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Abstract

Over the last ten years, Patient-Derived Organoids
(PDOs) emerged as the most reliable technology to gen-
erate ex-vivo tumor avatars. PDOs retain the main char-
acteristics of their original tumor, making them a system
of choice for pre-clinical and clinical studies. In particu-
lar, PDOs are attracting interest in the field of Functional
Precision Medicine (FPM), which is based upon an ex-vivo
drug test in which living tumor cells (such as PDOs) from
a specific patient are exposed to a panel of anti-cancer
drugs. Currently, the Adenosine Triphosphate (ATP) based
cell viability assay is the gold standard test to assess the
sensitivity of PDOs to drugs. The readout is measured at
the end of the assay from a global PDO population and
therefore does not capture single PDO responses and does
not provide time resolution of drug effect. To this end, in
this study, we explore for the first time the use of power-
ful large foundation models for the automatic processing of
PDO data. In particular, we propose a novel imaging-based
high-throughput screening method to assess real-time drug
efficacy from a time-lapse microscopy video of PDOs. The
recently proposed SAM algorithm for segmentation and DI-
NOv2 model are adapted in a comprehensive pipeline for
processing PDO microscopy frames. Moreover, an attention
mechanism is proposed for fusing temporal and spatial fea-
tures in a multiple instance learning setting to predict ATP.
We report better results than other non-time-resolved meth-
ods, indicating that the temporality of data is an important
factor for the prediction of ATP. Extensive ablations shed
light on optimizing the experimental setting and automat-
ing the prediction both in real-time and for forecasting.

1. Introduction

Precision medicine aims to optimize the choice of drug

given the characteristics of the patient, so as to optimize

certain aspects such as the efficacy of the treatment or qual-

ity of life of the patient. Although doing this on a case-

by-case basis by a clinician seems impractical, artificial

intelligence-driven tools help guide this approach. In this

objective, FPM [23] bases this optimization on tests per-

formed on live patient cells.

Patient-derived organoids (PDOs) have gained great in-

terest over the last few years as they represent minimalistic

models to mimic essential features from the tissue they orig-

inate from. In the context of cancer therapy, drug efficiency

can be limited due to the development of resistance in pa-

tients as well as other evolutionary changes in the tumors

over time. PDOs represent a good testbed for physicians,

researchers, and patients to assess personalized drug effi-

cacy, based on tumor-specific patient characteristics.

The gold standard method to assess drug efficacy on

cells relies on Adenosine Triphosphate (ATP), an energy

molecule released in active cells through metabolic reac-

tions. ATP is a biomarker for evaluating the number of vi-

able cells. The quantity of released ATP measured by lumi-

nescence is proportional to the number of living cells. Thus,

ATP quantity assessed by luminescence counts serves as a

readout to evaluate drug efficacy with the estimation of re-

maining living cells in the experimental sample. This test

is easily implementable in bench labs and reliable for as-

sessing the global cell population response to drug expo-

sure [37]. However, since it causes cell lysis, the ATP test

is a destructive assay, that does not allow to assess real-time

organoid drug response, and post-ATP observations to eval-

uate long-term viability changes and drug resistance.

The emergence of large foundation models in various

fields of machine learning has allowed for novel solutions

in a variety of downstream tasks. Notably, SAM (Segment

Anything Model) [22] or SEEM (Segment Everything Ev-

erywhere All at Once) [50] have facilitated segmentation

by providing a general model for segmentation from vari-

ous types of prompts, which is extremely valuable for tasks

for which little to no annotations can be found. Similarly,

self-supervised [11, 4, 14, 9] or unsupervised models such

as DINOv2 [34] provide high-quality descriptors for data
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and facilitate the training for downstream tasks with rel-

atively small data and task-specific samples. This train-

ing setting allows the extracted features to be task-agnostic

and, therefore, to adapt more easily to new tasks. Building

on these recent advances, in this paper, we propose a new

high-throughput screening method for the analysis of PDOs

testing multiple drugs and high-quality videos. Indeed, pro-

cessing of this data is usually performed in a manual and

time-consuming setting.

