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Abstract

Pre-trained models have demonstrated considerable per-
formance, especially in enhancing cross-modal understand-
ing between videos and text. However, fine-tuning them at
scale becomes costly and poses challenges for adapting to
various downstream tasks. To tackle these challenges, we
propose the Alignment-generation Adapter (AGAdapter),
establishing semantic coherence between alignment and
generation models for efficient video-text adaptation across
multiple tasks simultaneously. We propose an alignment
adapter with knowledge-sharing to adapt the frozen CLIP
model for fine-grained video-language interaction. Addi-
tionally, we introduce the generation adapter with prompt
tuning to leverage the large language model for captioning.
Furthermore, we introduce instruction joint tuning, combin-
ing textual and cross-modal instructions, to capture detailed
descriptions. Our AGAdapter achieves state-of-the-art per-
formance on video-text retrieval and video captioning tasks,
including two benchmarks, MSR-VTT and ActivityNet.

1. Introduction
Video-text understanding [5, 23, 3, 45, 46], encompass-

ing video-text retrieval [19, 44, 7, 17] and video caption-

ing [34, 26, 8], represents a fundamental task that revolves

learning semantic coherence. Video-text retrieval [3, 4, 18]

refers to the process of searching for videos or captions

using a cross-modal query. In contrast, video captioning

[35, 33, 51] aims to generate descriptions for a video.

Advancements in image-text pre-trained models have

demonstrated remarkable generalization, inspiring various

video-text methods [23, 5, 17] to leverage the knowledge

of pre-trained models [31]. In video-text retrieval, several

works focus on designing temporal information [19, 17] to

align image representations at the video level. However,

these methods still train the model in an end-to-end manner

[23], resulting in significant computational overhead. Ad-

*Both authors contributed equally to this work. †Corresponding author.

Pair data

Video

Caption

Instruction data

Textual InstructionVideo  Instruction

KaAdapter

Vision Encoder

Response

Video-text Retrieval

Text Encoder

CLIP � Alignment

PgAdapter

Video Captioning

Large 
Language 

Model

�

Gate/Lora 
Tuning

Generation

A man is on a playground 
with his dogs.

Below is an instruction 
that describes a task.

Write a response that 
appropriately describes 
the video.

Tell me what the 
antonym of ‘tangible’ is.

The antonym of ‘tangible’ 
is ‘intangible’.

Figure 1. Training pipeline of AGAadapter. Our parameter-

efficient adaptation method incorporates the pre-trained CLIP

model with a large language model, using cross-modal instruc-

tions for video-text retrieval and video captioning tasks.

ditionally, the captioning models [9] emphasize reasoning

about sophisticated relations and objects. Decoder networks

such as GPT-2 [32] are employed to transform video repre-

sentations. Recently, large language models have proven

potential to handle visual inputs [49, 16] for image caption-

ing. However, efficiently capturing spatial and temporal re-

lations at the video level remains challenging.

To address these limitations, we present the alignment

and generation adapter (AGAdpter), which unifies the pre-

trained aligned model and large language model. To facil-

itate the adaptation of pre-trained aligned models in video-

text retrieval, we propose a knowledge-sharing alignment

adapter (KaAdapter). By incorporating textual and video

queries to indicate modality-specific knowledge and apply-

ing parameter-sharing modeling, cross-modal representa-

tions can be fully aligned. On the other hand, we present

the prompt-following generation adapter (PgAdapter) to

leverage the reasoning power of large language models for

video captioning tasks. The proposed PgAdapter learns

to transform aligned video representations into adaptation

prompts. These prompts serve as video content, being in-

jected into each layer of the large language model, pro-
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gressively enhancing its video reasoning ability to gener-

ate captions. Additionally, we introduce an instruction
joint tuning strategy that combines video-text pairs with

instruction-following data. This strategy enhances the ex-

traction of specific video information, enabling the model

to capture finer details in the video content.

2. Related Work

Video-text Retrieval. Early methods [3, 4, 18] leverage

multiple representations fusion for cross-modal alignment

[48, 41]. Recent studies [7, 39] have adopted an end-to-end

manner to train models. CLIP4Clip [23] and CLIP2Video

[5] propose temporal modeling to transfer prior knowledge

from CLIP [31]. However, these methods, which employ

full-parameter training, are unable to utilize larger CLIP

models due to high computational costs.

