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Abstract

Recent studies have explored the potential of large lan-
guage models (LLMs) for understanding the semantic in-
formation in images. However, the use of LLMs to under-
stand videos, which contain continuous contextual informa-
tion, remains limited. In this paper, we propose LLaV-
iLo (LLaMa-Video-Localizer), a video moment retrieval
pipeline powered by a large language model. LLaViLo has
two key features: 1) In contrast to fine-tuning the entire
LLM, we introduce and optimize only 1.7% of additional
parameters in adapter modules, freezing the pre-trained
LLM to enable efficient alignment of video and text. 2)
A multi-objective optimization framework concurrently op-
timizes two objectives: a set prediction objective and a
captioning objective. The joint training of these two ob-
jectives allows the proposed framework to produce high-
quality time coordinates. Compared with other state-of-
the-art methods, the proposed LLaViLo achieves significant
performance improvement on QVHighlights and Charades-
STA datasets.

1. Introduction
Given a natural language query, moment retrieval

(MR) aims to locate the most relevant segments from an

untrimmed video, requiring effective modeling of the vi-

sual and textual semantics across continuous time. How-

ever, current models [6, 9, 31] still struggle with semantic

reasoning and relevance matching. They rely on separate

modeling of visual and textual features, lacking deep inte-

gration between these two modalities, as shown in Figure 1

(a).

Recent works on LLMs for visual tasks [1, 7, 32] sug-

gest potential benefits, i.e., LLMs have shown impressive

capabilities in visual-textual semantic reasoning. However,

LLMs have not been thoroughly explored in the video do-
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Figure 1. Comparison of two kinds of MR Methods. (a) Separate

modeling of visual and textual features, (b) our proposed LLM-

based video moment retrieval.

main.

Fine-tuning LLMs confronts two key obstacles: 1) The

immense computational complexity of fine-tuning billions

of parameters results in prohibitive resource costs; 2) catas-

trophic forgetting happens for the pre-trained knowledge as

models adapt to new tasks [12, 29].

We propose an efficient video moment retrieval frame-

work integrating LLMs as shown in Figure 1 (b). Textual

information is integrated into video representations to gen-

erate joint feature representation, which is injected into an

LLM. Compared to full fine-tuning, we only optimize pa-

rameters in the adapter, avoiding catastrophic forgetting.

We further adopt a multi-objective optimization approach

with two complementary objectives: 1) a DETR-like [2] set

prediction objective localizing relevant segments, and 2) a

language modeling objective generating textual time coor-

dinates. By concurrently optimizing set prediction and lan-

guage modeling, a co-learning manner is achieved, improv-

ing the video-text alignment. Set prediction focuses on the

cross-modal alignment between clips and query semantics,

while language modeling facilitates textual understanding.

The proposed video adapter and multi-objective optimiza-

tion approach leverage the potential benefits of LLMs and

achieve better video-text alignment.

In summary, the main contributions of this work are

three-fold: 1) We propose a lightweight adapter module

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of our proposed model architecture. It consists of a frozen video encoder, a frozen text encoder, an adapter module to

integrate multimodal context, and two objective-specific heads for set prediction and language modeling.

to incorporate multimodal video-text representations into

LLMs, which leverages the capability of LLMs for video

understanding. 2) We develop a multi-objective learning

framework including a set prediction objective and a lan-

guage modeling objective, which are complementary and

optimized concurrently. 3) Our model achieves state-of-

the-art performance on two benchmarks for the moment re-

trieval task.

2. Related work
Moment Retrieval. Prior works on MR struggled to

capture fine-grained semantics and achieve limited align-

ment between modalities. The existing methods mainly

employ stronger video encoders [5, 28] and language en-

coders [3, 19] to capture representations independently.

However, such a dual-stream network introduces signifi-

cant gaps(the inherent difference between visual and tex-

tual representations) in the subsequent matching and fusion

processes of the two modalities.

To tackle this issue, Liu et al. [18] propose a unified

multi-modal transformer (UMT) inspired by DETR [2],

which jointly optimizes MR and highlight detection [13],

reducing the gap between two modalities effectively. How-

ever, the potential of LLMs, a naturally powerful textual

transformer decoder, remains unexplored in the MR task.

LLM-based Visual Understanding. Recent stud-

ies [11, 15, 16, 26] have begun exploring language mod-

els for visual analysis, showing strong reasoning abili-

ties. LLaMa-Adapter [7, 32] enables efficient fine-tuning

of large pre-trained language models through adapters with

minimal trainable parameters. Compared to full fine-tuning

methods like Alpaca [27], it significantly reduces compu-

tational costs and storage requirements. However, LLaMa-

Adapter is designed primarily for textual and visual instruc-

tions, with limited capability in handling video inputs. Ex-

tending LLaMa-Adapter to video domains remains an open

research direction.

Moreover, the existing LLM-based video moment re-

trieval approach [30] operates on individual video frames

rather than leveraging temporal context. Our work ad-

dresses this limitation by integrating continuous video en-

coding into LLM architectures.

