
A Cross-Dataset Study on the Brazilian Sign Language Translation

Amanda Hellen de Avellar Sarmento, Moacir Antonelli Ponti
ICMC - Universidade de São Paulo

São Carlos, SP, Brazil
amanda.avellar@usp.br, ponti@usp.br

Abstract

Signed communication is an important form of natural
language, often less studied, but still relevant. The main
question we address in this paper is how to translate Brazil-
ian Sign Language (LIBRAS) implementing Deep Learn-
ing networks with limited data availability. Previous stud-
ies often use a single dataset, in most cases collected by
the authors themselves. We claim a cross-dataset approach
would be more adequate to evaluate real-world scenarios.
We investigate two methods based on spatial feature extrac-
tion. The first one uses pre-trained Convolutional Neural
Networks (CNN) and the second one Body Landmark Es-
timation (skeleton information). A Long Short-Term Mem-
ory (LSTM) network is responsible for the sign classifica-
tion. Our contribution encompasses data curation, along-
side providing general guidelines for enhanced generaliza-
tion.

1. Introduction
Spoken and signed communication are both considered

natural languages. In particular, sign languages use a visual-

manual approach to convey meaning, having their own

grammar and lexicon, and forming the core of local Deaf

communities [21]. There are more than 200 sign languages

registered, going back from the 5th century BC [4]. Yet,

historically such languages were marginalized, with lim-

ited documentation consisting of manual alphabets (finger-

spelling systems) to transfer words from a spoken language

to a sign language, and not of the language itself [14]. Cur-

rently in Brazil more than 10 million people have some de-

gree of disabling hearing loss. When it comes to educa-

tion, nearly half of the such population does not reach high

school [8, 3]. Computational approaches that allow pro-

cessing, translation, and interaction using sign language are

essential to better include the deaf population.

In this paper we focus on recognizing and translat-

ing signs from the Brazilian Sign Language (LIBRAS).

The main difficulty is the lack of data, both in terms

of data availability and variability. Typically, researchers

build their own video datasets in order to study the prob-

lem [17, 22, 5, 2, 9, 24]. The limitations of such approach

include having models that deal with a small vocabulary

(number of words/categories) as well as a dependency on

having a controlled environment [16].

The lack of a common training dataset across stud-

ies leads to results that hardly compare against one an-

other [1, 7], raising questions about the models’ general-

ization to real-world conditions.

This paper’s contribution lies on gathering diverse and

reliable sources, covering multiple regions from Brazil,

which to the best of our knowledge, has not yet been done.

Consequently, we enable a more comprehensive study and

foster future research by making the data publicly available,

while providing comparable results.

Additionally, we take into consideration the different for-

mats of sign language data, given there are different ways of

collecting it. The options range from sophisticated devices

such as sensory gloves, depth cameras and optical hand

tracking [20, 25], to simpler devices such as standard cam-

eras, e.g., smartphones’ built-in cameras. Bearing in mind

the model requires consistent input data format throughout

all steps, standard cameras offer a practical advantage in a

real-world use. Despite not being tailored for sign language,

they are accessible and cost-effective for potential users of

the model.

We investigate methods for frame sampling, network

models and different spatial feature extraction. In particular

we employed either CNNs or Body Landmark Estimation

(skeleton information) [6, 13], both followed by a LSTM

classification network.

2. Data Sources
In order to analyze the models’ generalizability in a more

realistic scenario, we searched for multiple, reliable data

sources. We prioritised gathering data recorded by stan-

dard camera devices. Ultimately, we collected data from

four distinct sources. We used the largest dataset (UFPE) as

reference to define the subsequent signs to be collected.
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Federal University of Pernambuco (UFPE): V-

LIBRASIL dataset, referred to as UFPE source, was

developed as part of Rodrigues’ master’s thesis [18]. The

lack of a robust LIBRAS dataset and further Deep Learning

(DL) studies was acknowledged and in order to bridge this

gap, the researcher made it available for download1;

