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Abstract

Mixed reality applications require tracking the user’s full-
body motion to enable an immersive experience. However,
typical head-mounted devices can only track head and hand
movements, leading to a limited reconstruction of full-body
motion due to variability in lower body configurations.
We propose BoDiffusion – a generative diffusion model
for motion synthesis to tackle this under-constrained
reconstruction problem. We present a time and space
conditioning scheme that allows BoDiffusion to leverage
sparse tracking inputs while generating smooth and
realistic full-body motion sequences. To the best of our
knowledge, this is the first approach that uses the reverse
diffusion process to model full-body tracking as a condi-
tional sequence generation task. We conduct experiments
on the large-scale motion-capture dataset AMASS and
show that our approach outperforms the state-of-the-art
approaches by a significant margin in terms of full-body
motion realism and joint reconstruction error.

1. Introduction
Full-body motion capture enables natural interactions

between real and virtual worlds for immersive mixed-reality

experiences [18, 38, 50]. Typical mixed-reality setups use a

Head-Mounted Display (HMD) that captures visual streams

with limited visibility of body parts and tracks the global lo-

cation and orientation of the head and hands. Adding more

wearable sensors [15, 17, 19] is expensive and less com-

fortable to use. Therefore, in this work, we tackle the chal-

lenge of enabling high-fidelity full-body motion tracking

when only sparse tracking signals for the head and hands

are available, as shown in Fig. 1.

Existing motion reconstruction approaches for 3-point

input (head and hands) struggle to model the large variety
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Figure 1. BoDiffusion. Head and wrist IMUs are the standard

motion-capture sensors in current virtual-reality devices. BoDif-

fusion leverages the power of Transformer-based conditional Dif-

fusion Models to synthesize fluid and accurate full-body motion

from such sparse signals.

of possible lower-body motions and fail to produce smooth

full-body movements because of their limited predictive na-

ture [16]. A recent attempt [2] to address this problem

uses a generative approach based on normalizing flows [41]

falling short of incorporating temporal motion information

and generating poses for every frame individually, thus re-

sulting in unrealistic synthesized motions. Another ap-

proach [6] that integrates motion history information using

a Variational Autoencoder (VAE) [22] takes limited advan-

tage of the temporal history because VAEs often suffer from

“posterior collapse” [9, 21]. Thus, there is a need for a scal-

able generative approach that can effectively model tempo-

ral dependencies between poses to address these limitations.

Recently, diffusion-based generative models [45, 12]

have emerged as a potent approach for generating data

across various domains such as images [42], audio [59],

video [13], and language [10]. Compared to Generative Ad-

versarial Networks (GANs), diffusion-based models have

demonstrated to capture a much broader range of the target

distribution [31]. They offer several advantages, including

excellent log-likelihoods and high-quality samples, and em-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Predicting Dense Full-Body Poses from Sparse Data. Comparison of BoDiffusion and AvatarPoser [16] against the ground

truth. Color gradient in the avatars indicates an absolute positional error, with a higher error corresponding to higher red intensity. BoDiffu-

sion synthesizes substantially more accurate and plausible full-body poses, particularly in the lower body where no IMU data are captured.

ploy a solid, stationary training objective that scales effort-

lessly with training compute [31].

To leverage the powerful diffusion model framework, we

propose BoDiffusion (Body Diffusion), a new generative

model for human motion synthesis. BoDiffusion directly

learns the conditional data distribution of human motions,

models temporal dependencies between poses, and gener-

ates full motion sequences, in contrast to previous methods

that operate solely on static poses [2, 54]. Moreover, BoD-

iffusion does not suffer from the limitation of methods that

require a known pelvis location and rotation during infer-

ence [6, 2, 54], and generates high-fidelity body motions

relying solely on the head and hands tracking information.

Our main contributions can be summarized as follows.

We propose BoDiffusion – the first diffusion-based gener-

ative model for full-body motion synthesis conditioned on

the sparse tracking inputs obtained from HMDs. To build

our diffusion model, we adopt a Transformer-based back-

bone [34], which has proven more efficient for image syn-

thesis than the frequently used UNet backbone [5, 39, 42],

and it is more naturally suited for modeling sequential mo-

tion data. To enable conditional motion synthesis in BoD-

iffusion, we introduce a novel time and space condition-

ing scheme, where global positions and rotations of tracked

joints encode the control signal. Our extensive experiments

on AMASS [28] demonstrate that the proposed BoDiffu-

sion synthesizes smoother and more realistic full-body pose

sequences from sparse signals, outperforming the previous

state-of-the-art methods (see Fig. 2 and 4). Find our full

project on bcv-uniandes.github.io/bodiffusion-wp/.