In this paper, our contributions are the following. To

our knowledge, we present the first fully automatic method

for processing high-quality videos of PDOs, conducting a

spatio-temporal analysis for the prediction of ATP. We pro-

pose an efficient, automatic, and accurate prompt engineer-

ing paradigm taking into account the temporal characteris-

tics of PDOs for using SAM without the need for additional

training. Finally, we explore powerful recent foundation

models for the spatio-temporal representation of PDOs for

the first time coupling them with time sequence modeling

and multiple instance learning.

An extensive experimental analysis was performed to

identify the best representations for PDOs as well as the

most informative time frames, which we used for the accu-

rate prediction of ATP. This opens the possibility to inte-

grate any other clinical endpoint, to match PDO drug sensi-

tivity and patient clinical response.

2. Related work
Foundation Models in Computer Vision. Foundation

models are precious resources and stimulate research by

both providing a strong solution for a specific task and by

proposing a novel innovative approach. The authors of the

“Florence” model [46] introduced a method for learning

joint visual-textual features that can be adapted to a mul-

titude of joint tasks. The CLIP model [38] uses a con-

trastive learning approach in order to learn image embed-

dings, guided by an associated textual description of the im-

age, which can transfer zero-shot to a wide variety of tasks.

This approach has led to many extensions [25, 32, 24].

DINOv2 [34] is a deep learning model trained in a self-

supervised manner that leverages more stable training at a

bigger scale for better taking advantage of large datasets.

The model is trained on a dataset of 142M images. It is

based on the ViT architecture [13] and is made available

in different sizes. Very recently, foundation models for im-

age segmentation such as SegGPT [43], SEEM [50], and

SAM [22] have surfaced. SAM provides a strong zero-

shot transfer approach by combining a powerful image en-

coder with a prompt encoder which can adapt to multimodal

prompts. Its convincing adaptability led to many adapta-

tions for videos [45], lightweight versions [49], or medical

applications [44, 26]. While these models show impressive

results and generalizability, their adaptations to medical ap-

plications often show limitations. For example, recent gen-

erative models such as GLIDE [33] or DALL-E [39] show

impressive results on natural images but struggle to generate

realistic medical images without prior fine-tuning [21, 2].

Time Sequence Modeling. Modeling the temporal as-

pect of data can be achieved either on extracted features

of the frames or directly in an end-to-end fashion on the

videos. Once features have been extracted from frames

of the videos, standard sequence models such as LSTMs

[18] or Transformers [42, 47] can be applied for a variety

of tasks. They aim to capture dependencies between ele-

ments of a sequence, either in the form of recurrent neural

networks or self-attention mechanisms. State space model-

ing is gaining attraction in sequence modeling, especially

for long sequences [15], and more specifically for model-

ing time series [48]. For end-to-end video modeling, Trans-

former adaptations are very popular such as the Video Swin

Transformer [27], ViViT [3], or the TimeSformer [5]. We

are also beginning to see adaptations of large language mod-

els (LLMs) for video understanding tasks [10]. However,

even if these models are available, their application to PDOs

has not yet been explored and investigated, especially in a

low-availability data regime.

Analysis of PDO Microscopy Images. With the emer-

gence of PDOs as a key technology for FPM in the last few

years, machine learning methods to analyze this data have

followed. Earlier studies [6, 30] looked for methods for

tracking and analyzing the dynamics of PDOs through time.

Authors of ”D-CryptO” [1] proposed to classify types of

organoids based on their morphology. Later research sought

to use organoid analysis pipelines for other downstream

tasks, such as the prediction of kidney differentiation [35] or

the prediction of a biomarker of Huntington’s disease [31].

Recently [7] have developed a pipeline for predicting ATP

from microscopy images at single time points in a multiple

instance learning setting. However, all these methods focus

on analyzing single representations of organoids, losing a

lot of information that arises from their temporal dynam-

ics for different drug treatments. Moreover, they are mainly

based on classical processing techniques, such as the extrac-

tion of predefined visual features, the extraction of ResNet

features, or segmentation through biological staining.

