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Abstract

Annotating nuclei in microscopy images for the train-
ing of neural networks is a laborious task that requires
expert knowledge and suffers from inter- and intra-rater
variability, especially in fluorescence microscopy. Gener-
ative networks such as CycleGAN can inverse the process
and generate synthetic microscopy images for a given mask,
thereby building a synthetic dataset. However, past works
report content inconsistencies between the mask and gen-
erated image, partially due to CycleGAN minimizing its
loss by hiding shortcut information for the image recon-
struction in high frequencies rather than encoding the de-
sired image content and learning the target task. In this
work, we propose to remove the hidden shortcut informa-
tion, called steganography, from generated images by em-
ploying a low pass filtering based on the discrete cosine
transform (DCT). We show that this increases coherence be-
tween generated images and cycled masks and evaluate syn-
thetic datasets on a downstream nuclei segmentation task.
Here we achieve an improvement of 5.4 percentage points in
the F1-score compared to a vanilla CycleGAN. Integrating
advanced regularization techniques into the CycleGAN ar-
chitecture may help mitigate steganography-related issues
and produce more accurate synthetic datasets for nuclei
segmentation.

1. Introduction

Detecting individual nuclei and cellular structures in

microscopy images is a common task in biomedical im-

age analysis and provides insights into cellular processes.

Deep neural networks have been successfully used to au-

tomate nuclei detection but are typically trained in a su-

pervised manner with a paired dataset of nuclei images

and manual labels [8, 10]. However, acquiring manual la-

bels is time-consuming and prone to errors and inconsisten-

cies, especially in fluorescence microscopy (FM) images,

e.g., due to clustered nuclei, bleed-through, and other arti-

facts. Unsupervised methods present an alternative, with

two approaches being commonly used: a two-stage ap-

proach where a generative model is used to generate a syn-

thetic dataset for training a supervised segmentation net-

work and a one-stage approach where a generative model is

directly used to perform nuclei segmentation. In both cases,

the generative model is trained with an unpaired dataset of

real microscopy images and synthetic masks which can be

obtained from a suitable synthesis model such as ellipses

[1]. The model is then trained to perform unpaired image-

to-image translation between masks and nuclei images. A

(a) Generated nuclei (b) Real nuclei

Figure 1: 1a image with steganography amplified by adap-

tive histogram equalization. The generated image contains

information in seemingly empty regions. 1b Processed real

nuclei image for reference.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Input Mask Generated Image  Cycled Mask

Generator GG F

Figure 2: Severe example of CycleGAN steganography:

Despite only one nucleus being visible in the generated im-

age, generator F can reconstruct the input mask almost per-

fectly. Generator G encodes information about the input

mask in the generated image in the form of a high-frequency

low-amplitude signal. This signal is used by F to recon-

struct the original mask.

commonly chosen approach is the CycleGAN architecture,

introduced by Zhu et al. [13]. A CycleGAN employs two

generators, each dedicated to translate between two image

domains and two discriminators for the respective domains.

