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Abstract

Segmenting objects like cells or nuclei in biomedical mi-
croscopy data is a standard task required for many down-
stream analyses. However, existing pre-trained models are
continuously challenged by ever-evolving experimental se-
tups and imaging platforms. On the other hand, training
new models still requires a considerable number of an-
notated samples, rendering it infeasible for small to mid-
sized experiments. To address this challenge, we propose
a semi-supervised learning approach for instance segmen-
tation that leverages a small number of annotated sam-
ples together with a larger number of unannotated sam-
ples. Our pipeline, Augmentation Consistency Training
for Instance Segmentation (ACTIS), incorporates meth-
ods from consistency regularization and entropy minimiza-
tion. In addition, we introduce a robust confidence-based
loss masking scheme which we find empirically to work
well on highly imbalanced class frequencies. We show
that our model can surpass the performance of supervised
models trained on more than twice as much annotated
data. It achieves state-of-the-art results on three benchmark
datasets in the biomedical domain, demonstrating its effec-
tiveness for semi-supervised instance segmentation. Code:
https://github.com/Kainmueller-Lab/ACTIS

1. Introduction
Increasing amounts of microscopy data in the biomedical

domain have necessitated the development of automated

analysis methods. An essential step prior to many down-

stream analyses is the segmentation of objects, often cells or

nuclei, within the images. A number of popular pre-trained

models for cell [15] and nuclei segmentation [39, 36] al-

ready exist, but they may not generalize to a novel sample

preparation protocol, a novel imaging modality, or a specific

cell population if these are not represented in the respective

training data [10].

Fine-tuning a pre-trained model [21, 37] can greatly im-

prove annotation efficiency compared to training a new

model from scratch: If the domain-gap between the pre-

training- and fine-tuning datasets is sufficiently small [18],

it can substantially reduce the respective time and cost re-

quirements [15]. For larger domain-gaps, self-supervised

pre-training, e.g., via contrastive-learning [37] or genera-

tive pre-training [42], can be employed to obtain a good ini-

tialization for task-specific fine-tuning [20]. However, self-

supervised pre-training typically requires large datasets,

substantial computational resources, and additional engi-

neering.

To this end, semi-supervised learning presents a popular

alternative: By leveraging a small number of annotated

samples together with a larger number of non-annotated

samples in a joint training objective, semi-supervised ap-

proaches can achieve comparable performance to mod-

els trained fully-supervised on much larger annotated

datasets [25, 4, 44]. Notable early works focused on min-

imizing the entropy of the prediction on the unlabeled

samples [14, 25, 3]. More recent works add augmenta-

tion consistency regularization, i.e., a teacher model pre-

dicts pseudo-labels with weak augmentations and a student

model predicts on inputs with strong augmentations, then

the student is optimized for consistency with the teacher’s

predictions [41, 2, 47, 48].

However, most works on semi-supervised learning for

image analysis focus on image classification tasks [47,

48, 41, 25, 2], a smaller number on semantic segmenta-

tion [38, 3, 31, 1, 46] and only very few on instance seg-

mentation [6, 4, 45, 17], Within the latter, only two ap-

proaches [45, 17] employ consistency regularization and en-
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tropy minimization. Both approaches are proposal-based,

i.e., they assume that bounding-boxes suitably approximate

object instance shapes. This assumption is often violated

in the biomedical domain, where objects may span large

parts of an image and form dense clusters. This entails wide

popularity of proposal-free methods for biomedical instance

segmentation [15, 39]. However, to date, this class of meth-

ods has not been studied in conjunction with the predom-

inant paradigms for semi-supervised learning, consistency

regularization and entropy minimization.

To fill this gap, we here propose (1) a semi-supervised

proposal-free instance segmentation pipeline that incorpo-

rates consistency regularization and entropy minimization.

In addition, we introduce (2) a confidence-based loss mask-

ing scheme which we find empirically to work well for

imbalanced class frequencies, and (3) we assess the per-

formance of our model on three benchmark datasets from

the biomedical domain, where we achieve state-of-the-art

results compared to baseline semi-supervised and fully-

supervised instance segmentation models.