Federal University of Viçosa (UFV): LIBRAS-Portuguese

Dictionary dataset, referred to as UFV source, developed by

Projeto “Inovar Mais” with a pedagogical focus for students

and teachers from the university. The dataset is public but

requires direct contact to access2;

National Institute of Deaf Education (INES): LIBRAS

Dictionary dataset, referred to as INES source, developed

by the National Institute of Deaf Education. The Institute

has an extensive content production, such as videos in LI-

BRAS, distributed to educational systems. It is publicly

available3, but not direct download, requiring scraping;

SignBank: The SignBank dataset, referred to as SignBank

source, was developed by the Federal University of Santa

Catarina. Along with the videos, linguistic aspects such as

semantic field, word syntax, dominant hand configuration,

etc., are also present on the website4. Its goal is to make the

data available to national and international deaf communi-

ties, as well as to serve as a linguistic research source. The

data is also not directly available for downloading, so we

followed the same process as for the INES data source.

The integration of the data sources involved many chal-

lenges. After the collection phase, the labels had to be ex-

tracted, e.g., for the UFPE source the label was embedded

on the video, requiring the use of Optical Character Recog-

nition (OCR) techniques. We then cleaned the labels, re-

placing separator symbols for white spaces, removing line

breaks, numbers, punctuation, and other symbols. All let-

ters were converted to lowercase for consistency. Subse-

quently, the labels were reasonably standardized. Besides

that, we cleaned the data, discarding videos that were ei-

ther empty or containing rendering errors. The INES source

contained a higher number of videos with this type of error.

Table 1 shows the number of categories (signs/words),

number of observations per category, and the total num-

ber of observations per source. The Cross-Dataset contains

videos of isolated signs and with by-request access5.

The number of observations per category is scarce.

Therefore, to address this limitation, only categories present

in all four datasets were selected, ensuring that each cate-

gory has at least four observations. It is worth to mention

that each data source may have labelled the same signs dif-

ferently, due to synonyms in the Portuguese language. Ad-

1https://libras.cin.ufpe.br/
2https://sistemas.cead.ufv.br/capes/dicionario/
3https://www.ines.gov.br/dicionario-de-libras/
4https://signbank.libras.ufsc.br/pt
5https://github.com/avellar-amanda/

LIBRAS-Translation/

Source # of distinct
categories

# of obs
per category

# of total
obs

UFPE 1396 1 to 7 4221

UFV 1004 1 to 2 1029

INES 237 1 to 2 282

SignBank 485 1 485

Total 2098 1 to 12 6017

Table 1: Number of distinct categories, observations per

category and total observations per source.

ditionally, given regional linguistic differences, the datasets

are composed of different words as well, leading to a small

intersection. As a result, the final dataset has 49 categories,

with 6 observations per category on average, and a total of

313 observations.

The dataset categories are (translated to English):

pineapple, to accompany, to happen, to wake up, to add, tall,

friend, year, before, erase, to learn, air, beard, boat, bicycle,

goat, ox, ball, bag, hair, to fall, box, calculator, wedding,

horse, onion, beer, to arrive, flip-flops, coconut, rabbit, to

eat, to compare, to buy, computer, to destroy, day, to de-

crease, elephant, elevator, school, to choose, to forget, flute,

flower, watermelon, to mix, to swim, roller skates.

3. Method

Our approach includes preprocessing the videos, sam-

pling frames, splitting the sets, performing data augmen-

tation and resizing it. Then we proceed to extract spatial

features and use them as input to the LSTM network, which

performs the classification. At last, the performance is eval-

uated. For the extraction step we explored two methods.

The first one explores three pre-trained CNN models and

the second one Pose and Hand Landmarks. The latter one

involves estimating key body locations on videos to analyze

posture and movements.

3.1. Preprocessing

Frame selection: we randomly selected 15 frames from

each video using a normal distribution, which showed to

be better than the uniform on the experiments. We believe

this is because the videos were already preprocessed and

temporally centered.