3. Methods
In this section, we will start by describing the specifici-

ties of the dataset and the preprocessing steps, and then pro-

ceed to an in-depth presentation of the proposed method.

Specifically, we will present the methodology for the seg-

mentation of the cavities and organoids by employing SAM

[22], then we will present the details of the feature extrac-

tion from the organoid regions using DINOv2 [34]. The

model for the final prediction of the ATP given the fea-

tures from the cavities under the multiple instance learning
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Figure 1. Illustration of our proposed pipeline. (a) The overall pipeline taking as input the whole well timelapse and outputting the predicted

ATP ŷ. (b) Organoid segmentation based on automatic generation of prompts for SAM [22]. (c) Feature extraction given input frames and

associated segmentation maps focusing in the region of interest and using DINOv2 model [34].

framework will then be presented. Figure 1 illustrates the

proposed pipeline.

3.1. Data

To capture real-time information about drug efficacy on

patient organoids, bright-field imaging techniques repre-

sent a good non-invasive alternative to the ATP biolumines-

cence test. However, having single-organoid resolution may

be a challenging task when working with the standard ex-

perimental setup where organoids are embedded in hydro-

gel droplets, which results in heterogenous organoid distri-

bution at different depths and subsequently heterogeneous

organoid sizes, making the drug efficacy assessment less

accurate. To overcome these issues, we developed a high-

throughput experimental and imaging pipeline. It consists

in using high-throughput cell culture systems with 96-well

plates containing 500 μm diameter cavities. Each cavity

contains one organoid, while the setting allows for the par-

allel follow-up of individual organoids with a homogeneous

depth distribution. Testing multiple drugs in parallel thus

becomes easier with one image containing the information

of multiple organoids under the same treatment. One type

of drug at a given concentration is applied to each well, and

the ATP can only be measured on the well level. Figure 2

shows one well containing multiple cavities together with

their automatic segmentation. A total of 116 wells are im-

aged, from which we detect 8241 cavities, and therefore

8241 organoids.

A cavity is imaged in a set of frames T =

{T1, ..., Tf}, Ti ∈ R
w×h, where w and h are the frame di-

mensions, and f the number of frames in each timelapse. In

this study, we developed a novel pipeline to segment each

cavity S = {S1, ..., Sf}, Si ∈ R
w×h and using S and T , we

extract interesting features from each organoid. Finally, we

model a well by a set of cavity features C = {c1, . . . , cn} ∈
R

n×k×f , where n is the number of cavities in the well, and

k the dimensionality of the feature space. The final ATP

value is defined as y ∈ R.

The patient-derived organoids (from now on called

organoids, for simplicity) are extracted from colorectal can-

cer patients. In this analysis, we do not consider the con-

centration of the drugs and only observe their effects in-

directly with the ATP. Drugs are introduced one day af-

ter the organoids have been formed in the cavities. The

wells are imaged every 30 minutes for 100 hours, result-

ing in f = 200 frames for each well. Wells are digitized

using an Agilent Lionheart FX digital microscope. Note

that some experiments could take slightly longer than 200

frames, for those cases, only the last 200 frames of the ex-

periments were retained, in order to keep the measurement

of the ATP at the last frame.

3.2. Preprocessing.

Each scan consists of acquiring quarters of wells at three

different depth levels, resulting in 12 images for each time

point. A z-projection based on Sobel filters [20] is used

to project the images into the same plane, before stitch-

ing all four corners into a single image. Artifacts appear
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through time (e.g. evaporation of the liquid impacting the

contrast), which may impact the segmentation pipeline. To

account for this, we normalize the contrast of the timelapse

through time. Finally, all frames of a timelapse are then co-

registered using SIFT-based features [29]. All preprocess-

ing is performed using ImageJ [40]. Figures 2a-2d show

all steps of the preprocessing from the 12 input images per

frame to the normalized frame.