2. Related Work
Pose Estimation from Sparse Observations. Full-body

pose estimation methods generally rely on inputs from

body-attached sensors. Much prior work relies on 6 In-

ertial Measurement Units (IMUs) to predict a complete

pose [15, 55, 56]. In [15], the authors train a bi-directional

LSTM to predict body joints of a SMPL [26] model, given

6 IMU inputs (head, 2 arms, pelvis, and 2 legs). However,

there is a high incentive to reduce the number of body-

attached IMUs because depending on many body inputs

creates friction in motion capture. LoBSTr [54] reduces this

gap by working with 4 inputs (head, 2 arms, and pelvis). It

takes past tracking signals of these body joints as input for

a GRU network that predicts lower-body pose at the cur-

rent frame. Furthermore, it estimates the upper body with

an Inverse Kinematics (IK) solver. The methods in [2, 6]

also require 4 joints as input since they leverage the pose

of the pelvis to normalize the input data during training and

inference.

In Mixed Reality (MR), obtaining user input from a

headset and a pair of controllers is common. The authors

of [16, 53] highlight the importance of a sensor-light ap-

proach and further reduce the amount of inputs to 3, a num-

ber that aligns well with scenarios in MR environments.

AvatarPoser [16] combines a Transformer architecture and

traditional IK to estimate full-body pose from HMD and

controller poses. Similar to [16], our method uses only 3 in-
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Figure 3. Overview of BoDiffusion. BoDiffusion is a diffusion process synthesizing full-body motion using sparse tracking signals as

conditioning. Top: At each denoising step, the model takes as input 2W tokens, which correspond to local joint rotations with t steps

of noise (xt = x1:W
t ) and sparse tracking signals of the head and hands (s1:W ) as conditioning. We concatenate the xi

t tokens with the

conditioning tokens si along the spatial axis to preserve the time information and ensure coherence between the conditioning signal and

the synthesized motion. After that, we pass it through the Transformer backbone of N DiT blocks [34]. Bottom: During inference, we

start from random Gaussian noise xT and perform T denoising steps until we reach a clean output motion x0.

puts but provides much better lower-body prediction thanks

to our diffusion model. Choutas et al. [4] propose an itera-

tive neural optimizer for 3D body fitting from sparse HMD

signals. However, they optimize poses frame-by-frame and

do not consider motions. QuestSim [53] proposes to learn a

policy network to predict joint torques and reconstruct full

body pose using a physics simulator. Nevertheless, this ap-

proach is challenging to apply in a real-world scenario, es-

pecially when motion involves interaction with objects (e.g.,
sitting on a chair). In such a case, one needs to simulate both

the human body and all the objects, which have to be pre-

scanned in advance and added to the simulation. In contrast,

our approach is data-driven and does not require a costly

physics simulation or object scanning.

Human Motion Synthesis & Pose Priors. A large body

of work aims at generating accurate human motion given

no past information [1, 36, 57, 37, 24]. Methods like

TEMOS [37] and OhMG [24] combine a VAE [22] and a

Transformer network to generate human motion given text

prompts. Recently, FLAG [2] argues against the reliability

of using VAEs for body estimation and proposes to solve

these disadvantages with a flow-based generative model.

VPoser [33] learns a pose prior using VAE, and Humor [40]

further improves it by learning a conditional prior using a

previous pose. Recent work [32] proposes a more generic

approach that learns a pose prior and approximates an IK

solver using a neural network. Another line of work tackles

motion synthesis using control signals provided by an artist

or from game-pad input [14, 25, 11, 35, 49]. However, in

contrast to our method, such approaches either focus on lo-

comotion and rely on the known future root trajectory of the

character or are limited to a predefined set of actions [35].

