
Def. DETR [46] 41.3 M 49.8 81.3 55.0 82.8 64.4 95.2 76.4 96.5 57.3 86.3 66.8 87.2
VariFocalNet [44] 32.7 M 56.4 81.4 66.0 82.1 66.5 94.8 80.2 95.6 59.5 85.1 73.6 85.8
Faster-RCNN [33] + Ours 42.7 M 49.1 72.4 57.7 73.0 62.6 91.3 75.0 91.7 52.5 77.2 61.9 77.6
TOOD [15] + Ours 32.8 M 67.5 95.8 80.6 95.8 68.9 97.6 82.6 98.4 68.4 96.6 81.4 96.6

1536 × 1536
Faster-RCNN [33] 41.5 M 56.0 80.2 66.0 80.8 64.7 93.3 77.0 93.8 57.9 82.9 68.4 83.3
RetinaNet [24] 37.7 M 50.3 77.7 57.1 80.2 59.5 90.8 68.8 92.7 54.6 82.6 62.9 84.2
TOOD [15] 32.0 M 57.7 82.6 68.2 83.0 67.2 95.9 80.0 96.5 61.8 86.8 73.9 87.3
Def. DETR [46] 41.3 M 51.9 82.2 58.4 83.5 65.3 94.9 76.8 96.6 56.8 86.5 66.1 87.3
VariFocalNet [44] 32.7 M 59.7 83.1 71.0 83.6 67.6 95.8 80.2 96.6 61.8 86.4 73.6 87.0
Faster-RCNN [33] + Ours 42.7 M 61.5 89.2 72.4 89.8 65.8 95.1 79.0 95.1 62.6 91.2 74.3 91.7
TOOD [15] + Ours 32.8 M 68.2 96.3 81.1 96.2 69.5 98.0 83.4 98.7 68.0 96.2 81.6 97.0

2048 × 2048
Faster-RCNN [33] 41.5 M 58.0 82.2 68.5 82.5 66.6 95.4 79.4 95.9 60.2 85.6 71.6 85.9
RetinaNet [24] 37.7 M 56.0 81.9 65.2 83.1 64.2 93.8 75.6 95.0 56.4 84.1 65.3 85.4
TOOD [15] 32.0 M 60.6 84.3 72.5 84.6 67.4 95.9 80.5 96.5 62.7 87.4 75.2 87.8
Def. DETR [46] 41.3 M 53.9 83.0 53.9 83.9 64.9 95.5 76.4 96.8 57.8 86.8 67.5 87.4
VariFocalNet [44] 32.7 M 60.5 83.6 72.2 84.1 68.2 95.9 81.0 96.7 63.0 87.0 74.9 87.5
Faster-RCNN [33] + Ours 42.7 M 64.0 93.0 75.3 93.5 67.5 96.9 81.2 97.3 64.4 93.7 76.4 94.1
TOOD [15] + Ours 32.8 M 68.9 96.8 82.1 97.5 70.5 98.1 84.7 98.9 68.4 96.1 82.0 97.4

achieved best results for TOOD [15] at a final resolution of

2048×2048, but it also shows excellent results even at mod-

erate resolutions and therefore does not necessarily require

very high resolutions with high computational overhead.

4.3. Further Experiments

Extending the evaluations in Section 4.1 and 4.2, we per-

form several more experiments on the AGAR dataset [29].

We investigating ability of generalization only using a small

number of training data and examined various backbones.

Furthermore, we evaluated the performace of our network

on COCO [25] for general object detection and on LIVE-

Cell [13] for detection of cells on low-resolution images.

4.3.1 Limited Data Analysis

In our first additional experiment, we investigate how a re-

duction of the amount of data affects the training of our net-

works. For this reason, we created three evenly distributed

subsets from the higher-resolution (HR) set, each contain-

ing 10 % (524 images), 5 % (262 images), and 1 % (53 im-

ages) of the training data. For evaluation, we use the com-

plete validation set of the HR subset as described in Section

4. In contrast to the training in Section 4.2, we increase the

number of epochs to 100 and reduce the learning rate after

50 and 80 epochs by a factor of 10.

The results listed in Table 4 show a drop between 3 %

to 5 % of the mAP with respect to networks, trained on all

data when using 10 % of the training data. The drop from

Table 4: Comparison of detection accuracy of our method to the

SoTA on the AGAR [29] validation. For training, different data-

splits with 10 %, 5% and 1% of the original 5000 training images

are used. For this experiment, we use TOOD [15] and Faster-

RCNN [33] as the network heads and evaluate at a resolution of

1536× 1536.