3.3. Automatic Segmentation of Regions of Interest

In this study, we propose and develop an automatic

pipeline based on SAM [22] for the automatic segmenta-

tion of regions of interest in the video of the organoids. For

accurate segmentation, various characteristics of these re-

gions are used and different prompt engineering strategies

have been developed to handle the nature of the data and

their temporal information.

Cavity Segmentation. The objective is to segment the

individual cavities contained in the well, in order to repre-

sent the well as a set of cavities. We assume that the detec-

tion of the cavities only needs to be run in a single frame,

as the frames of the video have been co-registered. The

well is considered as the mask with the biggest surface area

containing the center pixel in the frame is considered, as

it is the biggest object in the frame. Given the candidate

masks M = {m1, . . . ,mn}, mwell = margmaxi{area(mi)}.

The cavities are defined as other regions detected by SAM,

which have a circularity above a certain threshold and which

are included in the detected well. For each point bi on

the boundary B of a detected region m, we define P =
{maxi(dist(bi, B))}, which represents for each point on the

contour, the distance to the point on the contour that is fur-

thest away. The ratio minP
maxP defines the circularity. On a

(a) (b) (c)

(d) (e)

Figure 2. Example of the steps needed for preprocessing and cavity

segmentation. (a) All images needed to construct one frame (4

corners at 3 different z-levels each). (b) Projected corners. (c)

Stitched frame. (d) Local contrast normalization applied to the

stitched frame. (e) Cavity segmentation masks.

perfect circle, all values in P should be equal to the circle’s

diameter and therefore have circularity = 1. Once the cavi-

ties have been detected on a single frame, a crop around the

cavity is extracted for all frames, giving a few dozen cav-

ity timelapses per well. Figure 2e shows an example of the

cavity segmentation masks on a normalized frame.

Organoid Segmentation. Segmentation of organoids is

performed on the extracted videos of the cavities by design-

ing the proper prompts for SAM [22]. The first prompt is

generated for the last frame of the timelapse Tf (as it is

the frame where the organoid is the largest, and it is, there-

fore, more likely to find a point inside the region of inter-

est). Canny edge detection [8] is used to extract rough con-

tours from the last frame, after having subtracted the aver-

age frame over time, in order to remove the background.

These rough contours are then filtered using a series of bi-

nary morphological operators, before extracting a centroid,

which is used as a positive point prompt for SAM. Figure

3 shows an example of these steps for the last frame. Once

the mask for the last frame has been generated, the prompts

will be generated backward from the last frame to the first

frame. The center of the organoid mask is extracted from

the prediction and an exponentially weighted average from

the prompts from frames Tt+1 to Tt+10 is used to gener-

ate the prompt for frame Tt. Multimask output is used to

generate the top 3 masks, and the mask which has the high-

est Dice score with the generated mask from the previous

frame (Tt+1) is chosen. Postprocessing is performed on the

mask by only selecting the detected region with the high-

est surface area. Algorithm 1 represents the whole organoid

segmentation pipeline.

(a) (b) (c)

(d) (e) (f)

Figure 3. Example of the steps used in the generation of the prompt

for the segmentation of the last frame of a cavity timelapse. (a)

Last frame of the timelapse. (b) Mean frame across time. (c) Dif-

ference between the last frame and the mean frame. (d) Result of

Canny edge detection on (c). (e) Generated prompt for the frame.

(f) Predicted mask.
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Algorithm 1 Organoid segmentation.

Inputs:
frames T = {T1, ..., Tf}, Ti ∈ R

w×h

Outputs:
segmentations S = {S1, ..., Sf}, Si ∈ R

w×h

estimated boundary= Canny(Tf − mean(T ))
prompt f = centroid(estimated boundary)

Sf = SAM(prompt f, Tf )
all prompts = {prompt f}
for i=(f-1); i=1; i - - do

prompt i = exp weighted average(all prompts, 10)

Si = SAM(prompt i, Ti)
all prompts.insert(prompt i)

end for

3.4. Feature Extraction

Features are extracted from each frame of the cavity us-

ing the DINOv2 [34] model, which produces task-agnostic

visual features from images. A lighter version (86M param-

eters) of the model is used, which produces k-dimensional

feature vectors. Features are extracted per frame, using

a crop of the cavity around the organoid, and by mask-

ing everything outside of the regions of interest, giving

ci = DINOv2(Ti � Si). The model generates feature vec-

tors of dimension k = 768 for each time frame.