2. Related Work
Entropy Minimization: Early works on semi-supervised

learning focused on minimizing the entropy of the predic-

tion on unlabeled samples. This can be done explicitly by

adding an entropy regularization term to the objective func-

tion [14, 46] or implicitly by training against class-assigned

predictions from the network, i.e., hard pseudo-labels, for

unlabeled samples [25]. More recent works modify the lat-

ter approach by sharpening the predictions (i.e. concentrat-

ing the prediction around their maximum) instead of assign-

ing classes [47, 38, 3], resulting in so-called soft pseudo-

labels. A recent simplification of this approach [38] resorts

to hard pseudo-labels, yet filters out samples from the loss

calculation in case the maximum of the predicted confi-

dence scores prior to class-assignment is below a certain

threshold. We build upon this simplified approach [38],

with a slight extension to tackle highly imbalanced class-

frequencies: In this case, a class-agnostic fixed confidence

threshold may lead to imbalanced filtering of the minority

classes, since their confidence is typically lower than the

one of more common classes. To avoid this, our method

uses class-specific percentile-based confidence thresholds

together with hard pseudo-labels, so that for every class the

same percentage of high-confidence pixels is included in the

loss calculation.

Augmentation Consistency Regularization: Early meth-

ods enforced consistency of predictions for different views

(i.e., augmentations) of the same input data, as well as

for different predictions obtained via stochastic neural net-

work weights (e.g. via Dropout), by optimizing the mean-

squared-error between different predictions [35]. This

method has been extended by incorporating a temporal en-

sembling approach, where the average of multiple predic-

tions from different views of the data at multiple time points

during training is used as a pseudo-label [23]. The draw-

back of this method is the high memory footprint associ-

ated with storing multiple predictions for each unlabeled

sample during training. This was addressed by [41], who

introduce a teacher model with the same architecture as

the student model, which constructs pseudo-labels on the

fly during training. Instead of averaging over predictions,

this approach averages over the student weights by updat-

ing the teacher weights as an exponential-moving-average

of the students weights. It was found empirically to im-

prove stability of pseudo-labels over the course of train-

ing and increase performance of the resulting student mod-

els significantly [41]. However, [3] show that the qual-

ity of the pseudo-labels can be further improved by aver-

aging the predictions of multiple weakly augmented views

of the data. Therefore, we use this method in conjunction

with a momentum teacher to construct high-quality pseudo-

labels [41, 3].

Contrastive Learning: Contrastive learning extends aug-

mentation consistency regularization by constructing posi-

tive and negative pairs from different samples [7] or from

patches within samples [46]. Positive pairs are constructed

in the vain of augmentation consistency regularization, i.e.,

different views of the same sample, whereas negative pairs

are constructed by taking different samples from a batch.

Contrastive learning objectives then enforce consistent rep-

resentations for the positive pairs and inconsistent represen-

tations for the negative pairs. However, many highly com-

petitive semi-supervised learning approaches [38, 3, 2, 47]

do not use contrastive learning and based on this observa-

tion, we did not include it into ACTIS.

Semi-Supervised Instance Segmentation To the best

of our knowledge, the only other proposal-free semi-

supervised instance segmentation method is Denoiseg [4],

which uses self-supervised image denoising as an auxil-

iary task on the un-labeled samples and standard super-

vised training on labeled samples to deliver considerable

improvements in segmentation quality. The datasets from

this publication will be used for evaluating our method and

for benchmarking it against their approach.

3. Method
We propose a competitive baseline model and a semi-

supervised learning framework to further improve the

model performance. The baseline model consists of a

U-Net [32] with an ImageNet [9] pre-trained EfficientNet-

B5 [40] backbone, which we train to predict foreground,

background and instance boundary, i.e., a three-label in-

stance segmentation model as in [5]. During test-time, the

predictions are post-processed into individual segments via

watershed transformation [8].
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Figure 1. Semi-supervised model architecture: In A) the teacher produces a high-quality prediction by averaging over the predictions

corresponding to multiple flipped and rotated versions of the input image. The prediction consists of 3 classes: background (black), cell

boundary (turquoise), and cell interior (blue). In B) we discretize the resulting prediction to yield a 3-class pseudo-label. In addition to

the pseudo-label, we construct a high-confidence mask by class-wise filtering of unreliable pixels. The pseudo-label and high-confidence

mask are then used in C) to train a student model which is given the same but strongly augmented input.

