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A. Limitations & Future Work

One limitation of the proposed framework is the de-
pendence on a CLIP-like backbone to obtain the images-
concepts similarities. On this basis: (i) there is no “easy”
way to recover from the backbone’s concept omissions.
Indeed, if the image-text model assigns a large similarity
value to a particular unrelated concept, this can be removed
via the concept discovery mechanism. However, if the back-
bone assigns zero similarity between an image and a given
concept, despite the latter being present in the image, it will
not contribute to the downstream task. (ii) The results de-
pend on the suitability of the backbone to the considered
application; thus, if the backbone can not adequately model
the underlying data due to either its architecture or con-
cepts missing from (or biases contained in) the data used
for pretraining, the final performance will reflect that, even
if the introduced CDM framework somewhat alleviates this
issue via the concept discovery mechanism. In this context,
even though the experimental results suggest that using the
ViT-B CLIP backbone can yield significant performance, it
may not work in all cases. However, the proposed frame-
work constitutes a general proposal: any future advances on
multi-modal models can be easily incorporated by chang-
ing the projection backbone. In our future work, we aim
to lessen the dependence on the pretrained backbones and
find ways to either adjust the arising similarities or combine
different or multiple image and text encoders to match the
downstream task.

B. Bernoulli Relaxation & Inference

Training. As already noted in the main text, to estimate
the ELBO in Eq. (5):

L =
∑N

i=1 CE(Ŷi, f(Xi,A, zi))− βKL (q(zi)||p(zi)) , (1)

we perform Monte-Carlo sampling, with a single reparam-
eterized sample. However, the Bernoulli distribution is not
amenable to the reparameterization trick [2]. To this end,
we resort to its continuous relaxation[3, 1].

Let us denote by z̃i, the probabilities of q(zi), i =
1, . . . N . We can directly draw reparameterized samples
ẑi ∈ (0, 1)M from the continuous relaxation as:

ẑi =
1

1 + exp (−(log z̃i + L)/τ)
(2)

where L ∈ R denotes samples from the Logistic function,
such that:

L = logU − log(1− U), U ∼ Uniform(0, 1) (3)

where τ is called the tempetature parameter; this controls
the degree of the approximation: the higher the value the
more uniform the produced samples and vice versa. We set
τ to 0.1 in all the experimental evaluations.

Inference. During inference, and for each test example
X , we draw sample(s) from the Bernoulli distribution de-
fined in Eq. (4):

q(z) = Bernoulli
(
z|sigmoid

(
EI(X)W T

s

))
(4)

to obtain the binary indicator vector z ∈ {0, 1}M : each en-
try therein denotes the presence or absence of a concept for
the given example. This is used to: (i) compute the output
of the network according to Eq. (3):

Y = (Z · S)W T
c (5)

and subsequently the loss function (in our case the cross-
entropy), and (ii) examine each concept activated for the
given example.

C. Ablation Study.
For learning the auxiliary binary latent variables Z, we

introduced appropriate prior and posterior distributions and
constructed the ELBO. In this context, we introduced two
additional hyperparameters: (i) the prior parameter α and
(ii) the scale of the KL divergence, β. Here, we examine



the effect of these parameters of the final performance us-
ing the ViT-B/16 backbone and the CUB dataset and two
different learning rates 10−2 and 10−3. In Table 1, we re-
port the performance of the framework in terms of accuracy
and sparsity for different values of α, β.

α β Accuracy (%) Sparsity (%)
10−2 10−4 80.67 23.38
10−4 10−4 80.00 16.12
10−4 10−5 79.70 14.07
10−3 10−4 82.23 37.7
10−3 5 · 10−4 81.40 20.93

5 · 10−4 10−3 81.07 17.61

Table 1: Ablation results on the impact of the hyperparame-
ters on: (i) the resulting accuracy and (ii) the emerging spar-
sity using the ViT-B/16 backbone for CLIP and CUB200 as
the training dataset. The learning rate in this study was set
to 5 · 10−3 for the top table and 10−3 for the bottom table
respectively.
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