3.5. ATP Prediction

Having access to features for each individual cavity but

only having the ATP measure on the well level, the multiple

instance learning setting seems to be the best approach to

the problem. Each set of cavities C is associated with an

ATP measure y. The ATP prediction model M should map

an input C ∈ R
n×k×f to an output ŷ ∈ R. The aggregation

of the cavity representations on the well level is done by

mean pooling in order to obtain a well-level representation

mean(C) ∈ R
k×f .

Each time frame may have a different impact on the pre-

diction of the ATP. In fact, we expect later time frames to

have more impact than earlier time frames. We give the

model the freedom to learn how much weight to put to each

time frame using a normalized weight vector wt ∈ R
f that

is used in a weighted average across time frames. This en-

sures that all cavities across all wells share the same impor-

tance for a given time frame. A feature-wise weight vector

wk ∈ R
k is used in order to learn the relative importance of

each feature that is shared across all wells.

The last element of the model is a multilayer perceptron

(MLP) which is simply composed of four linear layers, with

PReLU [17] activation function.

M : Rn×k×f → R

C �→ MLP(mean(C) · wt

‖wt‖ �wk)
(1)

The loss function used for training is composed of two

elements, a relative L1 loss, to directly optimize for the

mean absolute percentage error (MAPE), and a L1 loss,

which has been normalized with the maximum ATP value

in the training set to have a comparable range to the relative

L1 loss.

Lrel(y, ŷ) =
|y − ŷ|

y
(2)

Lnorm(y, ŷ, ymax) =
|y − ŷ|
ymax

(3)

L(y, ŷ, ymax) = αLrel + (1− α)Lnorm (4)

Where y is the ATP ground truth, ŷ the output of our

model, ymax the maximum value of ATP in the training set,

and α the weight given to Lrel. A relative L1 loss is used

because of the varying range that the ATP can take within

experiments. The normalized L1 loss is used to ensure that

the model still has an acceptable performance on higher val-

ues of ATPs.

3.6. Implementation Details

Over all experiments, training was performed under the

same scheme. Cross-validation is performed over 4 splits,

on the well level, resulting in training sets of size 87 and

validation sets of size 29. The reported results are the aver-

age over all folds of the validation sets. All trainings were

performed using the PyTorch deep learning library [36] in

Python. The AdamW [28] optimizer was used with a learn-

ing rate of 1 · 10−3, weight decay of 1 · 10−1, and a batch

size of 8. The model was trained over 2000 epochs, and

early stopping with a patience of 200 epochs was used. The

α parameter which balances both terms of the loss was set

at α = 0.5 after grid search. All trainings were accelerated

using Nvidia Tesla V100 GPUs.

4. Experiments
To evaluate the performance of the method we used the

MAPE and Pearson correlation coefficient metrics. All per-

formances are measured on each validation set, utilizing all

four models trained on the corresponding training sets. The

MAPE, measures the mean relative error between the pre-

diction ŷ and the label y. Because of the very wide range of

values of the ATP (both within an experiment and between

different experiments) as presented in Table 1, the MAPE

appears suitable for ensuring comparability, in particular for
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ATP bin (105) [1.1, 2.8) [2.8, 4.5) [4.5, 6.2) [6.2, 8.0) [8.0, 9.7) [9.7, 11.4) [11.4, 13.1) [13.1, 14.9]

Count 23 19 11 15 0 7 17 24

MAPE ↓ 0.34 0.15 0.08 0.07 NA 0.10 0.23 0.12

Table 1. Distribution of ATP values in our dataset, with associated MAPE.

(a) (b) (c)

Figure 4. Comparison of three methods of segmentation. (a) Our

proposed method. (b) Otsu thresholding based segmentation. (c)

Using SAM [22] without any prompts and choosing the mask with

the highest predicted IOU.

future studies which may use datasets with different distri-

butions of ATP. Lower values of MAPE indicate better per-

formance.

