
Vision-Language Models Performing Zero-Shot Tasks Exhibit Disparities
Between Gender Groups

Melissa Hall Laura Gustafson Aaron Adcock Ishan Misra Candace Ross
Meta AI

melissahall@meta.com, ccross@meta.com

Abstract

We explore the extent to which zero-shot vision-language
models exhibit gender bias for different vision tasks. Vision
models traditionally required task-specific labels for repre-
senting concepts, as well as finetuning; zero-shot models
like CLIP instead perform tasks with an open-vocabulary,
meaning they do not need a fixed set of labels, by using text
embeddings to represent concepts. With these capabilities
in mind, we ask: Do vision-language models exhibit gender
bias when performing zero-shot image classification, object
detection and semantic segmentation? We evaluate different
vision-language models with multiple datasets across a set
of concepts and find (i) all models evaluated show distinct
performance differences when identifying concepts based
on the gender of the person co-occurring in the image (ii)
model calibration (i.e., the relationship between accuracy
and confidence) also differs distinctly by gender, even when
evaluating on similar representations of concepts and (iii)
these observed disparities align with existing gender biases
in word embeddings from language models. These findings
suggest that, while language greatly expands the capabil-
ity of vision tasks, it can contribute to propagating social
biases in zero-shot settings.

1. Introduction

Natural language has greatly expanded the capabilities

of vision models during inference, going from fixed vocab-

ularies of visual concepts to essentially limitless concepts.

Vision-language models, such as CLIP [20] and ALIGN

[12], are a powerful means for representation learning of

concepts. These models have impressive zero-shot image

recognition capabilities wherein, at test time, the language

embeddings of new visual classes can serve as a classifier.

While such a broad range of recognition abilities is conve-

nient, it also makes these models harder to analyze from a

fairness perspective as the model’s recognition vocabulary

is not fixed and is infinitely large.

Prior works focus on measuring biases in multimodal

word embeddings [21, 24] and language and vision mod-

els separately [5, 16, 3, 8]. Other works measure differen-

tial performance of multi-modal models for a small specific

vocabulary, often adversarially tuned [9], and find that mod-

els contain social biases in perpetuating harmful stereotypes

around criminality and dehumanization via disproportion-

ate associations between demographic groups [1]. Thus,

while works extensively study models with a fixed vocabu-

lary and set of tasks, they do not inspect the performance of

language-vision models in zero-shot settings and compare

with upstream biases.

We measure and explore the gender bias in zero-shot,

multi-label image classification by probing CLIP as well as

two downstream tasks of object detection using Detic [26]

and semantic segmentation LSeg [14]. Probing these three

zero-shot vision-language models for gender bias, our con-

tributions are as follows:

1. We show that zero-shot vision-language models show

gender-based performance disparities for different vi-

sual concepts. This means that, for a given concept, the

model will perform better when the concept co-occurs

with one gender as opposed to another.

2. For object detection and segmentation models, we find

that calibration between model performance and con-

fidence also differs by gender across concepts.

3. Lastly, we find that the biases in word embeddings

from word2vec parallel the biases we find in the zero-

shot vision-language models.

2. Framework

Our analysis focuses on evaluating zero-shot classifica-

tion, detection, and segmentation models. In particular, we

investigate CLIPV iT−B/32 [20, 7], a contrastive model that,

given an image and corresponding text, outputs the cosine

similarity between the two inputs using separate language

and vision encoders. Due to its design, CLIP can perform

zero-shot image classification by using an object class as

the text input. We also study two models that utilize CLIP
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for zero-shot detection, Detic [26], and segmentation, LSeg

[14]. Our models are evaluated in the zero-shot setting.

To allow for a side-by-side of comparison of perfor-

mance disparities between the models with a shared metric,

we adapt the detection and segmentation models to support

multi-label image classification. Assume a set of images I
and a set of object classes C1, where each image has a set

of ground-truth object classes present in the image and a

single associated gender label. For a given image i ∈ I , a

(multi-label) image classifier outputs a set of object classes

that are predicted to be contained in the image; object detec-

tion outputs N bounding boxes, where each bounding box is

associated with a single label c ∈ C; and semantic segmen-

tation produces a single label c ∈ C for each pixel in the

image. We use Detic’s bounding box object predictions and

LSeg’s pixel-by-pixel classifications as binary indicators of

the model’s recognition of the concept in the image.