Video Captioning. The encoder-decoder frameworks

[42, 34] are adopted for video captioning in which tradi-

tional methods focus on graph modeling [50] or mutual

knowledge distillation [29]. Building upon these studies, re-

cent researches [27, 6, 35] have utilized pre-trained models

to extract aligned features for cross-modal decoding. Fur-

thermore, we utilize large language models with the pro-

posed adapters to generate detailed descriptions.

LLMs for Vision-Language Tasks. The adaption of

large language models (LLMs) has increased in vision-

language tasks [28, 25, 20, 40]. MiniGPT-4 [52] aligns

visual information with Vicuna [2] without external visual

reasoning modules. To bridge the gap between LLaMA [37]

and visual instructions, LaVIN [21] introduces adaptation

modules. In this work, we propose an adapter-based method

to address video-related language tasks using LLMs.

3. Method

3.1. Knowledge-sharing Alignment Adapter

As illustrated in Fig. 2, to achieve video-text retrieval,

we first apply frozen CLIP to extract frame and word rep-

resentations. The M frames are sampled and fed into

the vision encoder to generate frame tokens as ef =
{f0, f1, · · · , fM−1}. Besides, the caption is appended with

two special tokens and input into the text encoder to gener-

ate word tokens as ew = {wSOS, w1, · · · , wN−2, wEOS}. N
represents the number of text tokens.

To model the frame and word representations, which are

extracted from frozen CLIP, into the joint space, we propose

the weight-sharing adapter (KaAdapter). The KaAdapter

employs unified attention interaction with shared weights

to encode both textual and video information in a more

parameter-efficient manner. Additionally, we introduce

video and textual queries as indicators to model modality-

specific knowledge. The learnable video and textual queries

are denoted as qAv and qAt (Rna×da ), where da is the dimen-

sion of token embedding, and na is the number of queries.

Therefore, the aligned video representations are captured

through unified attention interaction as follows:

ev = Softmax(Qu(ef )Ku(q
A
v )/

√
da)

T · Vu(q
A
v ), (1)

where the cross-attention transformation is represented by

Qu, Ku, and Vu. The output video representation is de-

noted by ev and shares the same dimension (RM×da ) as the

frame representation ev . The aligned text representation can

be modeled in the same manner by applying ew and qAt to

replace ef and qAv . The training objective of token-based

contrastive loss based on WTI [39] can be formulated as:

Lv2t = − 1

B

B∑

i

log
exp (WTI (ev,i, et,i) /τ)∑B
j exp (WTI (ev,i, et,j) /τ)

, (2)

Lt2v = − 1

B

B∑

i

log
exp (WTI (et,i, ev,i) /τ)∑B
j exp (WTI (et,i, ev,j) /τ)

, (3)

Lvt =
1

2
(Lv2t + Lt2v). (4)

where B represents batch size, and τ is the temperature and

pair-wise token correlations are fully exploited to maximize

the similarity between positive pairs based on all tokens.

3.2. Prompt-following Generation Adapter

To transform video representation into the video prompt,

which can be integrated with LLMs, we propose the

prompt-following generation adapter (PgAdapter). As

CLIP and LLMs have different distributions, PgAdapter

maps the video representations ev to prompt embedding as:

pv =

K∑

i=1

Softmax(Qi
g(q

G
v )K

i
g(ev)

T /
√
dg) · V i

g (ev), (5)

where Qi
g , Ki

g , and V i
g are the i-th mapping network for

cross-attention transformation. qGv is the prompt token,

which is the Ng learnable embedding with the same di-

mension dg as the internal mappings as LLMs. To capture

and preserve more temporal and spatial information, we uti-

lize multiple mapping mechanisms and sum their outputs to

form the final prompt, denoted as pv ∈ RNg×dg .

Inspired by LLaMA-adapter [49], we insert video

prompts into each layer of the LLMs with zero-init gating

attention [49], progressively incorporating video informa-

tion with the reasoning power. To achieve this, the video

prompts are reshaped into the dimension as R(Ng//l)×l×dg ,

where l is the number of layers in LLMs. Therefore,

the group of video prompts can be obtained as pLLM
v =

{p1v, p2v, · · · , plv}, plv ∈ R(Ng//l)×dg . The video prompts

are injected by zero-init gating attention as:

SV−T = [SV
l (plv) · αl, ST

l ], (6)
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Figure 2. The overall framework of Alignment-generation Adapter. Given the video and captions, we first adopt CLIP to extract image

and text representations. Then, we employ KaAdapter for fine-grained video-text alignment. The aligned video representations are

transformed into video prompts by PgAdapter and incorporated with a large language model to generate video captions.

where SV
l (plv) is the attention score, which contains the

video content. By applying video instructions such as ”de-

scribe the video” to instruct LLMs, the attention scores ST
l

between instructions are also measured. By applying αl

as the learnable weight of video content, the multi-modal

alignment is progressively achieved. Moreover, we utilize

Lora [10] tuning to optimize the adaptation of the large

language model, enhancing cross-modal reasoning ability.