The semi-supervised learning pipeline uses a Mean-

Teacher [41] approach, i.e., the weights of the teacher are

an exponential-moving-average of the student weights and

both share the same architecture. Student and teacher are

initialized at the start with the weights of a converged base-

line model, which was trained fully-supervised on the same

small labeled dataset that is used for supervision during

semi-supervised training. Pseudo labels are generated by

applying weak augmentations (flips, 90-degree rotations)

on the teacher’s input data and pixel-wise averaging of the

outputs after respective inverse transforms as in [41]. Pix-

els within the pseudo-labels with predicted low confidence

scores are considered unreliable and are thus excluded from

the loss. The student is optimized by calculating the cross-

entropy loss for the student’s predictions of strongly aug-

mented samples and the class-assigned and filtered pseudo-

labels, together with regular supervised training on a small

number of annotated samples. A graphical depiction of the

semi-supervised training pipeline is given in Fig. 1.

The remainder of this section is organized as follows: Sec.

3.1 describes the confidence based filtering method, Sec.

3.2 describes the training pipeline, and Sec. 3.3 describes

the post-processing.

3.1. Semi-supervised augmentation consistency
training

Let us explore in more depth how we can make use of the

large unlabeled dataset D in addition to the smaller labeled

dataset Dl on which we pre-trained our baseline model:

D = {xi}|D|
i=0, Dl = {(xl

i, y
l
i)}|Dl|

i=0

Here, xi and xl
i denote the unlabeled and labeled images,

respectively and yli the corresponding label. As described

above, our model architecture consists of a teacher model

fθt and a student model fθs , which initially are both copies

of our pre-trained baseline. How to leverage D to im-

prove the student model fθs beyond the performance of the

teacher model fθt can be broken down into three parts as

depicted in Fig. 1:

In part A, the teacher model is used to produce a high-

quality prediction. To this end, multiple transformed

versions ti(x) of an image x are taken as the input

of the teacher model. As transformations ti(x) :=
(fflip ◦ frotate) (x), we use rotations and flips but no affine

transformations, because we want to avoid the necessity of

using interpolations on the pseudo labels that might blur it.

To yield the best quality prediction ŷ we average over all q
resulting predictions after applying the inverse transforma-

tion t−1
i :

ŷ =
1

q

q∑
i=0

t−1
i (fθt(ti(x))) (1)

In part B, we use the high-quality prediction ŷ to generate

a discretized pseudo-label γ with elements

γj = argmax{ŷj,c : c = 0...C} (2)

by assigning every pixel j the class c with the highest pre-

dicted confidence score. To filter out unreliable pixels in
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the pseudo-labels that might impair the supervision of the

student, we construct a matrix M with pixel-wise elements

mj =

{
1 ŷj,c > p̄c with c = γj

0 ŷj,c ≤ p̄c with c = γj
(3)

which indicates a reliable pixel: A pixel is classified as re-

liable if the score ŷj,c of the predicted class c = γj sur-

passes the class-specific threshold p̄c. This threshold is con-

structed as follows. First, we compute for every class c the

k-percentile pc (here k = 0.2) of all teacher confidence

scores ŷj,c corresponding to the predicted class c = γj in

the pseudo label. In Fig. 1B, these scores are highlighted

by the class-specific color. As the second step, we compute

the exponential moving average

p̄c := pc,i+1 = 0.99 · pc,i + 0.01 · pc (4)

of that percentile pc over each training iteration i. Filtering

based on individual percentiles per class ensures that rare

classes like the boundary, which often have lower predicted

confidence scores, are preserved during training.