Method Params Metrics
mAP AP50 AP75 R50

Subset 10 %
Faster-RCNN [33] 41.5 M 53.4 78.8 62.3 79.4
TOOD [15] 32.0 M 54.0 80.1 63.2 81.9
Faster-RCNN [33] + ours 42.7 M 57.0 87.2 65.7 88.2
TOOD [15] + ours 32.8 M 62.9 92.3 73.8 93.8

Subset 5 %
Faster-RCNN [33] 41.5 M 51.7 77.7 59.8 78.6
TOOD [15] 32.0 M 51.3 77.6 59.4 79.5
Faster-RCNN [33] + ours 42.7 M 55.4 86.4 63.6 87.9
TOOD [15] + ours 32.8 M 61.8 92.0 72.5 94.1

Subset 1 %
Faster-RCNN [33] 41.5 M 41.2 70.6 43.6 73.7
TOOD [15] 32.0 M 36.8 61.2 40.5 68.3
Faster-RCNN [33] + ours 42.7 M 42.7 75.4 43.7 84.9
TOOD [15] + ours 32.8 M 42.6 72.5 46.1 80.9

TOOD [15] extended by our AttnPAFPN shows a larger loss

in mAP due to the added complexity of the data-hungry

transformer layers, but it still shows better accuracy than

the pure TOOD trained on all data. When using 5 % of the

training data, a similar picture emerges. When training with

only 1 % of the image data, a very strong drop in accuracy

(approximately 20 % to 25 %) of all networks can be seen.

However, our AttnPAFPN still shows an above-average per-

formance here.
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Table 5: Comparison of detection accuracy of our method on the

AGAR [29] val set. Different backbones [12, 20, 28, 42, 45] are

compared. For this experiment, we use TOOD [15] as head and

evaluate at a resolution of 1536× 1536.

Method Params Metrics
mAP AP50 AP75 R50

ResNet50 [20] 32.8 M 68.2 96.3 81.1 96.2
ResNet101-dcnv2 [45] 54.3 M 69.2 96.9 82.9 97.5
Swin Tiny [28] 36.4 M 69.9 96.8 84.1 97.3
PVTv2-b2 [42] 33.7 M 70.2 96.8 83.9 97.4
PLG-ViT Tiny [12] 34.8 M 70.4 97.0 84.2 97.6

4.3.2 Backbone Analysis

During all previous experiments we have used a pretrained

ResNet50 [20] as the network backbone, since it is still con-

sidered as one of the most important baselines in computer

vision. Further improvements in accuaracy can be achieved

by using modern CNNs or transformer backbones. For

this reason we want to compare ResNet50 with a stronger

deformable convolution backbone (ResNet101-dcnv2) [45]

and three transformer-based backbones. For the transformer

backbones we use Swin-T [28], PVTv2-b2 [42], and the

high-resolution optimized PLG-ViT-T [12, 11]. All trans-

former backbones are similar in size to ResNet50 and train-

ing takes place exclusively on the higher-resolution sub-

set of AGAR [29] at a resolution of 1536 × 1536. We

trained ResNet101-dcnv2 with the same hyperparameters as

ResNet50. For the transformer backbones, we adapted the

training recipes proposed by the authors from COCO [25]

to AGAR.

The results in Table 5 confirm the trend of recent years,

with transformers outperforming their CNN counterparts.

Even the larger ResNet101-dcnv2 backbone cannot keep

up with the transformers. These manage to outperform

ResNet50 and ResNet101-dcnv2 by about +2 and +1 mAP,

respectively. It is also shown that the differences between

transformer networks in terms of accuracy are small. How-

ever, this experiment shows the major drawback of the stan-

dard SA used by PVTv2. Even if the number of parameters

is the same, the computational cost is significantly higher

compared to Swin and PLG-ViT. PVTv2 requires about 200

% more GPU memory than the other two networks dur-

ing training. The computational effort is also significantly

higher during the inference [12]. For this reason, PLG-ViT

will be used as the backbone of choice in the final exper-

iment to achieve the best possible trade-off between accu-

racy and performance.

4.3.3 Beyond Colony Detection

In addition to detecting bacteria colonies in high-resolution

images, we also want to evaluate our method on medium-

resolution images of other areas of application. For this pur-

pose we use the COCO dataset [25], which is a widespread

Table 6: Comparison of detection and segmentation accuracy
on the COCO [25] validation set. Different methods [15, 19] are

compared with our approach. We use TOOD [15] and Mask-

RCNN [19] as the head and ResNet50 [20] and PLG-ViT [12] as

the backbone.