Therefore, our training objective is to predict the caption

tokens conditioned on the video prompts, where the cross-

entropy loss function is optimized:

Lcap = −
J∑

j=1

log p(wj |w<j , Instruction), (7)

where J is the maximal length of the predicted word tokens,

and wj is the j-th predicted word token. By incorporating

the video prompts, LLMs are able to generate textual de-

scriptions in the context of relevant video concepts, facili-

tating more contextually meaningful captions.

3.3. Instruction Joint Tuning

To enhance multi-modal understanding, we present an

instruction joint tuning that effectively combines video-

text pairs with textual instruction. Specifically, we adopt

Alphaca-52k [36] to instruct large language models by

Lora tuning, thus adapting LLMs for knowledge reasoning.

The Lora mappings within LLMs, trained by instructions,

also enhance the understanding of sophisticated relations in

video content, leading to more detailed descriptions. Over-

all, the total loss is obtained as:

Lall = Lvt + βLcap + γLI
cap(θLora), (8)

where LI
cap(θLora) is the loss function that accepts the tex-

tual instruction as input and only fine-tunes the Lora map-

ping. β and γ are the weight to control trade-off.

4. Experiments

4.1. Experimental Setting

Datasets. We evaluate video-text retrieval on MSR-VTT

[43] and ActivityNet [12], where 9k protocol in MSR-VTT

including 9k and 1k videos for train and testing, and video-

paragraph retrieval settings in ActivityNet [12] are utilized.

For video captioning, we use the full protocol [3] of MSR-

VTT. We also incorporate WebVid-2M [1] for pre-training.

Evaluation. Following the existing retrieval task, Re-

call at rank K (R@K) and mean rank (MnR) are reported,

where lower MnR and higher R@K indicate better perfor-

mance. For video captioning, we report metrics, such as

BLEU [30], ROUGE [14], and CIDEr [38].

Implementation Details. We employ the frozen pre-

trained CLIP-bigG/14 [11] to encode both frame and word

tokens. The KaAdapter serves as a 1-layer transformer fol-

lowing the adopted CLIP model. The dimension of both

video and textual queries is 3×1280. As for the PgAdapter,

we stack three 1-layer transformers and sum their outputs

to create video prompts of dimension R320×1280. In order

to adapt to the LLaMA-7B [37], we split the prompt into

32 tokens of dimension R10×1280 and insert them into each

layer. For the MSR-VTT dataset, we set the video and cap-

tion lengths to 12 and 32, respectively. For the ActivityNet

dataset, both video and caption lengths are set to 64. The

model is trained for 5 and 10 epochs for the MSR-VTT and

the ActivityNet dataset, with a batch size of 32. To pre-train

on WebVid-2M, we use the same settings as for MSR-VTT,

with the exception of training for 2 epochs. Additionally,

we set the values of β and γ to 0.5 and 0.1, respectively.
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Text2Video Video2Text Video Captioning
Method K R@1 R@5 R@10 MnR R@1 R@5 R@10 MnR BLEU@4 ROUGE CIDEr Training Time

CLIP-finetune - 46.6 73.4 83.5 13.0 45.4 73.4 81.9 9.1 - - - 1.8h

Lvt - 48.8 74.0 83.6 12.3 48.3 74.5 84.1 8.6 - - - 0.12h

Lvt + Lcap 1 49.5 74.3 83.8 11.9 49.2 75.1 84.6 8.2 46.7 64.4 59.8 0.25h

Lvt + Lcap 3 50.4 74.9 84.1 11.1 50.0 75.7 85.1 8.1 47.5 64.5 60.9 0.33h

Lvt + Lcap + LI
cap 3 51.2 75.6 84.8 10.8 50.8 76.2 86.2 7.8 48.0 64.7 62.1 0.5h

Table 1. Ablation results on the different settings of the proposed method. All the results are evaluated on the MSR-VTT dataset. K refers

to the number of stacked layers in the PgAdapter. Training time represents the time to train for 1 epoch on V100 × 8 GPUs.

GT: man is playing and singing dancing

w/o Instruction: a cartoon music video

with Instruction: a cartoon of people playing music

GT: a band is playing a country song on stage

w/o Instruction: a band is performing a song

with Instruction: a band is playing a guitar and 

performing a song on stage

Figure 3. Visualizations of the generated captions with and without

the instruction joint tuning strategy on the MSR-VTT dataset.