For each concept c ∈ C, we explore how these models

differ during inference when the gender of the people that

are depicted in images changes. Specifically, we focus on

images containing men versus images containing women.

We use the Visual Genome dataset, which contains 108k

images, where each image is annotated with a set of bound-

ing boxes and one object label per box. The labels corre-

spond to synsets from WordNet [18], where each synset is

a node representing a singular concept in a tree of nodes.

Visual Genome contains human-annotated synsets tagging

objects (e.g. labels such as baseball bat and dress) and peo-

ple (e.g. labels such as bride, person, doctor). We use the

synset labels to determine the set of objects in the image and

gender of the people present. To designate gender groups,

we create two sets of labels – one corresponding to concepts

referring to women (e.g. mother, wife) and the other corre-

sponding to concepts referring to men (e.g. son, groom).

See Table 1 in the Appendix for the full synset mapping.

After getting the annotated gender labels, we retain only

the images that are annotated with a single gender label. To

increase reliability of our measurements, we use only ob-

ject labels that occur in at least 50 images for each gender

group. After filtering, we have 25,215 images and 408 ob-

ject classes for Visual Genome.

3. Evaluation Setup & Findings

We adapt existing metrics to determine whether three

vision-and-language models, CLIP, Detic and LSeg, have

disparate gender-based performance for image classifica-

tion between concepts, and to what extent these biases are

similar to those from language models. We use images

from the Visual Genome with filtered sets of images of men

Dmen and woman Dwomen as described in Section 2. We

use publicly available pretrained checkpoints for all models

1Note that we use object classes and concepts interchangeably.

and set the Detic minimum score for a predicted bounding

box to be retained as 0.1 See Appendix A.2 for similar find-

ings evaluated on the MS-COCO dataset [15].

3.1. Experiment 1: Disparity in average precision

Setup We ask whether a model has similar performance

for image classification for a given concept when evaluating

images in Dmen and Dwomen. To determine whether each

model has differential performance across genders, we use

the difference of average precision (AP) between Dmen and

Dwomen for every concept. The average precision is the

weighted mean of model precision across concepts.We use

AP as it is a popular metric for vision tasks and it accounts

for a variable number of objects between images.

Results We find that all models show differential out-
comes by gender, performing disparately between gender

groups Dmen and Dwomen for many concepts. Figure 1(a)

shows the top differences in average precision (AP) for

synsets that co-occur with man- and woman-annotated im-

ages for CLIP, Detic, and LSeg. Positive AP differences

for a concept indicate better outcomes for images in Dmen

(e.g. the model performs better for images containing men

over images containing women for the concept necktie)

and negative AP differences signal a better measurement for

images in Dwomen. The direction of the AP differences is

consistent among all three models for many objects, indi-

cating shared fairness concerns among each of them.

Furthermore, it is common to report the mean average

precision across all concepts as a single, summary statis-

tic of model performance [26]. Figure 2 demonstrates that

the aggregation of AP across all concepts can mask these

disparities and lend a false assurance of model consistency

across demographic groups.

3.2. Experiment 2: Disparity in calibration

Setup We next explore how models treat different groups

using calibration: If a model’s calibration is similar be-

tween groups, it means the model assigns similar probabil-

ity scores for samples that have the same expected likeli-

hood of containing the concept, regardless of which group

is depicted in the image. As an example, suppose we have

two images - one containing a man, the other containing a

woman - with the same expected likelihood that they con-

tain the concept necktie. If the classification model as-

signs a lower confidence score to the image with a woman

than the expected likelihood for necktie, while assigning

a higher-than-expected probability to the image with a man,

then the model is displaying a disparity in calibration.