MAPE(y, ŷ) =
|y − ŷ|

y
(5)

The Pearson correlation coefficient quantifies the linear

correlation between the set of predictions Ŷ and the set of

labels Y . Higher values of the Pearson correlation coeffi-

cient indicate better performance.

Pearson(Y, Ŷ ) =

∑
i(Yi − Ȳ )(Ŷi − ¯̂

Y )√∑
i(Yi − Ȳ )2(Ŷi − ¯̂

Y )2
(6)

Figure 4 qualitatively compares three methods of

organoid segmentation to justify the superiority of our pro-

posed method over simple intensity-based methods (Otsu

thresholding) and justifies the use of our prompt generation

for the use of SAM [22].

4.1. Results

With our proposed high-throughput screening method,

we obtain an average MAPE and Pearson correlation co-

efficient on the four validation sets of 0.1755 and 0.9214,

respectively. The relative error of 17.55% is to be put in

context with the wide range of ATP values in our dataset,

with a ratio between the highest and lowest values of ATP

of 14. Table 1 shows the distribution of ATP values along

with the corresponding performance of the model in terms

of MAPE in each bin. The model performs worst on the bin

with the smallest values of ATP, which may be explained by

the precision of the measurement of ATP.

Feature Extraction. In Table 2, we explore the im-

pact of four different feature extraction methods on the fi-

nal results. Different classical and deep learning features

have been explored to highlight the best representations for

organoids. The pyradiomics Python package [41] allows

the extraction of imaging features from regions of interest.

For this study, we extracted features related to first-order

statistics, gray-level matrices, and shape features. A total

of 93 features have been extracted per frame. ResNet50

[16] (pre-trained on ImageNet [12]) is a popular classifica-

tion architecture, which can be used for feature extraction

when removing the classification head. It produces 2048-

dimensional features. VICReg [4] is a feature extraction

model trained in a self-supervised manner. For our study,

we used a model based on the ResNet50 architecture, which

produces 4096-dimensional features. Features extracted us-

ing models trained in a self-supervised manner (VICReg

and DINOv2) seem to adapt better to different downstream

tasks, compared to models trained for other specific tasks

(ResNet50 on ImageNet), or classical predefined features.

The superiority of our proposed model is highlighted both

in terms of MAPE and correlation coefficient.

Attention Mechanism. We used two types of atten-

tion mechanisms, one attending to the temporal aspect of

the data, and the other attending to the individual features.

In Table 3 we perform an ablation study for three varia-

tions for each type of attention mechanism. For the tem-

poral attention, we explored the impact of only using the

last frame, multihead attention [42] (MHA), or the learn-

able weight vector wt. Similarly, for the feature-wise atten-

tion, we explored the impact of having no such attention,

using multihead attention (MHA) or the learnable weight

vector wk. In terms of temporal attention, using wt clearly

outperforms other methods, especially the multihead atten-

tion, while using the last frame still gives reasonable results.

wt seems to grasp the temporal importance of each frame.

Concerning the feature-wise attention, the use of multihead

attention clearly does not seem adequate for this applica-

tion, while the effect of incorporating wk compared to its

absence is not readily apparent. The analysis of its weights

could however be used for finer explainability of the model.

Features Classical ResNet50 [16] VICReg [4] DINOv2 [34]

MAPE ↓ 0.3173 0.2174 0.1847 0.1755
Pearson ↑ 0.7883 0.8960 0.8939 0.9214

Table 2. Comparison of MAPE and Pearson correlation coefficient

for four methods of feature extraction. Best results are indicated

in bold, and second best results are underlined.
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Temporal attention Last frame Last frame Last frame MHA MHA MHA wt wt wt

Feature attention None MHA wk None MHA wk None MHA wk

MAPE ↓ 0.2027 0.2417 0.2070 0.2403 0.3719 0.2382 0.1674 0.2320 0.1755

Pearson ↑ 0.9169 0.8358 0.9123 0.8755 0.6834 0.8586 0.9209 0.8327 0.9214

Table 3. Comparison of MAPE and Pearson correlation coefficient for three types of temporal attention and feature-wise attention. Best

results are indicated in bold, and second best results are underlined.