4.2. Main Results

Ablation Study. We thoroughly investigate various set-

tings for our proposed AGAdapter and present comprehen-

sive comparisons in Tab. 1. In the experiments, we use

CLIP-finetune as the baseline, which employs the learned

ViT-B/32 as the backbone and WTI [39] for interaction.

As observed, applying only KaAdapter for Lvt can effec-

tively transfer the knowledge of frozen CLIP for parameter-

efficient video-text adaptation. By utilizing PgAdapter to

incorporate LLaMA [37] for multi-task learning, the per-

formance of video-text retrieval is further improved. More-

over, increasing the value of K to transform video represen-

tations as prompts allows more video content to be modeled

and preserved, and the performance of both two tasks is

improved. Additionally, introducing textual instruction to

train Lora mapping enhances the cross-modal understand-

ing, which leads to the best performance.

Comparisons with State-of-the-art Models. In

video-text retrieval, we compare the performance of our

AGAdapter with other state-of-the-art methods on two

datasets: MSR-VTT [43] and ActivityNet [12]. The re-

sults for both video-to-text (V2T) and text-to-video (T2V)

retrieval are presented in Tab. 2. Our method demon-

strates superior performance, achieving a significant margin

of improvement while still maintaining limited computa-

tional costs, even without any pre-training. Moreover, when

we apply WebVid-2M [1] for pre-training, our performance

is further enhanced. We also evaluate the performance of

video captioning, as shown in Tab. 3. Remarkably, our

method outperforms the other results while requiring lim-

ited datasets for pre-training.

Qualitative Results. We illustrate the visualization of

generated captions under different settings in Fig. 3. It is ev-

ident that AGAdapter without instruction joint tuning tends

MSR-VTT
T2V V2T

Method R@1 R@5 R@10 MnR R@1 R@5 R@10 MnR

CLIP4Clip [23] 44.5 71.4 81.6 15.3 42.7 70.9 80.6 11.6

CLIP2Video [5] 45.6 72.6 81.7 14.6 43.5 72.3 82.1 10.2

X-CLIP [24] 46.1 73.0 83.1 13.2 46.8 73.3 84.0 8.1

TS2Net [19] 47.0 74.5 83.8 13.0 45.3 74.1 83.7 8.9

AGAdapter 51.2 75.6 84.8 10.8 50.8 76.2 86.2 7.8
AGAdapter* 51.8 76.5 86.9 10.5 51.5 77.3 86.9 7.2

ActivityNet
CLIP4Clip [23] 40.5 72.4 - 7.5 41.4 73.7 - 6.7

TS2-Net [19] 41.0 73.6 84.5 8.4 40.5 73.4 - -

AGAdapter 49.0 78.1 88.6 5.2 45.6 76.2 86.9 6.3
AGAdapter* 50.1 79.5 89.1 5.1 46.4 78.3 87.3 5.9

Table 2. Performance comparisons on video-text retrieval. *

means adopting WebVid-2M [1] for pre-training.

Method #PT Data BLEU@4 ROUGE CIDEr

UniVL[22] 136M 42.2 61.2 49.9

SwinBERT[15] - 41.9 62.1 53.8

CLIP4Caption[35] 400M 46.1 63.7 57.7

MV-GPT[34] 53M 48.9 64.0 60.0

LAVENDER[13] 30M - - 60.1

Vid2Seq[45] 314M - - 61.5

HiTeA[47] 5M - - 62.5

AGAdapter - 48.0 64.7 62.1
AGAdapter* 2M 48.2 65.0 63.7

Table 3. Comparisons on video captioning on MSR-VTT [3]. *

means adopting WebVid-2M [1] for pre-training. #PT Data is the

number of video-text pairs for pre-training.

to produce more generic descriptions. However, when the

instruction joint tuning strategy is applied, AGAdapter gen-

erates video captions with finer details. This outcome the

effectiveness of the instruction joint tuning method.

5. Conclusion

This paper addresses the challenges posed by the costly

fine-tuning of pre-trained models for efficient video-text

adaptation across multiple tasks. The Alignment-generation

Adapter including knowledge-sharing alignment adapter

and prompt-following generation adapter are adopted to in-

corporate the CLIP model and large language model, lever-

aging for video-text retrieval and video captioning. We in-

troduce instruction joint tuning, combining text and cross-

modal instructions, to enhance video-text understanding.
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