Denoising Diffusion Probabilistic Models (DDPMs) [12,
31] is a class of likelihood-based generative models in-

spired by Langevin dynamics [23] which map between a

prior distribution and a target distribution using a gradual

denoising process. Specifically, generation starts from a

noise tensor and is iteratively denoised for a fixed number of

steps until a clean data sample is reached. Recently, Ho et
al. [12] have shown [12] that DDPMs are equivalent to the

score-based generative models [47, 48]. Currently, DDPMs

are showing impressive results in tasks like image genera-

tion and manipulation [5, 42, 39, 8, 30] due to their ability

to fit the training distribution at large scale and stable train-

ing objective. Moreover, concurrent to this work, Diffusion

Models have also been used to synthesize human motion

from text inputs [58, 20, 51] and from sparse IMUs using a

simple multilayer perceptron [7] as backbone.

UNet [43] architecture has been de-facto the main back-

bone for image synthesis with Diffusion Models [5, 39, 42]

up until a recent work [34] that suggested a new class of

DDPMs for image synthesis with Transformer-based back-
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bones. Transformers are inherently more suitable than con-

volutional networks for modeling heterogeneous sequential

data, such as motion, and we capitalize on this advantage

in our work. In particular, we employ a Diffusion Model

with the DiT [34] backbone, to construct an architecture for

conditional full-body pose estimation from 3 IMU tracking

inputs.

3. BoDiffusion
In this section, we present our BoDiffusion model. We

start with the DDPMs background in Sect. 3.1. Next, we de-

fine the problem statement and our probabilistic framework

in Sect. 3.2. Then, in Sect. 3.3, we give an overview of the

proposed BoDiffusion model for conditional full-body mo-

tion synthesis from sparse tracking signals, followed by the

details of our model design. Please refer to Fig. 3 for an

illustration of the entire pipeline of our method.

3.1. Diffusion Process

We briefly summarize DDPMs [12] inner workings and

formulate our conditional full-body motion synthesis task

using the generative framework. Let x1:W
0 = x0 ∼ q(x0)

be our real motion data distribution, where W is the length

of the sequence motion. The forward diffusion process q
produces latent representations x1, . . . ,xT by adding Gaus-

sian noise at each timestep t with variances βt ∈ (0, 1).
Hence, the data distribution is defined as follows:

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) (1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where I is the identity matrix. Due to the properties of

Gaussian distributions, Ho et al. [12] showed that we can

directly calculate xt from x0 by sampling:

xt =
√
ᾱtx0 +

√
1− ᾱtε, (3)

where αt = 1− βt, ᾱt =
∏T

i=1 αi, and ε ∼ N (0, I).
On the contrary, the reverse diffusion process q(xt−1|xt)

is the process of iterative denoising through steps t =
T, . . . , 1. Ideally, we would like to perform this process

in order to convert Gaussian noise xT ∼ N (0, I) back to

the data distribution and generate real data points x0. How-

ever, q(xt−1|xt) is intractable because it needs to use the

entire data distribution. Therefore, we approximate it with

a neural network pθ with parameters θ:

pθ(xt−1|xt) = N (xt−1;μθ(xt, t),Σθ(xt, t)). (4)

We train to optimize the negative log-likelihood using the

Variational Lower Bound (VLB) [12]:

− log pθ(x0) ≤ − log pθ(x0)+

+DKL(q(x1:T |x0)‖pθ(x1:T |x0)) = Lvlb.
(5)

Following [12], we parameterize μθ(xt, t) like this:

μθ(xt, t) =
1√
αt

(
xt − βt√

1− ᾱt
εθ(xt, t)

)
. (6)

After a couple simplifications, [12] ignores the weight-

ing terms to rewrite Lsimple as follows:

Lsimple = Ex0∼q(x0),t∼U [1,T ]||ε− εθ(xt, t)||22. (7)

Ho et al. [12] observed that optimizing Lsimple works better

in practice than optimizing full VLB Lvlb. During train-

ing, we follow Eq. 7, where we sample x0 from the data

distribution, the timestep as t ∼ U{1, T}, and compute xt

using Eq. 3. Intuitively, we learn pθ(xt−1|xt) by training

neural network to predict the noise ε that was used to com-

pute the xt with Eq. 3. However, simple loss Lsimple as-

sumes that we have a predefined variance Σ(xt, t) = βt. In-

stead, we follow [31] and optimize the variance Σθ(xt, t) =

ev log βt+(1−v) log βt
1−ᾱt−1
1−ᾱ1 , where v is a learnable scalar.