Cavity aggregation Min SE [19] Max Sum Mean

MAPE ↓ 0.2425 0.2138 0.2092 0.1797 0.1755
Pearson ↑ 0.8912 0.8922 0.9185 0.9204 0.9214

Table 4. Comparison of MAPE and Pearson correlation coefficient

for four methods of feature extraction. Best results are indicated

in bold, and second best results are underlined.

Cavity Aggregation. In multiple instance learning, the

choice of the bag level aggregation plays a crucial role. In

Table 4 we tested multiple methods of aggregation, min-

pooling, max-pooling, mean, sum (which is different from

the mean as the number of cavities per bag varies), and us-

ing a SE [19] block followed by a sum aggregator. The sum

and mean operators outperform other types of aggregation,

which can be explained by the fact that the ATP is a direct

function of the number of organoid cells in the well. This

information is not captured by the min-pooling and max-

pooling operators. The SE block learns the weight to give

to each cavity based on its features, which is used to model

the fact that different cavities contribute differently to the

ATP. While this may be true, we hypothesize that the infor-

mation is already present in the features, and the use of the

SE block therefore only adds noise.

� Takeaway. Our model has a mean MAPE 0.1755 and

Pearson of 0.9214 on the validation set. Trying out differ-

ent feature extraction methods shows that features from DI-

NOv2 [34] provide the best results. Comparing the impact

of a variety of feature and temporal attention schemes justi-

fies the use of wt and wk, while we also show the superior-

ity of using the mean as the bag-level aggregation function.

4.2. Learned Attention Weights

Once the model is trained, analyzing the weights learned

by the wt and wk vectors gives insights into our experi-

ments. Figure 5a shows the weight associated with each

frame in the wt vector after training. Intuitively, we ex-

pect later frames to have the most importance. Without any

constraints during training, we see that the learned temporal

attention has learned a continuous and smooth distribution,

meaning that nearby frames will have relatively similar im-

portance. It is noteworthy that the initial frames seem to

have more importance for the final prediction than frames

after 24 hours of the experiment. This could be attributed

to the fact that the organoid’s initial state is significantly de-

terminant of the final ATP, likely due to its size, as larger

(a) (b)

Figure 5. Visualization of the temporal attention (a) and (sorted)

feature attention (b) weights for a model after training (visualiza-

tion for one fold only). Polynomial fit in red.

organoids tend to exhibit higher values of ATP.

Examining the feature importance in Figure 5b shows

that the feature attention does not highlight any specific fea-

ture, as indicated by a ratio of 2 between the feature with the

highest and lowest attention weight. Note that in Figure 5b,

the features are sorted by their attention weight.

� Takeaway. The temporal attention vector wt learns

meaningful relative importance of the time frames, while

the feature-wise attention vector wk does not make any par-

ticular feature stand out.

4.3. Comparison to SOTA

To the best of our knowledge, only Ins-ATP [7] have ex-

plored the use of machine learning for the prediction of ATP

from organoid microscopy images. They imaged multiple

organoids placed in a single matrigel drop (compared to our

method which has one organoid per cavity) at a single time

point, which yields very different visual results to our im-

ages. We implemented the Ins-ATP method and adapted it

to fit our data, by defining the bags of instances as a set

of cavities from the wells, only using the last frame. This

can be thought of as a compromise between the presented

MeshIns-ATP and DeepIns-ATP [7] as the instances com-

posing the bags are not learned by the model, but are cho-

sen as meaningful regions of interest (the cavities). With

this method, we obtained an average MAPE and Pearson

correlation coefficient of the 4 validation sets of 0.4375 and

0.6794 respectively (compared to 0.1755 and 0.9214 re-

spectively for our pipeline). This highlights the advances of

our study in the development of a high-throughput screen-

ing method to assess real-time drug efficacy from a time-

lapse microscopy video of PDOs.