Following previous work [10, 11], we study model cal-

ibration using the expected calibration error (ECE) [19],

which is the absolute difference between the model’s con-

fidence and accuracy. Larger values of ECE mean greater
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Figure 1. (a) The average precision (AP) gender disparity by concept for the Visual Genome, where positive values indicate better perfor-

mance for images of men, Dmen, and negative values are better performance for images of women, Dwomen. (b) We measure expected

calibration error (ECE), which is the absolute difference between model confidence and accuracy, for each concept. For both figures, the

bars colored yellow bars show AP/ECE disparities that also align with the social biases in word2vec embeddings.

Figure 2. For CLIP, Detic, and LSeg evaluated on Visual Genome,

the difference in meanAP between the annotated gender groups

masks significant per-concept disparities observed in Figure 1.

model miscalibration. We evaluate Detic and LSeg, exclud-

ing CLIP because its multi-label classification setting does

not produce probabilities (see Appendix A.3).

Results We find that Detic and LSeg both show differ-
ential calibration for gender. For each gender we com-

puted the ECE for each concept and took the difference

between ECEDmen
and ECEDwomen

; a positive ECE dif-

ference means the model is more calibrated for the given

concept for images of men and a negative ECE means the

model is more calibrated for images of woman. Figure 1(b)

shows that many concepts have a large difference in ECE

between groups.

3.3. Experiment 3: Relationship between bias in
word embeddings and bias in zero-shot vision-
language models

Setup For the final experiment, we explore whether the

observed disparities in zero-shot models correlate with dis-

parities found in word embeddings. Gender bias in word

embeddings has been explored using the geometry of the

embedding space [4] and average cosine similarities be-

tween sets of gendered terms and sets of stereotypical, non-

gendered terms [5, 16, 23]. Accordingly, we extract em-

beddings for each concept using word2vec [17] trained on

Google News 300M and compute the cosine similarity be-

tween each concept and the gendered terms in the embed-

ding space following the method defined in Appendix A.4.

Results We further observe that the disparities found in
Experiments 1 and 2 for zero-shot vision-language models
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are aligned with those in word embeddings, as indicated by

the cosine similarities. The bars in Figure 1 are colored

yellow when the difference in cosine similarities between

the word2vec text embeddings for the synset and gender

terms are aligned with the discrepancies in AP and ECE.

This suggests that language can contribute to social biases

in vision-language models, particularly in zero-shot settings

that do not perform any further finetuning.

3.4. Root Cause Analyses

We analyzed concepts in Visual Genome with disparities

across gender for the three models and found several poten-

tial root causes.

First, definitions of concepts can differ between groups.

For example, we observe images of halter swimsuits (which

tie at the neck) labeled as “necktie.n.01”, in addition to the

more common necktie traditionally worn with dress-suits.

Because women tend to wear such swimsuits more than

men, a model that recognizes “necktie” in the more com-

mon sense may perform less well for women. In addition,

images can vary in salience between gender groups, as the

two groups depicted in the photos tend to co-occur with the

concepts differently. For example, hair may be more promi-

nent in images of women, who tend to have longer hair, than

images of men. This variation in salience of a given con-

cept between groups likely affects models’ predictive per-

formance for the group.

This suggests that our findings surface disparities that

have real-world implications and can inform potential miti-

gation strategies.

4. Discussion
Natural language supervision has greatly expanded the

capabilities of vision models. Many of these models are

able to perform zero-shot image classification, object de-

tection and semantic segmentation on an open-vocabulary.

We probed three models – CLIP, Detic and LSeg – to see

whether there were gender-based disparities in their perfor-

mance and treatment for different groups and to see whether

these disparities, if any, paralleled those found in word em-

beddings from language models.

We find that all of these zero-shot models perform dif-

ferently for many concepts based on the gender of the co-

occurring person in the image across multiple datasets. We

also find that the relationship between model confidence

and accuracy differs by gender for many concepts. These

results show the importance of considering model fairness

when using an open vocabulary in zero-shot settings. They

also show that only measuring model performance without

disaggregating by concept can mask model bias.

We hope this work paves the way for future investiga-

tion of these concerns, such as isolating how biases in lan-

guage models can be a contributing factor to social biases

in zero-shot setting or studying potential mitigations. While

our evaluation serves as an initial method for auditing zero-

shot vision models for demgoraphic disparities, it also sug-

gests a need for future studies into how choices such as

dataset, group definition, and metric impact disparity anal-

yses of zero-shot and multi-label classification systems and

for alignment on insightful and reliable evaluation protocols

for these modern settings.