Hereby, we use a combined objective:

L = Lsimple + λvlbLvlb. (8)

3.2. Conditional Full-Body Motion Synthesis

Problem Definition. Human motion can be character-

ized by a sequence of body poses xi ordered in time. We

define a pose as a set of body joints arranged in the kine-

matic tree of the SMPL [26] model. Joint states are de-

scribed by their local rotations relative to their parent joints,

with the pelvis serving as the root joint and its rotation

being defined with the global coordinate frame. We uti-

lize the 6D representation of rotations [60] to ensure fa-

vorable continuity properties, making xi ∈ R
22×6. The

global translation of the pelvis is not modeled explicitly,

as it can be calculated from the tracked head position by

following the kinematic chain [16]. We consider a typ-

ical mixed reality system with HMD and two hand con-

trollers that provides 3-point tracking information of head

and hands in the form of their global positions pi and rota-

tions ri. Furthermore, we additionally compute the linear

and angular velocities vi, ωi of the head and wrists, mak-

ing si = {pi, ri, vi, ωi} ∈ R
3×(3+6+3+6) to make the input

signal more informative and robust [16]. The target task is

to synthesize full-body human motion x1:W = {xi}Wi=1 us-

ing the limited tracking signals s1:W = {si}Wi=1 as input.

Probabilistic Framework. We formally define our con-

ditional full-body motion synthesis task by using the for-

mulation of Diffusion Models outlined in Sect. 3.1. Let

xt = x1:W
t , s = s1:W for brevity. We want to learn a condi-

tional distribution of the full-body human motion sequences

x0 defined as follows:
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Figure 4. Error Comparison. Motions generated by BoDiffusion

exhibit greater similarity to the ground truth and display fewer foot

skating artifacts, as highlighted in the red circles. The leg in con-

tact with the ground should not slide, and BoDiffusion produces

motion sequences that adhere more closely to this requirement.

pθ(x0|s) =
∫

pθ(x0:T |s)dx1:T , (9)

pθ(x0:T |s) = p(xT )
T∏

t=1

pθ(xt−1|xt, s), (10)

where p(xT ) ∼ N (0, I) is a Gaussian noise. In this case,

we train a neural network θ to predict the mean μθ(xt, t, s)
and the variance Σθ(xt, t, s), similar to Eq. 4, but condi-

tioned on sparse tracking signals s. Thus, the simple loss

from Eq. 7 then becomes:

Lsimple = Ex0∼q(x0),t∼U{1,T}||ε− εθ(xt, t, s)||22. (11)

Local Rotation Loss is Equivalent to the Lsimple. In Hu-

man Motion Synthesis, it is widespread [16, 6, 2, 54] to

use the local rotation loss that minimizes the difference be-

tween the local joint rotations of the estimated poses and

the ground truth. Because of this standard practice, one can

hypothesize whether learning εθ (from Eq. 7) is helpful for

synthetic motion sequences. However, we found that op-

timizing εθ is equivalent to directly minimizing the local

rotation error.

Lemma 1. Let L(x, x′) = ||x − x′||2 be the local rotation
error loss between a motion sequence x and x′ be an esti-
mate of x. Then, optimizing the Lsimple loss is equivalent to
optimizing L.

We provide the proof of Lemma 1 in the Supplementary

Material.

3.3. BoDiffusion Architecture

We draw inspiration from the diffusion models for image

synthesis to design a model for learning the conditional dis-

tribution pθ(x
1:W
0 |s1:W ) of the full-body motion sequences

(cf. Eq. 9). Specifically, we choose to leverage the novel

Transformer backbone DiT [34] to build the BoDiffusion

model because (i) it was shown to be superior for image

synthesis task [34] compared to the frequently used UNet

backbone [5, 39, 42], and (ii) it is more naturally suited for

modeling heterogeneous motion data. Below, we provide

a detailed description of our architecture and introduce a

method that ensures the conditional generation of motion

coherent with the provided sparse tracking signal s1:W .

In order to leverage the Transformer’s ability to handle

long-term dependencies while maintaining temporal con-

sistency, we format the input x1:W
t , which represents joint

rotations over time, as a time-sequence tensor and split it

along the time dimension into tokens. We treat each pose

xi
t as an individual token and combine the feature and joint

dimensions into a d-dimensional vector, where d = 22×6 is

the number of joints multiplied by the number of features.

This strategy allows us to take advantage of the temporal

information and efficiently process the motion sequence.