Lastly in part C, the student receives the same input image

x as the teacher but perturbed with strong intensity augmen-

tations tint(x) := (fcolor ◦ fjitter ◦ fblur ◦ fnoise) (x) together

with flips and rotations t. The student model is trained to be

robust against those perturbations. Hence, for an unlabeled

sample x ∈ D we use a cross-entropy loss

Lsemi = LCE

[
fθs

(
t(tint(x))

)
, t(γ)

]
� t(M). (5)

By element-wise multiplication � with the same spatially

transformed matrix M , we filter out the unreliable pixels of

the pseudo-label. In the case of a labeled sample xl ∈ Dl

we use the standard cross-entropy loss

Lsupervised = LCE

[
fθs

(
t(tint(xl))

)
, t(yl)

]
. (6)

Each training batch consists of labeled and unlabeled im-

ages. Thus, the total loss is the sum of the respective

losses. In conclusion, only the weights of the student are op-

timized instantaneously towards augmentation consistency

and entropy-minimization by minimizing the loss with re-

spect to the weights minθs L via gradient descent. Whereas

the teacher weights are updated as an exponential moving

average of the student weights by applying the following

formular θt,n+1 = 0.99 · θt,n + 0.01 · θs,n once every 100

steps.

3.2. Training Details

The baseline model is a U-Net with EfficientNet-B5 en-

coder initialized with imagenet pre-trained weights. It op-

timizes a weighted cross-entropy loss for pixel-wise clas-

sification into background, foreground and boundary with

class weights (1, 1, 4) [5]. The baseline models are opti-

mized with the AdamW optimizer and a cosine decay learn-

ing rate scheduler with a tuned learning rate, and relatively

high weight decay of 1e−3 [26], which are best-practices

known to yield highly competitive models [30, 33]. The

data augmentation pipeline consists of flips, affine transfor-

mations, elastic deformations, gaussian blurring, additive

gaussian noise and color jitter. Training data is split into

128×128 sized tiles as in Denoiseg [4], baseline models are

trained with batchsize 5, whereas semi-supervised models

are trained with batches consisting of 4 labeled and 8 unla-

beled samples. Baseline models are optimized for 100,000

steps and the checkpoint with the highest AP.50 score on

the validation dataset is picked. Overfitting typically occurs

early, especially for setups with a small number of labeled

samples, so that all baseline models overfit or converge

within the 100,000 training steps. For the semi-supervised

learning pipeline, both student and teacher are initialized

with the respective baseline model and optimized for an-

other 50,000 steps. For the student, the SGD optimizer is

choosen with nesterov momentum and cosine decay learn-

ing rate scheduler [28, 7]. The pipeline is implement in

pytorch and torchvision [29, 27] and run on NVIDIA V100

and A40 GPUs.

3.3. Post-Processing

Topographic maps are constructed by subtracting the soft-

max value of the interior class from one and a seed thresh-

old is used to identify basins in there. These basins serve as

the seed-points for an off-the-shelf watershed transform [8],

which grows the basins from the seedpoints until a fore-

ground threshold is reached [19]. Both, seed and fore-

ground threshold, are optimized via grid-search on the val-

idation dataset to yield the highest AP.50 score. Then, the

optimal thresholds are used for processing the test set pre-

dictions and performance metrics are calculated against the

test set groundtruth.

4. Results
Baseline and semi-supervised trained student models are

evaluated on three different datasets, comprised of cells

with high variation in appearance, to show the generic ap-

plicability of our method.

• DSB: This dataset was published for the Kaggle 2018

Data Science Bowl competition. It consists of bright-

field and fluorescence microscopy images of nuclei ac-

quired under different conditions from different cells

and magnifications. The dataset was split into 3800

training and 670 validation tiles of size 128× 128 and

50 test set samples of various sizes.

• Fly Wing: This dataset consists of microscopy im-

ages of membrane labeled fly wings from the fruitfly
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Figure 2. The figure shows the different transformations of an unlabeled sample that are used for augmentation consistency training. The

teacher input data and prediction are shown in the left two columns, the augmented sample and the resulting student prediction are shown

in the middle two columns and the resulting confidence-based loss filtering mask and the per-pixel loss Lsemi is shown in the right two

columns.