4.1. Limitations

We note that there are multiple issues with using annota-

tions to approximate gender that plague most vision datasets

used for disparity evaluations. The binarization of gender

using synsets is reductive and excludes other genders not

captured within WordNet. Also, this approach relies on an-

notators’ inherent perception of gender and can lead to the

misgendering of individuals depicted. Reliance on static,

external annotations based on visual representations is in-

herently misaligned with an inclusive operationalization of

gender [6]. This is a particularly prevalent issue in image

and multi-modal datasets [22]. People depicted should be

given the agency to optionally share and update their gen-

der information throughout the dataset’s lifespan.

Furthermore, while we do our best to perform rigorous

and robust measurements, each decision made in a disag-

gregated evaluation of model performance may affect the

observed findings [2]. As an example of one evaluation

decision, we adapted the detection and segmentation tasks

performed by Detic and LSeg, respectively, as multi-label

classification tasks to enable a comparison of the three mod-

els between shared metrics and datasets. Other factors such

as co-occurrence with other objects and variations in object

size or image quality may also affect findings.

4.2. Broader Impacts

The importance of understanding societal effects of the

use of representations from natural language to enable vi-

sion tasks only increases as such practices become more

ubiquitous. Model fairness can be defined in many ways

and the method of evaluation can reveal different patterns

of disparities [13]. Our study highlights one of several ways

to evaluate vision-language systems.

While understanding and minimizing observed dispari-

ties in model performance is a valuable goal in itself, it may

be insufficient for ensuring that machine learning predic-

tions are unbiased and fair. Optimizing models to reduce

these disparities requires tradeoffs between other fairness

guarantees and performance measures.
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A. Appendix

A.1. Annotations Used for Group Assignment

The mapping of synset and caption terms used for defin-

ing groups in the Visual Genome and COCO datasets are

shown in Table 1. This list is adapted from [5, 25].

A.2. Measurements with COCO

Setup In addition to the Visual Genome dataset, we also

show results for MS-COCO [15], a dataset of 123k images

containing a set of bounding boxes for 80 object categories

and 5 captions per image. Because one of our models of

evaluation uses COCO for training, we use the COCO 2017

validation set.

Because MS-COCO does not include synsets for each

image, we use the captions to extract the perceived gen-

der(s) in image following previous work [25]. Following

our approach for Visual Genome, we create a list of gen-

dered terms (see Appendix A.1 for full list) and keep only

those images with a single gender reference across the cap-

tions. We use the train set for filtering objects that are not in

at least 100 images. This leaves us with 1412 total images

and 76 object classes.

We then map the gender-related COCO objects to the

Visual Genome synsets in order to compare differential

model performance on similar objects between two dif-

ferent datasets. For each COCO object, we find a Visual

Genome synset with the same name or similar name. When

we have the choice between multiple synsets or multiple

synset definitions, we use the Visual Genome synset defini-

tion that most closely aligns with the object’s representation

in COCO based on visual inspection.

To summarize our results, objects are highlighted ac-

cording to whether the AP differences are practically signif-

icant and indicate whether the trend in object performance

is consistent between datasets:

• Green: The AP-differences for both Visual Genome

and COCO are in the same direction and have mag-

nitudes greater than 5, meaning that the performance

is practically significantly higher for same gender-

annotated group for both datasets.

• Red: The AP-differences for the two datasets are in

opposite directions and have magnitudes greater than

5, indicating that the disparity in performance is sig-

nificant yet not consistent between the two datasets.

• Yellow: At most one AP-difference between the two

datasets is greater than 5. This implies that, while the

model could favor one group in a dataset and vice versa

for the alternative dataset, this difference is not practi-

cally significant for both datasets.

In short, green represents alignment in disparity concerns

between datasets and red represents misalignment. We omit

the objects that are not included in both datasets.

Results Figure 3 demonstrates the overlap in objects be-

tween Visual Genome and COCO for which CLIP and Detic

have the highest disparity in AP. We find that there is a sig-

nificant number of objects with consistent concerns of per-

formance disparity between annotated binary gender groups

across both datasets for both models (as indicated in green).