3. Method
Given an untrimmed video V and textual query q, the

goal of moment retrieval is to predict start and end times

(ts, te) to localize relevant moments in V that semantically

match q.

As illustrated in Figure 2, the overall architecture inte-

grates an LLM decoder with a multi-objective optimization

framework. Video clip and text representations are fused by

the adapter module and then inserted into the LLM. A set

prediction head and a language modeling head are added to

LLM to utilize the LLM’s pre-trained representation capa-

bility and achieve efficient video-text alignment.

3.1. Video Semantic Modeling Adapter

Video Adapter. We utilize two pre-trained models to ex-

tract embeddings for video clips and text queries separately.

The resulting video and text embeddings are then fused

through a cross-transformer encoder with two layers. The

cross-attention between video and text embeddings can be

formulated as:

CrossAtt(Qv,Kt,Vt) = softmax

(
QvKt

T

√
d

)
Vt, (1)

where Qv represents video query vectors, Kt,Vt are text

key and value vectors, d is the dimension of query, key and
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Figure 3. Adaption attention mask.

value. This allows the model to capture fine-grained rela-

tionships between the multimodal inputs.

Following cross-modal encoding, the fused video-text

representations are further processed by a transformer en-

coder with two layers, which provides a deeper understand-

ing of each clip-text pair. Compared with the original LLM,

the proposed adapter with a two-layer cross-attention en-

coder and a two-layer transformer encoder only introduces

1.7% additional parameters, which leverages the under-

standing ability of LLMs for video-text content efficiently.

LLM-based Video Understanding. In this section, we

insert encoded video-text representations into an LLM ar-

chitecture, i.e., LLama, and modify the LLaMa architecture

to adapt the video domain.

Specifically, we take fused video-text tokens generated

by the video adapter and project them to the same hidden

dimension size C as LLaMa. For saving GPU memory, we

only adjust the top N layers of LLaMa. The projected video

tokens P are inserted into each one of the N layers. For

the nth layer, Pn are concatenated with anchor query tokens

An (please refer to 3.2) and text tokens Tn, formulated as

[Pn;An;Tn] ∈ R
(V+J+K)×C , where V , J , and K repre-

sent the lengths of video clip, anchor query token, and text

prompt token, respectively.

We use zero-initialized attention to avoid disruptions

from randomly initialized video adapter tokens during fine-

tuning. As formulated in Equation 2, the attention scores

SV
n of video clip tokens are controlled by a gating factor gl,

which is initialized to zero:

Sg
n =

[
softmax(SV

n ) · gl ; softmax(SJ+K
n )

]
, (2)

where SJ+K
n denotes the attention scores of concatenated

anchor query tokens and text tokens. In order to avoid de-

stroying the original information in LLaMa at the begin-

ning, we gradually increase gl, to progressively incorporate

the video semantics into the model.

3.2. Multi-Objective Optimization

Set Prediction Head. As mentioned above, the set pre-

diction head follows a DETR-like design to localize rele-

vant moments. Specifically, J additional anchor tokens are

employed to represent learnable query embeddings, which

are denoted as A. For the nth layer at the top of LLaMa, the

corresponding anchor token is represented by An.

Each anchor query token has a unique positional embed-

ding and undergoes self-attention to predict the start and end

time points in a video for the given query text. An alignment

loss using the Hungarian algorithm is employed to match

the predicted time coordinates and ground truth as follows,

Cm = −ci �= ∅p̂σ(i)(ci) + ci �= ∅Lm, (3)

where ci is the ground truth label and m is a vector that

defines the normalized center coordinate and duration.

Then, the loss of moment localization Lm is defined as

follows:

Lm = λ1||m− m̂||+ λ2LgIoU(m, m̂) + λ3LCE, (4)

where m and m̂ are ground-truth and its corresponding pre-

diction containing center coordinate and duration. Also, λ1,

λ2 and λ3 are hyperparameters for balancing the losses.

As shown in Figure 3, we propose a novel masking strat-

egy to locate specific moments in a video-query context.

The pink tiles represent the additional tokens for the top N
layers of LLaMa. We also mask all text tokens containing

the start and end time points to avoid information disclo-

sure. This ensures anchor tokens don’t rely only on times-

tamps to predict boxes in the training process.

Multi-Objective Optimization. Our model combines a

set prediction objective and a time-window captioning ob-

jective, which are optimized concurrently.

For captioning, we provide a prompt to instruct the

model to generate the time windows in a standard textual

format (as shown in Figure 2) according to the text query.

The captioning head is trained to predict the ground truth

time stamp captions using a cross-entropy loss Lcap:

Lcap = −
T∑

t=1

F∑
f=1

yt,f log(pt,f ) (5)

where T is caption length, F is vocabulary size, yt,f is 1

if word f is the ground truth at position t, and pt,f is the

predicted probability.