A cycle-consistency loss for the generators enforces con-

sistency between an original image and its cycled version

to ensure the learned mapping is a bijection. Essentially,

the cycle loss ensures that the generators retain the image

content and only transfer the domain (e.g., from mask to

nuclei). However, this constraint does not necessarily lead

to a content similarity between the input and the gener-

ated image in the other domain. As a shortcut to minimize

the cycle-consistency loss, generators can embed a com-

pressed version of the input in the generated image as a

high-frequency low-amplitude signal to create a perfect re-

construction of the input image [4, 7]. This emerging prop-

erty has been denoted as CycleGAN steganography since

the generator actively hides information from the discrim-

inator. This can cause a mismatch between the source im-

age and the generated image leading to label noise in the

context of synthetic dataset generation. The prominent ef-

fect observed in nuclei images could be attributed to the

minimal influence of missing instances on the discrimina-

tor’s output. Since the discriminator’s role is to classify

whether an image appears real, the absence of certain nu-

clei instances does not considerably impact the realism of

the microscopy image. An impression of the CycleGAN

steganography effect can be obtained from Figure 2. We

visualize the steganography signal in Figure 1, by perform-

ing adaptive histogram equalization, which is an image pro-

cessing technique that enhances contrast by redistributing

pixel intensities based on local regions. For reference, we

apply the adaptive histogram equalization not only to the

generated image but also a real nuclei image. The unpro-

cessed version of Figure 1a is also used in Figure 2. The

CycleGAN steganography property was first reported by

Chu et al. in [4]. Since the hidden signal is of low am-

plitude with a high frequency, it has characteristics similar

to noise. Motivated by this observation, Porav et al. [7] pro-

pose using DnCNN, an end-to-end differentiable image de-

noising network, between the two generators to remove hid-

den information. The denoising network is only applied for

the cycle-consistency loss and is frozen during CycleGAN

training. They evaluate their method on a day-to-night style

transfer task with semantic segmentation. Löhdefink and

Fingscheidt [5] try to corrupt the hidden signal and break

undesired information exchange between the generators by

adding Gaussian noise or discretization noise to the gener-

ated images. They evaluate their approach on a supervised

semantic segmentation of driving scenes.

In this paper, we generate a fully synthetic dataset of FM

images of nuclei with a CycleGAN using transformed el-

lipses as input masks. To mitigate the before-mentioned

CycleGAN steganography problem, we propose to use the

discrete cosine transform (DCT) to perform low-pass filter-

ing of the generated images to remove the hidden signal

adaptively. While we still observe a discrepancy in con-

tent between the input mask and generated nuclei images

using our approach, the cycled mask matches the content

of the generated image. This allows us to use the gener-

ated images with their cycled masks as training data for the

supervised training of segmentation networks. We evalu-

ate our approach by testing only with synthetic data trained

networks on real data. We observe an increased average

precision when DCT filtering is used due to the improved

alignment between the mask and generated image. To sum-

marize, the contributions of our work are:

• We compare different CycleGAN steganography re-

moval techniques on FM images.

• We propose an efficient way to remove steganography

from CycleGAN images by introducing an additional

filter step, based on the DCT.

• We analyze the impact of CycleGAN steganography

on downstream segmentation performance on two pub-

lic FM nuclei datasets and show improved perfor-

mance when using our proposed method.

2. Methods

2.1. CycleGAN

Our method is based on CycleGAN[13] which can learn

a translation between two domains, such as the domain

of masks X and nuclei images Y , with individual sam-

ples from the domains denoted as x and y respectively.

This translation is performed by two generator networks

G : X → Y and F : Y → X . Both generators are trained

with an adversarial loss using discriminator networks DX

and DY for each domain. For generator G, which receives

a mask image x and generates a fake nuclei image ŷ, the
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Figure 3: Extended CycleGAN architecture featuring a DCT-based low-pass filter, effectively removing undesired steganog-

raphy from generated images. The downstream segmentation network evaluates the model’s performance and is trained on

generated images and cycled masks.

adversarial loss Ladv is defined as:

Ladv = Ey∼pdata (y) [logDY (y)]

+ Ex∼pdata (x) [log (1−DY (G(x))]
(1)

The adversarial loss for generator F is computed analo-

gously. An additional cycle consistency loss is used to en-

sure that the mapping is bijective by enforcing F (G(x)) ≈
x and G(F (y)) ≈ y. In other words, a sample should be

close to its original after being consecutively processed by

both generators. The cycle-consistency loss for generator G
(F again analogously) is formulated as:

Lcyc = Ey∼pdata (y) [‖G(F (y))− y‖1] . (2)

2.2. DCT filtering

The DCT algorithm is best known in the context of the

JPEG image compression algorithm [11], which removes

high frequencies from images for compression. We pro-

pose eliminating the high-frequency pixel-level patterns [4]

used by CycleGANs to hide information by setting coeffi-

cients associated with higher frequencies to zero. The DCT

is a bijective mapping between an input I and the frequency

domain. In this work, I refers to the generated image by

CycleGAN, i.e., ŷ or x̂. In the following equations, Ixy
represents the pixel intensity at position (x, y) in the image.

The coefficients C of the DCT are computed on the image

I of N ×M pixels as follows:

DCT(i, j) = α(i)α(j)
N−1∑
x=0

M−1∑
y=0

Ixyhv,

where h = cos
π(2x+ 1)i

2N
, v = cos

π(2y + 1)j

2M
.