Specifically, in Figure 4 we see that there are 20 and 15

objects of practically significant, directionally similar per-

formance concerns between the two datasets for CLIP and

Detic, respectively. This provides additional evidence that

the concerns observed in Visual Genome are not dataset

specific and may be pervasive for the given objects even

among different distributions of representation.

A.3. Why Experiment 2 Does Not Include CLIP

For Experiment 2 as described in Section 3.2, we mea-

sure the disparity in the expected calibration error (ECE) for

a given concept across the genders we are evaluating. We

only measure and report ECE for Detic and LSeg. If we

were in a single-label classification setting with N object

classes, we could take the output of CLIP (cosine similar-

ities ranging from -1 to 1 between the N classes and the

image) and take the softmax to produce probabilities. The

probabilities correlate to model confidence and can be used

to measure the ECE (where both confidences and accura-

cies range from 0 to 1). In the multi-label setting, we in-

stead have the raw logits and cannot compute the softmax

because multiple classes can be present in the image. We

will consider different approaches in the future to measure

calibration in the multi-label setting for CLIP.

A.4. Cosine Similarity Measurements

To perform cosine similarity measurements in Experi-

ment 3, we first define a set of embeddings corresponding

to each gender group following prior work [5], where each

gender group contains multiple related terms. For example,

the “woman” group set contains terms including “female”,

“woman”, “girl”, etc. We then define a mapping of em-

beddings corresponding to each synset: We use the synset

itself for all concepts where the synset is a canonical term

of reference for that concept and the synset consists of only

one word (e.g. “refrigerator.n.01”). When the concept con-

sists of two words (e.g. “electric refrigerator.n.01”), we av-

erage the embeddings between the two words. When the

synset is ambiguous for that concept and may be confused

with other synsets related to the same concept, we select a

modifier based on the synset definition (e.g. “knob.n.02”

becomes “knob handle” and “helmet.n.02” becomes “pro-

tective helmet”). For each gender group, we average the
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Visual Genome

man-related
terms

woman-related terms

man.n.01,

male child.n.01,

guy.n.01,

male.n.01,

groom.n.01,

husband.n.01,

grandfather.n.01,

son.n.01,

boyfriend.n.01,

brother.n.01,

grandson.n.01,

groomsman.n.01,

ex-husband.n.01,

uncle.n.01,

godfather.n.01

maid.n.02,

woman.n.01,

girl.n.01,

lady.n.01,

female.n.01,

mother.n.01,

lass.n.01,

ma.n.01,

widow.n.01,

bride.n.01,

daughter.n.01,

grandma.n.01,

granddaughter.n.01,

bridesmaid.n.01,

girlfriend.n.01,

sister.n.01,

wife.n.01,

female child.n.01,

white woman.n.01,

dame.n.01,

matriarch.n.01,

mother figure.n.01,

dame.n.02,

great-aunt.n.01,

donna.n.01

MS-COCO

man-related
terms

woman-related terms

man,

mans,

men,

boy,

boys,

father,

fathers,

son,

sons,

he,

his,

him

woman,

womans,

women,

girl,

girls,

lady,

ladies,

mother,

mothers,

daughter,

daughters,

she,

her,

hers

Table 1. The synsets for Visual Genome (left) and words from captions for MS-COCO (right) that we use to determine group membership

for gender for the images in the datasets. We exclude the images annotated with synsets or captions that correspond the concept person
or people as well as images that correspond to both man-related and woman-related terms.

cosine similarity between the synset embeddings and each

gender term. We then use the difference in the cosine sim-

ilarites between the “man” and “woman” gender groups as

an indicator of the social bias for that concept: When the

difference in average cosine similarity is positive, the con-

cept is more aligned with “man” terms than “woman” terms

and vice versa for negative differences in average cosine

similarity.
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Figure 3. Objects with the highest-disparity in AP for CLIP (left) and Detic (right), evaluated on both Visual Genome and COCO.

Figure 4. Many of objects shared between Visual Genome objects and COCO have a practically significant, directionally similar difference

in AP for both CLIP (left) and Detic.
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