By optimizing the captioning and set prediction objec-

tives during training, we improve the alignment between

video as follows,

L = αLcap + βLm, (6)

where α and β are trade-off parameters weighing the im-

portance of each objective.
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4. Experiments
4.1. Datasets & Implementation details

We experiment with our LLaViLo on below two datasets,

following existing data splits from the existing works [13,

18].

QVHighlights [13] contains over 10,000 YouTube

videos with diverse topics and both first-person and third-

person perspectives. Charades-STA [6] consists of 6,768

indoor activity videos with over 16,000 textual queries la-

beled with relevant moments.

A SlowFast [5] network and a text encoder in CLIP [10,

23, 25] are used as frozen encoders to extract representa-

tions. Following [21], the clip length is set to 2 for QVHigh-

lights and 1 for Charades-STA. We use a 3-layer MLP to

match the hidden dimension of LLaMa’s architecture. The

adapter module has a hidden dimension of 256, which we

project to 4096 before injecting tokens into LLaMa.

For evaluation, we report four commonly utilized met-

rics on the test sets: Recall at rank 1 with intersection over

union (IoU [8, 17, 24]) thresholds of 0.5 and 0.7 (R1@0.5

and R1@0.7), along with mean Average Precision at [13].

4.2. Compare to the state-of-the-art

We conduct comparative experiments against both con-

ventional moment retrieval methods and LLM-based ap-

proaches. As shown in Table 1, our proposed LLaViLo

model achieves superior performance over the current state-

of-the-art methods on all evaluation metrics. Specifically,

we obtain significant improvements of over 4% on four

metrics compared to the previous best method. This val-

idates that through our video semantic modeling adapters

and multi-objectives, our model is able to gain a more accu-

rate understanding of complex video-text queries. We also

conduct experiments on the Charades-STA dataset as shown

in Table 2, and LLaViLo shows better performances com-

pared with other state-of-the-art models.

4.3. Ablation results

We conducted ablation studies to validate the effective-

ness of the proposed modules, as shown in Table 3. Firstly,

removing the caption loss results in significant performance

drops across all metrics, demonstrating the importance of

joint optimization with the language modeling objective.

Secondly, we vary the number N of top layers in LLaMa,

from 2 to 8. The steady performance gains are observed

as more top layers were injected with fused video-text in-

formation. These performance improvements demonstrate

that more injected layers introduce better video-text content

understanding for the LLaMa model.

Besides, we also evaluate the effectiveness of instruction

in natural language prompt, i.e., the sentence started with

<BOS> in Figure 2. As illustrated in Table 4, after using the

Method R@0.5 R@0.7 mAP@0.5 avg mAP

MCN [9] 11.41 2.72 24.94 10.67

CAL [4] 25.49 11.54 23.40 9.89

CLIP [22] 16.88 5.19 18.11 7.67

XML [14] 41.83 30.35 44.63 32.14

XML+ 46.69 33.46 47.89 34.90

Moment-DETR [13] 52.89 33.02 54.82 30.73

UMT [18] - - - 36.12

LLM-based Method R@0.5 R@0.7 mAP@0.5 avg mAP

SeViLA [30] 54.5 36.5 - 32.3

LLaViLo(ours) 59.23 41.42 59.72 36.94

Table 1. Performance comparison on QVHighlights

Method R@0.5 R@0.7

CTRL [6] 23.63 8.89

2D-TAN [33] 39.81 23.31

SimVTP [20] 44.7 26.3

UMT 49.35 26.16

Moment-DETR 53.63 31.37

LLaViLo(ours) 55.72 33.43

Table 2. Performance comparison on Charades-STA

N
w/o Lcap w/ Lcap

R@0.5 R@0.7 R@0.5 R@0.7

2 53.81 35.06 56.97 37.10

4 55.52 38.48 57.34 39.74

6 55.65 37.61 58.32 40.06

8 56.42 39.74 59.23 41.42

Table 3. Ablation study on Caption Loss. N refers to the top N
layers of LLM. The evaluation is conducted on the QVHighlights

dataset

R@0.5 R@0.7 mAP@0.5 avg mAP

w/o Instruction 53.12 34.02 56.52 34.45

w/ Instruction 59.23 41.42 59.72 36.94

Table 4. Ablation study on Natural Language Prompt. The

evaluation is conducted on the QVHighlights dataset.

task-guided instruction, the model performance achieves

significant improvements. These comparisons demonstrate

that task-guided instructions can help to explore more po-

tentials of LLMs for video understanding tasks.

5. Conclusion

This work presents an efficient video-text modeling ap-
proach integrating a video semantic modeling adapter and
a language model. The lightweight adapters enable incor-
porating multimodal semantics. A multi-objective learn-
ing framework optimizes complementary moment localiza-
tion and language modeling jointly. Comprehensive experi-
ments validate state-of-the-art video retrieval performance.
This demonstrates the efficacy and efficiency of our pro-
posed techniques for advancing language models on multi-
modal understanding tasks.
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