(3)

The functions h and v weight the contributions of differ-

ent frequency components in the image Ixy to calculate the

DCT coefficient at position (i, j). The scaling factor α can

be used to make the transform orthonormal:

α(k) =

{
1√
2
, if k = 0

1, otherwise
. (4)

When computed on 2D images of size N × M , N × M
coefficients CM×N are obtained. In order to eliminate spe-

cific frequency bands from the image, we applied a tech-

nique of setting corresponding DCT coefficients to zero in

the frequency domain. This was achieved by element-wise

multiplication of the DCT coefficients matrix with a mask

matrix, where the mask contained zeros at the positions cor-

responding to higher frequencies. The purpose of this step

is to remove steganography from the generated images, as

the steganography signal, introduced into the images by the

generators to ease up reconstruction, is of low amplitude

and high frequency. Specifically, we performed low-pass

filtering by nullifying the coefficients corresponding to the

50% highest frequencies. To obtain an image ŷ∗ or x̂∗ from
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(a) Generated image (b) Filtered image (c) Difference image

Figure 4: Generated images (a) filtered with our proposed

DCT filtering are almost indistinguishable since the filter is

designed only to remove steganography. In (c) the absolute

difference between the filtered and the generated image is

shown.

the filtered coefficients C∗, the inverse DCT is applied by

computing:

iDCT(i, j) =
N−1∑
i=0

M−1∑
j=0

α(i)α(j)C∗(i, j)hv. (5)

Naturally, the filtering does not only affect the hidden sig-

nal but any high-frequency image information, such as foci

inside of the nuclei. However, we argue that for recon-

structing masks from nuclei images, these high-frequency

features are not mandatory, and the differences are subtle.

A side-by-side comparison between an original image and a

DCT filtered image and their absolute difference is depicted

in Figure 4c. As the cycle loss mainly promotes the Cycle-

GAN steganography, we apply the filtering only to images

used for computation of the cycle loss, i.e., the adversar-

ial losses are computed on the unfiltered generator output.

Figure 3 gives an overview of the CycleGAN data flow with

our proposed DCT filtering for synthetic dataset generation.

2.3. Mask synthesis

Böhland et al. show that ellipses are a simple but suitable

model for representing the shape of nuclei [1] and can be

used to create synthetic label images. However, careful pa-

rameterization of the ellipses is required to match the prop-

erties of the nuclei of real microscopy images. A substan-

tial deviation between synthetic and real distribution might

result in CycleGAN being unable to learn the mapping cor-

rectly. The standard equation for an ellipse is

x2

a2
+

y2

b2
= 1, (6)

with the semi-major axis a and the semi-minor axis b. To

express how elongated an ellipse is, we use the eccentricity

e, which is for a > b defined as:

e =

√
1−

(
b

a

)2

. (7)

For mask synthesis, we randomly sample the eccentricity in

the range [0.4, 0.9] to compute the minor axis b with:

b =
√
1− e2a. (8)

The size of the semi-major axis a is randomly sampled from

a uniform range which is determined on a per-dataset basis.

The uniform range for the number of nuclei per image is

estimated on sample images from each dataset. A random

rotation with a random angle from a uniform distribution in

the range [0°, 179°] is applied to each nucleus individually.

Nuclei are placed in the synthetic mask images so that they

may touch but never overlap.

3. Experiments
3.1. Evaluation setup

To evaluate the influence of DCT filtering on Cycle-

GAN training, we generate synthetic datasets using a Cy-

cleGAN with DCT filtering and an unmodified CycleGAN

as a baseline. Additionally, we implement two methods

from literature: the denoising approach (DnCNN) from [7]