� Takeaway. The Ins-ATP [7] method applied to our

dataset gives lower performance than our proposed method.
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4.4. Beyond Predicting Current ATP.

We have shown the ability of our proposed pipeline to,

given a sequence of frames, predict the ATP measured at the

last frame. Two main questions arise. How well does our

model perform in forecasting the ATP? How many frames

of history does our model need to predict the current ATP?

Note that while we are retraining the model with features

from a subset of frames, the segmentation maps are still the

ones computed on all f frames.

Forecasting the ATP. Given our current data (i.e. a se-

quence of f = 200 frames, and a measure of ATP at the last

frame), we can evaluate the performance of our pipeline for

forecasting the ATP by training the model while omitting

the last frames. In Figure 6a, we show the performance of

the model when trained only on frames from 0 to i, equiv-

alent to predicting the ATP (f − i) frames in advance. As

expected, the performance of the model drops as the model

is trained to predict ATPs earlier in the video. However,

predicting 2 days in advance a MAPE of 0.28 seems reason-

able compared to the best performance of 0.1755, especially

when considering the wide range of ATP values.

Required history for ATP prediction. Similarly, if we

omit the first frames from the training, we can evaluate how

many frames of history our model needs for predicting the

ATP. In Figure 6b we show the performance of the model

when trained only on frames from i to f (i.e. having access

to f − i frames). The drop in performance is not as clear as

the one shown in Figure 6a. This indicates that our model

seems to perform well when not taking too many frames

into account: the peak performance appears to happen when

about 15 frames are given to the model. This is positive be-

cause it suggests that our model could be used for the live

measurement of ATP as the images are still being acquired,

as it does not need a full history of the organoid cells. How-

ever, it is important to note that although the ATP predic-

tion part of the model seems to perform well with only 15

frames, the segmentation pipeline (and more precisely, the

generation of the first prompt for SAM) relies on movement

within the timelapse. We tested how well the segmentation

of the organoids worked on the last 15 frames by computing

the Dice score with the last 15 frames of the segmentation

map computed using all frames as ground truth. The mean

Dice score is 0.80, with a very uneven distribution among

cavities: 75% of the cavities obtain a Dice over 0.90, while

15% obtain a Dice under 0.20. It seems that most segmen-

tations are not affected by the use of a smaller number of

frames, but for those cases which are affected, the segmen-

tations are prone to complete failure.

� Takeaway. Our model can predict the ATP in ad-

vance with a reasonable drop in performance and is able to

predict with only about 15 frames of history making it us-

able for online predictions.

(a)

(b)

Figure 6. MAPE (left) and Pearson correlation coefficient (right)

as a function of the number of frames given to the model. (a)

Performance of models trained only on frames from 0 to i. (b)

Performance of models trained only on frames from i to 200.

5. Conclusion

The estimation of the ATP is a standard method for the

estimation of drug efficacy on organoids. However, it allows

the measurement at a single timepoint for the entire exper-

iment. In this paper, we propose a method for the spatio-

temporal analysis of organoid microscopy timelapse videos,

for the prediction of ATP. We assess the performance of our

approach for predicting the current ATP with different abla-

tions and we report better performance than SOTA.

Future work includes the further exploration of founda-

tion models for the analysis of organoid videos. In this

study, the foundation models are used as frozen blocks.

However, authors of DINOv2 [34] showed that finetuning

the model encoders to a specific dataset improved the re-

sults on the dataset. One step could be to finetune the fea-

ture extraction model to improve the representations of the

organoids to be better adapted to the prediction of ATP. Sim-

ilarly for the SAM [22] model, we could finetune the mask

decoder part of the model, or learn more efficient prompts.
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series with simple discrete state spaces, 2023. 2

[49] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu,

Min Li, Ming Tang, and Jinqiao Wang. Fast segment any-

thing, 2023. 2

[50] Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li,

Jianfeng Gao, and Yong Jae Lee. Segment everything every-

where all at once, 2023. 1, 2

3939