We implement our BoDiffusion model by extending the

DiT architecture of Peebles et al. [34] with our novel con-

ditioning scheme. The DiT backbone architecture consists

of a stack of encoder transformer layers that use Adaptive

Layer Normalization (AdaLN). The AdaLN layers produce

the scale and shift parameters from the timestep embed-

ding vector to perform the normalization depending on the

timestep t. Peebles et al. [34] input the class labels along

with the time embedding to the AdaLN layers to perform

class-conditioned image synthesis. However, we empiri-

cally demonstrate (see Sect. 4.2) that using the condition-

ing tracking signal s along with the time embedding t in the

AdaLN layers harms the performance of our BoDiffusion

model because in this case, we disregard the time informa-

tion. Therefore, we propose a novel conditioning method

that retains the temporal information and allows conditional

synthesis coherent with the provided sparse tracking signal.

Conditioning on tracking signal. We use the 3-point

tracking information of head and hands from HMDs to com-

pute an enriched input conditioning s1:W . This condition-

ing s1:W has the shape W×ds, where ds = 18·3 is the num-

ber of features (18) per joint multiplied by the number of

tracked joints (3). We treat it as a sequence of individual to-

kens si and apply a linear transformation (conditioning em-
bedding layer in Fig. 3) to each of them, thus increasing the

dimensionality of the tokens from ds to demb = 18 · 22. We

observe that such higher-dimensional embedding enforces

the model to pay more attention to the conditioning signal.

Next, we concatenate the input sequence tokens xi
t with the

transformed conditioning tokens and input the result to the
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Method Jitter MPJVE MPJPE Hand PE Upper PE Lower PE MPJRE FCAcc ↑
Final IK* - 59.24 18.09 - - - 16.77 -

LoBSTr* - 44.97 9.02 - - - 10.69 -

VAE-HMD* - 37.99 6.83 - - - 4.11 -

AvatarPoser [16] 1.53 28.23 4.20 2.34 1.88 8.06 3.08 79.60

AvatarPoser-Large [16] 1.17 23.98 3.71 2.20 1.68 7.09 2.70 82.30

BoDiffusion (Ours) 0.49 14.39 3.63 1.32 1.53 7.07 2.70 87.28

Table 1. Comparison with State-of-the-art Methods for Full-Body Human Pose Estimation. Results on a subset of the AMASS dataset

(CMU, BMLrub, and HDM05) for Jitter [km/s3], MPJVE [cm/s], MPJPE [cm], Hand PE [cm], Upper PE [cm], Lower PE [cm], MPJRE

[deg], and FCAcc [%] (balanced foot contact accuracy) metrics. AvatarPoser is retrained with 3 and 10 (Large) Transformer layers. The

star (*) denotes the results reported in [16].

transformer backbone. By preserving the temporal struc-

ture of the tracking signal, we enable the model to effi-

ciently learn the conditional distribution of motion where

each pose in the synthesized sequence leverages the corre-

sponding sparse tracking signal si.

4. Experiments

Datasets. We use the AMASS [28] dataset for training

and evaluating our models. AMASS is a large-scale dataset

that merges 15 optical-marker-based MoCap datasets into

a common framework with SMPL [26] model parameters.

For our first set of experiments, we use the CMU [3], BML-

rub [52], and HDM05 [29] subsets for training and testing.

We follow the same splits of AvatarPoser [16] to achieve

a fair comparison. For our second set of experiments, we

evaluate the Transitions [28] and HumanEVA [44] subsets

of AMASS and train on the remaining datasets following

the protocol described in [2].

Evaluation Metrics. We report four different types of

metrics to evaluate our performance comprehensively. First,

we report the velocity-related metrics Mean Per Joint Veloc-

ity Error [cm/s] (MPJVE), and Jitter error [km/s3] [56] that

measure the temporal coherence and the smoothness of the

generated sequences. Second, we report the position-related

metrics Mean Per Joint Position Error [cm] (MPJPE), Hand

Position Error [cm] (Hand PE), Upper Body Position Error

[cm] (Upper PE), and Lower Body Position Error (Lower

PE). The third set is rotation-related metrics, including the

Mean Per Joint Rotation Error [deg] (MPJRE). Finally, we

devise a metric based on Foot Contact (FC) to measure if the

predicted body has a realistic movement of the feet. To cal-

culate this metric for every pair of instances in a sequence,

we determine if there is contact between the four joints of

the feet and the ground by calculating the velocity of the

joints and checking whether it is under a pre-defined thresh-

old or not, following [51]. Afterward, we calculate the accu-

racy between the predicted and the ground-truth FC. Since

the ratio of foot contact vs. foot in the air is meager, we

calculate a balanced accuracy (FCAcc).