and the noise-injection approach (Noise) using Gaussian

noise as proposed in [5]. Instead of using the synthetic

input mask from our mask synthesis model and the gen-

erated microscopy image by CycleGAN for our synthetic

dataset, we use the cycled input mask along with the gen-

erated microscopy image. This is motivated by the fact

that our method aims to increase correspondence between

generated image and cycled mask by filtering the generated

image. Additionally, ellipses are a suitable but imperfect

approximation of the nuclei shape. If the CycleGAN devi-

ates slightly from this approximation, the cycled mask al-

lows adaptation to these deviations. This is under the as-

sumption that CycleGAN steganography was removed suc-

cessfully. However, the cycled masks generated by Cycle-

GAN are close to binary masks that might contain minor

imperfections. To convert the binary masks into instance

masks, we close small holes in the masks and compute the

Euclidean distance transform of the binary mask and then

apply Watershed segmentation with morphological opera-

tors. An example of this post-processing step is visualized

in Figure 5. The synthetic dataset is then utilized for train-

ing the nuclei segmentation network StarDist [8]. Subse-

quently, the trained segmentation network is applied to real

microscopy data for testing. We use StarDist’s matching

function to compute precision and recall with IoU thresh-

olds of τ = 0.5 and τ = 0.75. Additionally, we report the

F1 score. Each dataset is generated three times with random

initialization and results are averaged.

3.2. Datasets

To evaluate our method, we train CycleGAN on two pub-

lic FM nuclei datasets from the Broad Bioimage Benchmark

3859



Cycled Mask Instance Mask

Watershed

Figure 5: To convert the binary cycled masks into instance

masks that can be used to train segmentation networks, we

apply the watershed algorithm on the distance-transformed

cycled masks.

Image Collection [2]. For each nuclei image, we normalize

pixel values into the range [−1, 1] and extract random crops

of 256 × 256 pixels. To create synthetic labels, we use the

mask synthesis model described in Section 2.3. The param-

eters for mask synthesis can be obtained from Table 1 for

the DSB dataset and Table 2 for dataset BBBC039v1. They

were determined based on a small set of three selected nu-

clei images for each dataset individually. During the train-

ing of CycleGAN, new random masks are created for each

batch. After the training of CycleGAN, a fixed set of 1500
synthetic masks is used to generate nuclei images as a train-

ing set for the downstream nuclei segmentation network.

3.2.1 Data Science Bowl (DSB) 2018 Nuclei Dataset

The Data Science Bowl (DSB) 2018 Nuclei Dataset was re-

leased for the 2018 Data Science Bowl Kaggle challenge

and is listed in the Broad Bioimage Benchmark Collection

as BBBC038v1. The dataset contains thousands of nuclei

obtained from various organisms, including humans, mice,

and flies. Nuclei in the dataset appear in different contexts

and states, e.g., cell division, genotoxic stress, and differen-

tiation. While the original dataset contains a variety of treat-

ments (e.g., hematoxylin and eosin stained nuclei), only

FM images were used in this work. The dataset contains

two labeled subsets, stage1 train with 538 FM images and

stage1 test with 53 FM images. Additionally, the dataset

contains an unlabelled subset, stage2 test of which we se-

lect 667 FM images. We use stage1 train and stage2 test
for CycleGAN training. The downstream nuclei segmenta-

tion networks were tested on stage1 test. Figure 6 visual-

izes the variety of the dataset using three example images.

3.2.2 BBBC039v1 dataset

The dataset BBBC039v1 is a FM dataset, and the images

were obtained as part of a high-throughput chemical screen

on U-2 OS cells by Caicedo et al. [3]. The dataset presents a

variety of nuclei shapes, different degrees of clustering, and

consists of a total of 230000 single nuclei, which were man-

Table 1: Parameters of the mask synthesis model of DSB

dataset. Each synthetic mask’s parameters are chosen from

random uniform intervals denoted below. By using multi-

ple subsets of parameter combinations, we allow the mask

synthesis model to reflect the diverse characteristics of the

DSB dataset.

Length major axis Nuclei count Eccentricity e
(5, 10) (1, 150) (0.4, 0.9)
(10, 15) (1, 40) (0.4, 0.9)
(15, 20) (1, 40) (0.4, 0.9)
(20, 25) (1, 40) (0.4, 0.9)
(25, 30) (1, 20) (0.4, 0.9)
(30, 35) (1, 20) (0.4, 0.9)

ually annotated. However, compared to the DSB dataset, it

exhibits much less variability in shape and nuclei style, as

all images were obtained from the same experiment. The

dataset holds 200 unique images, each of size 520 × 696
pixels. Of these, 150 were used for CycleGAN training.

The remaining 50 images were used as the test set for the

downstream nuclei segmentation network. Exemplary im-

ages are shown in Figure 7.

Table 2: Parameters of the mask synthesis model of

BBBC039v1 dataset. Each synthetic mask’s parameters

are chosen from random uniform intervals denoted below.