D. Melanogaster and consists of 1428 training and 252

validation tiles of 128× 128 pixels and a test set of 50

images of size 512× 512.

• Mouse Nuclei: This dataset consists of microscopy

images of nuclei in the mouse skull which form clus-

ters and have more diverse shapes than the nuclei in

the other datasets. It consists of 908 training tiles and

160 validation tiles of size 128× 128 pixels and a test

set of 67 images of size 256× 256.

All of the above datasets, tiled and split into subsets, were

made publicly available by the authors of [4]. We found

that multiple nuclei within individual tiles shared the same

instance ID in the Mouse dataset. After clarifying with the

authors [4], we decided to fix this by applying the connected

components algorithm (i.e. skimage.measure.label
with 2-hop connectivity [43]) on the labels and re-labeled

the overlapping instance IDs.

Models are evaluated on the following scores choosen for

benchmarking our approach with other published results.

The number in the subscript denotes the Intersection over

Union (IoU) threshold.

AP.50 =
TP.50

TP.50 + FP.50

AP.10:.90 =
1

9
·

.90∑
i=.10

TPi

TPi + FPi

SDSB =
TP.50

TP.50 + FP.50 + FN.50

F1.50 = 2 · precision.50 · recall.50

precision.50 + recall.50

The AP.10:.90 is averaged over different IoU thresholds, in-

cremented by .10. All reported scores are calculated by av-

eraging over the scores of individual test set samples.

This section is organized as follows: First a qualitative eval-

uation of the teacher and student predictions is conducted

in 4.1, then the fully-supervised baseline model is compared

with the semi-supervised model in 4.2 and finally our ap-

proach is compared to published results in 4.3.

4.1. Qualitative Evaluation

Figure 2 shows the different data representations used for

the self-supervised augmentation consistency training. The

pseudo labels for these samples are of high quality, whereas

the student input is heavily augmented, resulting in local er-

rors in the student predictions. The confidence-based mask,
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Figure 3. Comparison to supervised baseline: For all three datasets one example from the test set is displayed. The final (color-coded)

instance predictions of our pipeline ACTIS are shown together with the results of the baseline and the groundtruth (GT). The insets highlight

cases were ACTIS improves the segmentation of the baseline by splitting false merges.

calculated based on the pseudo-label, includes areas that

contain inconsistencies in the student prediction and thus

the loss at these regions is the highest as depicted by high

intensity values in the consistency loss image. Visual in-

spection of the input and the student prediction confirms,

that these areas contain segmentation errors and thus the re-

sulting gradient of the loss is informative for improving the

student.

Figure 3 presents test set examples from each dataset and

respective predictions from the fully-supervised baseline

model and ACTIS trained on 19 labeled samples each. AC-

TIS consistently reduces the number of false merges and

thus improves overall performance. In single cases we have

observed that ACTIS improves the cell shape as well (see

Figure 3 orange arrow).

4.2. Comparison to the supervised baseline

Benchmark metrics for comparison of the fully-supervised

baseline model and the semi-supervised model are pre-

sented in Table 1. Our approach consistently outperforms

the baseline for various setups with different numbers of

training samples. The only exception is the Flywing setup

with |Dl| = 76, where the baseline model is slightly better

than the semi-supervised model in terms of AP.50, but their

performance difference lies within one standard deviation

of both models. Overall, the difference in performance be-

tween baseline and our approach is the highest for the more

challenging DSB dataset, where scores are lower than for

other datasets.

4.3. Benchmark against other approaches

In Table 2, the performance of our approach is compared to

Denoiseg [4]. We use the same train/test/validation split as
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Table 1. Test dataset scores, for the fully-supervised baseline

model on the left and the semi-supervised ACTIS on the right,

show that the latter consistently outperforms the baseline for var-

ious numbers of labeled samples |Dl|. All scores are averaged

over 3 runs trained with a different sample of labeled images and

the standard deviation is reported. Highest AP.50 scores for com-

parison of baseline with ACTIS are highlighted in blue.