Train, val and test sets: The training, validation and test

sets split is 70%, 15% and 15% respectively. The validation

and test observations were exclusively from UFPE dataset,

as it is the only source to have at least three observations per

category. Thus, all sources were present in the training set.

Data augmentation: each video was augmented up to 20

times using a combination of random transformations: hor-

izontal flipping, rotation, translation, centered crop, bright-

ness and contrast adjustment. In addition, for each new
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instance, a different sample of frames was drawn, adding

more variance to the augmented data. We performed ex-

periments using augmented data up to 1, 5, 10, 15 and 20

times, and the latter option demonstrated better results.

Resizing: frames were resized to 640 in width and 480 in

height. Such resizing previous to the landmark estimation is

crucial, given that it affects the landmarks’ 3D coordinates.

3.2. CNN Feature Extraction

Three pre-trained CNN models: i) MobileNetV2 [21], ii)

InceptionResNetV2 [23] and iii) ResNet50V2 [11], since

those were shown to be good general-purpose feature ex-

tractors [12, 15]. Each video frame was resized to 224×224
for input. A global average pooling was applied on the last

convolutional block to result in 1280, 1536 and 2048 fea-

tures respectively.

3.3. Pose and Hand Landmarks

The MediaPipe library [10] was used to obtain the per-

son’s landmarks [19]. MediaPipe was designed to facilitate

the development of applications involving real-time media

analysis by providing modular building blocks and an ef-

ficient data processing pipeline. Additionally, it is open

source, facilitating customization.

The Holistic model was used, as it estimates landmarks

of the pose, hands and face at the same time. From the out-

puts, we experimented with landmarks from the pose (33),

face (468) and hands (21 for each hand), but the face land-

marks led to worse performance, thus only pose and hands

landmarks were further explored. Figure 1 shows an exam-

ple of a sampled frame from the sources with the respective

landmarks below, drawn on a white background for illus-

tration purposes. Note that the landmarks help focusing on

important features, avoiding spurious features such as back-

ground, color, lighting and identity of the signer.

3.4. Landmark-based Feature Extraction

From 3D landmarks, we computed 52 angles between

adjacent landmark connections of each hand, as well as 38

distances between specific pose landmarks (aiming the LI-

BRAS translation). Both are combined in a final feature

vector with 90 features. Figure 2 illustrate the features.

In Figure 2a, the green curved line illustrates distances be-

tween landmark pairs. In Figure 2a, green lines represent

connections between the landmarks and black curved lines

illustrate the angle between some adjacent connections.

Prior to the distance computation, the pose landmarks

were standardized by subtracting the center pose and divid-

ing by the maximum pose size. The center was considered

as the point between the shoulders’ landmark. The maxi-

mum pose size was defined as the longest distance between

each landmark and the pose center. With this we standard-

ized the translation and scale of the landmarks.

3.5. LSTM Networks for Classification

The LSTM networks had the following architecture: i)

input layer with 15 frames and feature dimension according

to the feature extractor, ii) normalization layer, iii) mask

layer with value zero, iv) one LSTM layer with 128, 256 or

512 units, ReLu as the activation function and L1 regular-

izer with 0.001 factor, v) dropout layer with 0.4 factor and

vi) classification layer with Softmax as the activation func-

tion. We employed: i) sparse categorical cross entropy as

the loss function, ii) AdamW, with learning rate of 0.0001

and weight decay of 0.005, as the optimizer. All models

were evaluated with accuracy and top-5 accuracy, which are

adequate since the dataset is not imbalanced. To define the

fixed parameters a Random Search was performed with the

MobileNetV2-LSTM model.

4. Experimental Results

The networks were trained for up to 200 epochs. An

early stopping criteria was set with a patience of 20 and

monitored with the validation accuracy. Once the training

was complete, the best weights were restored.

Table 2 presents all the results divided into three parts

(for which only the best three outcomes according to test

accuracy and test top-5 accuracy are displayed): i) CNN-

LSTM configurations, ii) Landmark-based feature extractor

with LSTM configurations, and iii) the former experiment

conducted with a subset of categories.