Compared to DSB, the BBBC039v1 dataset is less diverse

concerning nuclei shape and distribution, reflected by our

selected parameters.

Length major axis Nuclei count Eccentricity e
(10, 20) (20, 60) (0.6, 0.9)
(20, 40) (20, 30) (0.6, 0.9)

3.3. Network training

3.3.1 CycleGAN

All compared CycleGAN variants are based on the net-

work architecture described in the original CycleGAN pa-

per [13] and we used the official PyTorch implementa-

tion.1 We trained all networks for 100 epochs with a learn-

ing rate of 2e-4, which was linearly decayed to 0 for an-

other 100 epochs, using an Adam optimizer (β1 = 0.5 and

β2 = 0.999) with a batch size of 1. To stabilize the training,

the discriminator was updated from an image pool of 50 im-

ages [9]. The weight λ for the cycle-consistency loss was

set to λF = 15.0 for generator F and to λG = 10.0 for gen-

erator G. We set λG lower since the mapping from masks to

nuclei images is not unique, as it is not directly possible to

1Available at https://github.com/junyanz/pytorch-CycleGAN-and-

pix2pix/.
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Figure 6: Sample images from DSB dataset.

Figure 7: Sample images from BBBC039v1 dataset.

infer the texture from a nucleus based on a binary mask. For

our comparison with [7], we use the reference implementa-

tion of DnCNN [12], which is trained for blind Gaussian

denoising with a large range of noise levels (σ ∈ [0, 55]).
The denoising network weights were frozen during training

and inference runs. Denoising is only applied for computa-

tion of the cycle loss.

3.3.2 StarDist

We use StarDist [8] as downstream nuclei segmentation net-

work. It is a popular choice in the field due to its effec-

tiveness, versatility, and state-of-the-art nuclei segmenta-

tion performance. However, in this work, the focus is not

on achieving the best possible result but on investigating

the applicability of differently generated synthetic datasets

for a downstream task. We train StarDist for 50 epochs with

a batch size of 16 and a learning rate of 3 × 10−4. We in-

creased the number of rays used for the star-convex polygon

representation from the default 32 to 64 in order to obtain

more detailed polygon shapes. All remaining parameters of

StarDist were left unchanged.

4. Results
4.1. Assessment of image fidelity

While the primary goal of our proposed methods is to

improve the downstream task of nuclei segmentation, we

report the results of the fidelity comparison for generated

and original images in Table 3 for completeness. To this

end, we compute the Fréchet inception distance (FID) as

proposed in [6]. The CycleGAN with DCT filtering yields

the best FID score on the DSB dataset (96.4) and second-

lowest on BBBC039v1 (328.1). The low standard devia-

tion (±0.7 for the three repetitions with DSB dataset) indi-

cates that DCT filtering can also help to produce more sta-

ble results. We generally observe unusually high FID scores

among all datasets. However, the FID score computation is

based on a feature extractor trained on natural images. This

representation might not be optimal for quality assessment

of FM images, leading to higher scores and limited validity.

Table 3: FID score (lower is better) is chosen as metric to

compare the image fidelity of generated data for datasets

DSB and BBBC039v1 with original images from the re-

spective datasets

Model DSB BBBC039v1

Orig. CycleGAN 110.1± 3.0 380.2± 12.9
w. DCT (ours) 96.4±0.7 328.8± 13.8
w. noise [5] 104.9± 4.6 376.6± 39.7
w. DnCNN [7] 101.3± 3.5 327.1±4

4.2. Qualitative results of synthetic images

A representative sample of generated images using the

discussed methods is depicted along with (from left to right)
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the generating input mask, the respective cycled mask, and

the post-processed instance mask as an overlay in Figure 8.

For all four analyzed methods, we observe a deviation from

the original input mask. This deviation is not necessarily

negative as long as it is represented in the cycled mask.

This is not the case for the unmodified CycleGAN. Mul-

tiple nuclei instances are not rendered into the image but

occur in the cycled mask. In this case, it is almost a pixel-

perfect copy of the original input mask. The reason for this

is the before-mentioned CycleGAN steganography. If our

proposed DCT filtering is used during training, we observe

no steganography during test time. The cycled mask re-

sembles the generated image closely. We also observe that

the nuclei do not exhibit an exact ellipse shape, which we

consider a positive effect. This allows the model to adapt

to the shape of nuclei found in the training set and over-

come shortcomings of the ellipse synthesis representations.