Baseline ACTIS

|Dl| AP.50 AP.50 AP.10:.90 F1.50

D
S

B

10 .728±.030 .777±.010 .599±.019 .872±.006

19 .782±.015 .801±.014 .604±.021 .889±.009

38 .772±.053 .802±.024 .627±.023 .889±.016

76 .798±.009 .821±.001 .636±.019 .901±.001

152 .798±.022 .817±.009 .633±.027 .898±.006

All - .847±.010 .650±.010 .916±.006

F
ly

w
in

g

5 .953±.002 .964±.001 .769±.015 .982±.001

10 .955±.003 .965±.003 .767±.004 .982±.002

19 .961±.004 .965±.000 .763±.008 .982±.000

38 .966±.003 .968±.001 .776±.004 .984±.000

76 .970±.002 .969±.001 .782±.003 .984±.001

All - .972±.000 .790±.010 .986±.000

M
o

u
se

5 .793±.003 .800±.003 .601±.018 .889±.002

10 .794±.037 .814±.044 .615±.037 .897±.023

19 .817±.002 .822±.007 .630±.017 .903±.004

38 .843±.004 .850±.003 .657±.011 .919±.002

76 .857±.011 .863±.009 .656±.010 .926±.005

All - .872±.024 .678±.039 .927±.021

the authors, so that the comparison is fair. Denoiseg scores

for the Mouse Nuclei dataset are higher in Table 2 than the

ones reported in the publication [4], because we re-ran their

code with 5 different seeds after we found and fixed a num-

ber of errors in the groundtruth annotations of this dataset.

Our approach consistently outperforms Denoiseg by a large

margin over all conducted experiments. The reasons for this

are, that Denoiseg uses a Vanilla U-Net [32], without a pre-

trained encoder, which has a large effect on the performance

as we show in our ablation study in Table 3. In addition,

it only uses a very basic augmentation pipeline, consist-

ing of 90-degree rotations, flips and additive gaussian noise.

In addition, Denoiseg adds self-supervised denoising as an

auxiliary task and adds the denoised image as an additional

output domain, whereas ACTIS does denoising (and other

tasks such a normalization and sharpening) directly on the

3-class domain that is later used for segmentation.

4.4. Ablation study

Table 3 reports results for an ablation study where sin-

gle components of ACTIS were ablated. The first row re-

ports the results of the full pipeline with 19 labeled sam-

ples for each of the datasets. In the second row, the mo-

mentum teacher is replaced by a fixed student model (Mo-

mentum Teacher �) and the performance drops slightly for

all datasets. If confidence filtering is dropped and the stu-

dent is trained on the quantized teacher predictions only,

Table 2. Test dataset SDSB scores at IoU=0.5 for Denoiseg (left)

and ACTIS (right) show that our approach consistently outper-

forms the other (highlighted in blue). Scores for Denoiseg are

averaged over 5 different labeled/un-labeled splits, whereas results

for ACTIS are averaged over 3 splits and the standard deviations

are reported.

Denoiseg[4] ACTIS

Dataset |Dl| SDSB SDSB

DSB 10 .690±.006 .791±.010

19 .705±.005 .813±.012

38 .718±.004 .813±.023

76 .728±.005 .831±.001

152 .757±.003 .828±.008

Flywing 5 .882±.014 .964±.001

10 .907±.003 .965±.003

19 .899±.005 .965±.000

38 .923±.003 .968±.001

76 .929±.001 .969±.008

Mouse 5 .721±.014 .808±.003

10 .730±.022 .823±.041

19 .755±.013 .830±.007

38 .768±.013 .856±.003

76 .795±.010 .868±.009

the performance degrades substantially for mouse and DSB,

whereas performance on the flywing dataset only slightly

decreases. This is due to the substantially lower number

of segmentation errors in the predictions of the flywing

dataset and therefore the lower number of errors that would

need to be filtered out. The second to last row is the base-

line model, where models are trained fully-supervised on

a small number of samples. In the last row, imagenet pre-

trained weights for the encoder are not used and as a re-

sult the performance declines considerably across the board.