Method Backbone Params Metrics
mAPbb mAPseg

TOOD [15] ResNet50 [20] 32.0 M 42.4 -
TOOD [15] + ours ResNet50 [20] 32.8 M 42.6 -
TOOD [15] + ours PLG-ViT [12] 34.8 M 48.0 -

Mask-RCNN [19] ResNet50 [20] 43.7 M 38.2 34.7
Mask-RCNN [19] + ours ResNet50 [20] 45.9 M 39.6 35.9
Mask-RCNN [19] + ours PLG-ViT [12] 48.4 M 45.4 41.4

Table 7: Comparison of detection and segmentation accuracy
on the LIVECell [13] test set. Different methods [15, 19] are com-

pared to our approach. We use TOOD [15] and Mask-RCNN [19]

as heads and ResNet50 [20] as the backbone for all models.

Method Params Metrics
mAPbb mAPseg

TOOD [15] 32.0 M 29.4 -
TOOD [15] + ours 32.8 M 33.8 -

Mask-RCNN [19] 43.7 M 36.8 37.3
Mask-RCNN [19] + ours 45.9 M 38.0 38.0

baseline for object detection.For training the networks on

COCO we use the standard settings [8] proposed by the au-

thors and train for 12 epochs. As network heads we use

TOOD [15] and Mask-RCNN [19] as an additional method

for instance segmentation.

The results of the evaluation on COCO can be seen in

Table 6. In contrast to AGAR, only a slightly improvement

of the accuracy stemming from AttnPAFPN can be seen. As

already noted in Section 2, this can be explained by the dif-

ferent characteristics of the COCO dataset, such as the rela-

tively small number of tiny objects, in contrast to the AGAR

dataset. Using Mask-RCNN, on the other hand, the impact

of our neck is more significant. We achieve +1.4/ + 1.2
mAP for detection and segmentation, respectively. The ex-

tension of the methods by a stronger transformer backbone

increases the accuracy considerably.

We also performed experiments on the LIVECell dataset

[13], which is used to detect and segment cells in mi-

croscopy images. For this we also use TOOD and Mask-

RCNN, which were previously pre-trained on COCO. Ad-

ditionally, we made some adjustments regarding the anchor-

boxes of Mask-RCNN and TOOD as suggested by the au-

thors of the dataset [13]. As a result, the networks are better

adapted to the characteristics of the dataset.

The results on the LIVECell data set are listed in Ta-

ble 7. Here we can see that especially Mask-RCNN per-

forms much better on the dataset than TOOD, which is

a pure detection network. But especially TOOD benefits

strongly from the extension by AttnPAFPN, which outper-

forms the baseline by +3.4 mAP. Mask-RCNN achieves

with AttnPAFPN an increase in accuracy of +1.2/ + 0.7
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(a) Faster-RCNN [33] (b) TOOD [15] (c) Faster-RCNN [33] + Ours (d) TOOD [15] + Ours

Figure 4: Qualitative comparison of Faster-RCNN [33] (a), TOOD [15] (b), Faster-RCNN + AttnPAFPN (c) and TOOD + AttnPAFPN

(d). All networks are trained on the AGAR dataset [29] under equal conditions. A small colony is visible in the first row with low contrast

and distracting texture in the background. The second row shows a cluster of colonies with low contrast.

Figure 5: Qualitative result of Mask-RCNN [19] with our AttnPAFPN and ResNet50 [20] on LIVECell [13].

mAP for detection and segmentation, respectively. Figure 5

shows some visual results of our method with Mask-RCNN

as head and ResNet50 as backbone.

4.4. Visual Evaluation

In addition to a quantitative evaluation we also present

a qualitative evaluation on a greatly enlarged section of the

image in Figure 4. Here it can be seen that the conventional

method has difficulties with particularly small and overlap-

ping colonies, in contrast to our method. In addition to the

visual results on AGAR [29], typical results on the LIVE-

Cell dataset [13] can be seen in Figure 5.

5. Conclusion
In this paper, we presented AttnPAFPN, a high-

performance feature pyramid for high-resolution object de-

tection. Our AttnPAFPN uses our state-of-the-art efficient-

global self-attention layers for better visual understanding.

Moreover, the efficient-global self-attention can be easily

interchanged with any other self-attention mechanism. Fur-

thermore we add a additional scales to our PAFPN for pre-

dicting tiny and large objects on high- and low-resolution

featuremaps, respectively. In order to be executable even

on resource-constrained hardware, we have considered effi-

ciency and parameter count during the optimization of our

method. We have performed a comprehensive evaluation

on a large scale public dataset [44] for detecting bacterial

colonies on agar dishes and proved the surpassing accuracy

of our method compared to the current state-of-the-art. In

addition, we have performed experiments on the standard

object detection baseline COCO [25], as well as on LIVE-

Cell [13] for biomedical image analysis.
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