For the approaches from literature, specifically the filtering

with the denoising network DnCNN [7], we observe that

steganography was reduced but not fully removed as there

are nuclei in the cycled mask that were not present in the

generated image. For the noise injection approach from [5],

we observe the largest deviation from the input mask in the

generated image. However, since this is reflected in the cy-

cled mask, we conclude that removing the steganography

was successful. We also observe a slightly less realistic re-

production of the typical nuclei texture found in the remain-

ing images when noise injection is used.

4.3. Segmentation performance on DSB

The results for the segmentation network tested on the

real-data test split stage1 test of the DSB dataset are re-

ported in Table 4 for an IoU threshold of τ = 0.5 and in

Table 5 for an IoU threshold τ = 0.75. The best results in

terms of precision are achieved with the training set created

by our proposed CycleGAN with DCT filtering, outper-

forming the baseline CycleGAN by 19.7 percentage points

for τ = 0.5 and 38.7 percentage points for τ = 0.75. For

the approach using DnCNN we observe comparable perfor-

mance at τ = 0.5, with a larger gap (8.3 percentage points

less precision compared to DCT) for the more challenging

threshold of τ = 0.75. The noise-injection approach suffers

from a high variance leading to a slightly worse average per-

formance.

4.4. Segmentation performance on BBC039v1

We report results for the downstream segmentation task

on the BBBC039v1 test set for τ = 0.5 and τ = 0.75 in

Table 6 and Table 7 respectively. We observe a high pre-

cision for all methods except the noise injection, indicat-

ing a low number of false positives and a high number of

true positives. Compared to the DSB dataset, we observe

higher scores among all methods and metrics due to the

(a) Original input mask

Generated Image Cycled Mask Overlay

(b) Original CycleGAN

(c) with DCT filtering (ours)

(d) with DnCNN [7]

(e) with Gaussian noise injection [5]

Figure 8: Generated images based on the DSB dataset along

with the cycled mask. The final segmentation mask used for

StarDist training is shown in the third column as an overlay

over the generated image.

lower diversity and therefore complexity of the data set. The

lower complexity results in a lower amount of steganogra-

phy. Consequently, the methods differ only slightly in their

F1-score, with DCT filtering being the best method by a

margin of 2 percentage points (τ = 0.5) compared to the
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Table 4: StarDist segmentation performance in % on DSB

stage1 test split, trained on synthetic datasets generated

from different CycleGAN methods. Scores are computed

for τ = 0.5

Model Precision Recall F1-Score

Orig. CycleGAN 74.3± 5 63.7± 3 68.6± 4
w. DCT (ours) 94.0± 1 61.1± 1 74.0± 1
w. noise [5] 87.0± 14 39.8± 31 50.3± 37
w. DnCNN [7] 92.3± 1 62.8± 3 74.7±2

Table 5: StarDist segmentation performance in % on DSB

stage1 test, trained on synthetic datasets generated from

different CycleGAN methods. Scores are computed for

τ = 0.75, which requires more precise predictions com-

pared to τ = 0.5

Model Precision Recall F1-Score

Orig. CycleGAN 49.9± 5 40.2± 3 43.3± 4
w. DCT (ours) 85.6± 1 55.6± 1 67.4±1
w. noise [5] 67.7± 32 35.5± 29 44.5± 36
w. DnCNN [7] 77.3± 11 52.4± 5 62.4± 7

baseline. The margin between the proposed DCT filtering

and the baseline CycleGAN methods increases for a higher

threshold (τ = 0.75) to 8.4 percentage points in terms of

F1-score. This indicates that DCT filtering leads to more

realistic nuclei shapes. Similar to the results of the DSB

dataset, we observe a high variability in performance for

the noise-injection results. The reason of this is likely due

to noise injection causing the GAN training to be less stable,

generating more deficient samples.