The best CNN model achieved 10% test accuracy and

95% train accuracy. We noticed the model overfits, failing

to capture meaningful patterns. Among the possible irrel-

evant patterns the model might have learned, the most no-

ticeable to human eyes may be the colors of background

or clothes present in the original videos, as illustrated in

Figure 1. The background and clothing color were, respec-

tively: i) black and black for the UFPE source, ii) white and

blue for the UFV source, iii) lilac and gray for the INES

source and iv) blue and black for the SignBank source. In

summary, although there was some learning (the random

accuracy would be approximately 2%), none of the models

were able to properly generalize to the test set.

The increase in performance is significant when replac-

ing the CNN backbones with a Landmark-based feature ex-

tractor, reaching 41% test accuracy in the best case. Analyz-

ing the top-5 accuracy, we notice that among the predicted

categories with the highest probability, the correct one was

in the top-5 approximately 75% of the time, which comes

closer to a reasonable result.

Based on the previous experiment, the miss-classified

categories were analysed. We observed that certain cate-

gories exhibited a high internal variance, meaning that the

signs performed within these categories were sometimes

significantly different from one another.
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(a) UFPE:

original

(b) UFV:

original

(c) INES:

original

(d) SignBank:

original

(e) UFPE:

landmark

(f) UFV:

landmark

(g) INES:

landmark

(h) SignBank:

landmark

Figure 1: Example of a sampled frame (sign ”rabbit”) from different sources vs. drawn landmarks on a white background.

(a) Distance between pose

landmarks.

(b) Angle between hand

connections.

Figure 2: Example of the extracted features.

The same way spoken languages have dialects, it is nat-

ural for sign language to have regional variations as well.

However, given the limited number of observations per cat-

egory, a few deviations can negatively impact the model’s

performance. Therefore, we selected categories where at

least 50% of the observations didn’t exhibit high variance.

For the final experiment we considered a subset of 33 cate-

gories. The removed categories were: air, to fall, calculator,

to arrive, to decrease, elephant, elevator, to forget, water-

melon, to happen, beard, wedding, beer, day, swim, roller

skates. As a result, we obtained approximately 66% test

accuracy and 94% test top-5 accuracy.

Additionally, we performed an external validation, in or-

der to check whether the model was able to generalize to a

data source not seen during the training process. Even when

the UFPE source (with the largest number of observations)

was not present in the training set, the model still obtained

around 54% test accuracy.

5. Conclusion

Our results indicate that Brazilian Sign language transla-

tion remains an open problem. For training and validation

on the same dataset, previous studies observed high accu-

Feature
extractor

# units
LSTM # categ. Acc. Top 5

acc.
InceptionResNetV2 128 49 10.2 26.5

MobileNetV2 256 49 08.2 22.4

InceptionResNetV2 512 49 08.2 22.4

Landmark-based 256 49 40.8 75.5

Landmark-based 512 49 40.8 67.3

Landmark-based 128 49 38.8 65.3

Landmark-based 512 33 66.7 93.9

Landmark-based 256 33 63.6 87.9

Landmark-based 128 33 60.6 90.9

Table 2: Comparative evaluation of the proposed methods.

racy (around 80%) using, for example, a combination of

convolutional and recurrent layers. However, when a cross-

dataset is used, the same approach does not generalize.

We show that Landmark-based features may be a better

option towards this problem, and that sampling the frames

using a normal distribution, i.e., central frames are more

likely to be selected, may improve the learning. Moreover,

sampling the frames based on a random process introduces

greater diversity to the augmented data, enabling the capture

of different aspects that may have been missed in previous

samples. Finally, despite having a limited number of ob-

servations per category as the starting point, this study was

able to provide valuable insights and results that are closer

to a more realistic implementation of LIBRAS translation.

Future work includes scaling up the data collection from

various sources and implementing a video similarity-based

model to identify outliers in each category, in addition to

exploring different DL methods. Our ultimate goal is to

translate LIBRAS, encompassing entire sentences and cap-

turing the contextual meaning, rather than solely focusing

on word-by-word translations.
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