Despite the domain gap from imagenet to the bio-medical

datasets used in this paper, the features learned seem to

transfer well.

5. Discussion
The results show that semi-supervised augmentation consis-

tency training can substantially improve data efficiency. For

the DSB and mouse dataset, the effect of using ACTIS over

the fully-supervised baseline is for some setups compara-

ble to more than doubling the number of labeled samples

used for training according to Table 1. Results also indicate

that ACTIS is especially beneficial for models trained on

the DSB dataset, which, unlike the other datasets, consists

of samples from different imaging modalities and experi-

mental conditions. Therefore, it might be that our approach

works especially well for hetereogenous datasets where part

of the problem is adapting to the different domains con-

tained in the dataset. This is in line with the literature on

unsupervised domain adaptation for semantic segmentation,

3796



Table 3. Different components of the pipeline are ablated and the AP.50 score of the respective models on the test dataset is reported for

setups trained with 19 labeled samples.

Ablations AP.50 split by dataset

Include Momentum Confidence Pre-trained

Lsemi Teacher Filtering Encoder DSB Mouse Flywing

� � � � .801±.014 .822±.007 .965±.000

� � � � .800±.011 .805±.021 .964±.000

� � � � .786±.021 .797±.020 .965±.000

� � � � .782±..015 .817±.002 .961±.004

� � � � .715±.010 .795±.009 .955±.000

where similar augmentation consistency approaches were

already successfully applied [31, 1].

Composing the data augmentation pipeline and setting rea-

sonable hyperparameters is key for making augmentation

consistency training work and improve performance over

the baseline. More sophisticated data augmentation meth-

ods like mixup [49], cutout [11] or copy-paste augmen-

tation [13] could further improve results, but were out of

scope for this work. Also, poisson noise could be used

instead of gaussian noise for augmentation, since it better

resembles real noise distributions observed in microscopy

images [22]. In addition, more work is necessary to clar-

ify which augmentations to use for color images in the

bio-medical domain such as Hematoxilin and Eosin stained

whole slide tissue images.

Better performing instance segmentation models such as

StarDist [36], Embedseg [24] or the 3-class model with off-

set vectors as auxiliary task [19] could be used instead of

the vanilla 3-class model [5] to further boost performance.

A key assumption for the confidence filtering step in ACTIS

is, that the confidence scores predicted by the teacher model

are well calibrated, meaning that they are lower for regions

that contain more errors and vice versa. However, this as-

sumption might be violated to a certain degree and our U-

Net may be overconfident in its predictions [16]. Therefore,

more sophisticated and better calibrated uncertainty quan-

tification approaches such as approximate bayesian meth-

ods [12, 34] could enable further improvements.

Despite showing considerable improvement in performance

(c.f. Table 3), the imagenet-pre-trained encoder in our U-

Net architecture is probably not the optimal initialization

for our models. Self-supervised generative pre-training, on

the whole dataset or on a larger array of different datasets

from the bio-medical domain, might provide better initial-

izations and could further improve performance [42].

6. Limitations

Despite using only a small number of labeled training set

tiles, the number of labeled tiles in the validation set for all

experiments was held constant at 15% of the sum of tiles in

the training and validation dataset. Thus, when accounting

for the validation dataset, the proposed method is less label

efficient than anticipated. This problem also applies to other

approaches, which use a similar percentage of labeled data

for validation [46, 4]. Therefore, more data efficient ways

to estimate the generalization capabilities of models during

training are highly desired to further decrease the required

number of labeled samples.

7. Conclusion
We presented a simple and highly performant approach
for semi-supervised instance segmentation. The pipeline,
consisting of a pre-trained encoder, coupled with standard
augmentations, a simple confidence based loss-masking
scheme for consistency regularization and a momentum-
updated teacher model is easy to implement and should
be applicable to other datasets. In addition, the approach
should be applicable to other dense prediction tasks in
the bio-medical domain such as semantic or panoptic
segmentation which we will explore in the future.
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