Table 6: StarDist segmentation performance in % on

BBBC039v1 test set, trained on synthetic datasets gener-

ated from different CycleGAN methods. Scores are com-

puted for τ = 0.5

Model Precision Recall F1-Score

Orig. CycleGAN 99.9± 1 86.3± 6 92.1± 4
w. DCT (ours) 97.9± 1 90.7± 1 94.1±1
w. noise [5] 82.1± 29 76.3± 28 79.1± 28
w. DnCNN [7] 99.9± 1 82.4± 2 90.3± 2

5. Discussion
In this work, we proposed a new anti-steganography

approach for CycleGANs and evaluated existing methods

to improve CycleGAN consistency for FM nuclei gener-

ation. We further showed the performance of nuclei seg-

mentation trained solely on synthetic data. Using our pro-

posed method, we observe a qualitative improvement in the

Table 7: StarDist segmentation performance on

BBBC039v1 test set, trained on synthetic datasets

generated from different CycleGAN methods. Scores are

computed for τ = 0.75

Model Precision Recall F1-Score

Orig. CycleGAN 82.8± 11 72.6± 15 77.3± 13
w. DCT (ours) 89.2± 10 82.5± 8 85.7±9
w. noise [5] 65.2± 54 61.1± 50 61.1± 52
w. DnCNN [7] 91.4± 11 75.5± 10 82.6± 10

generated images and masks and outperform existing anti-

steganography approaches quantitatively on a downstream

segmentation task. A considerable advantage of DCT fil-

tering compared to using a DnCNN is the reduced compu-

tational overhead. Instead of feeding the generated images

through a neural network (i.e., the DnCNN), we make use

of the efficient and computationally cheap implementation

of the DCT algorithm. By pairing the cycled mask with the

generated image for synthetic dataset creation, we allow the

network to deviate from the input mask, allowing Cycle-

GAN to overcome potential shortcomings of the mask syn-

thesis model. This can be a crucial factor in enabling Cy-

cleGAN to learn the desired mapping. In [1] Böhland et al.
show that CycleGAN can only produce satisfactory results

if the shape and occurrence of synthetic masks are similar

to the ground-truth distribution. In unsupervised settings,

the ground-truth distribution is not available, and estimat-

ing the parameters of the mask synthesis model relies on a

limited number of samples, which can introduce challenges

and uncertainties. A limitation of using the cycled masks

is the necessity of introducing post-processing steps to con-

vert them into instance masks. This in turn might induce an

unknown bias into the processed masks and is thus prone

to errors. This could be avoided by directly generating in-

stance masks in CycleGAN, e.g., by rendering additional

boundaries of masks or using a StarDist-like mask formula-

tion based on star-convex polygons.

In this work, we did not consider the segmentation capa-

bilities of CycleGAN itself. Due to its architectural design,

CycleGAN is not only trained to generate microscopy im-

ages from masks but also to segment microscopy images

into masks. In future work, we want to explore to what ex-

tent this allows this allows CycleGAN to be used as an un-

supervised nuclei segmentation network, e.g., by using seg-

mentation losses such as the Dice loss for cycle consistency.

Exploring the generalizability of the proposed steganogra-

phy removal approach to other cycle-loss-based image-to-

image translation tasks could open up new possibilities for

improving various GAN-based applications.
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pages 289–309. KIT Scientific Publishing, 2019. 47.01.02;

LK 01.

[2] Juan C. Caicedo, Allen Goodman, Kyle W. Karhohs, Beth A.

Cimini, Jeanelle Ackerman, Marzieh Haghighi, CherKeng

Heng, Tim Becker, Minh Doan, Claire McQuin, Mohammad

Rohban, Shantanu Singh, and Anne E. Carpenter. Nucleus

segmentation across imaging experiments: the 2018 data sci-

ence bowl. Nature Methods, 16(12):1247–1253, Oct. 2019.

[3] Juan C. Caicedo, Jonathan Roth, Allen Goodman, Tim

Becker, Kyle W. Karhohs, Matthieu Broisin, Csaba Mol-

nar, Claire McQuin, Shantanu Singh, Fabian J. Theis, and

Anne E. Carpenter. Evaluation of deep learning strategies

for nucleus segmentation in fluorescence images. Cytometry
Part A, 95(9):952–965, 2019.

[4] Casey Chu, Andrey Zhmoginov, and Mark Sandler. Cy-

cleGAN, a master of steganography. arXiv preprint
arXiv:1712.02950, 2017.
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