Implementation Details. Similar to [16], we set win-

dow size W = 41. Our Transformer backbone consists

GT

BoDiffusion

Figure 5. Full-Sequence Generation. BoDiffusion sequence pre-

diction compared against the ground-truth. Our method can gen-

erate realistic motions faithful to the ground truth. Color gradient

represents time flow, whereas lighter colors denote the past.

of 12 DiT blocks [34]. Before feeding to the backbone,

the input tokens are projected to the hidden dimension

emb = 384, as shown in Fig. 3. Finally, we project the

output of the last DiT block back to the human body pose

space of shape 41× 6 · 22, representing the 6D rotations for

22 body joints. During training, we use λvlb = 1.0, and de-

fine t to vary between [1, T ], where T = 1000 corresponds

to a pure Gaussian distribution. At inference, we start from

pure Gaussian noise, and we use DDIM sampling [46] with

50 steps. We set the variance Σθ of the reverse noise to

zero. This configuration turns the model into a determinis-

tic mapping from Gaussian noise to motions, allowing it to

do much fewer denoising steps without degrading the qual-

ity of synthesized motions.

We use AdamW optimizer [27] with a learning rate of

1e− 4, batch size of 256, without weight decay. Our model

has 22M parameters and is trained for 1.5 days on four

NVIDIA Quadro RTX 8000. More implementation details

are in the Supplementary Material.

Our approach has no limitations concerning the length

of the generated sequences. We can synthesize motions of

arbitrary length by applying BoDiffusion in an autoregres-

sive manner using a sliding window over the input data. We

refer the reader to the Supplementary Material for more ex-

planation of our inference-time protocol.
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Method Jitter MPJVE MPJPE Hand PE Upper PE Lower PE MPJRE FCAcc ↑
VAE-HMD (3p + pelvis)* - - 7.45 - 3.75 - - -

VPoser-HMD (3p + pelvis)* - - 6.74 - 1.69 - - -

HuMoR-HMD (3p + pelvis)* - - 5.50 - 1.52 - - -

ProHMR-HMD (3p + pelvis)* - - 5.22 - 1.64 - - -

FLAG [2] (3p + pelvis)* - - 4.96 - 1.29 - - -

AvatarPoser [16] (3p) 1.11 34.42 6.32 3.03 2.56 12.60 4.64 71.46

BoDiffusion (Ours) (3p) 0.35 21.37 5.78 1.94 2.27 11.55 4.53 82.04

Table 2. Comparison with Generative-based Models. Results reported on the held-out Transitions [28] and HumanEVA [44] subset of

AMASS, following the protocol of FLAG [2], for Jitter [km/s3], MPJVE [cm/s], MPJPE [cm], Hand PE [cm], Upper PE [cm], Lower PE

[cm], MPJRE [deg], and FCAcc [%] metrics. We retraining AvatarPoser, and report the same results as in [2] for methods with a star (*).

4.1. Results

We compare BoDiffusion with AvatarPoser [16] and

FLAG [2] following their experimental setups. For Avatar-

Poser in Table 1, we use the official source code to re-

train the standard version with 3 Transformer layers. Fur-

thermore, to ensure a fair comparison with BoDiffusion,

we train a scaled-up version of AvatarPoser (AvatarPoser-

Large) with 10 layers, 8 attention heads, and an embedding

dimension of 384. Find more details in the Supplementary

Material. Since the other state-of-the-art methods do not

provide public source codes, we compare them against the

results reported in each of the previous papers.

Table 1 shows that BoDiffusion outperforms the state-

of-the-art approaches in all metrics on the test subset of the

AMASS dataset (CMU, BMLrub, and HDM05). Since we

enforce the temporal consistency in BoDiffusion by lever-

aging the novel conditioning scheme and learning to gen-

erate sequences of poses instead of individual poses, our

method generates smoother and more accurate motions.

This is demonstrated by our quantitative results in Tab. 1.

We observe a significant improvement in the quality of

generated motions by leveraging the BoDiffusion model.

Thus, we are able to decrease the MPJVE by a margin of

9.59 cm/s and the Jitter error by 0.68 km/s3, compared

to AvatarPoser-Large. Fig. 4 shows that motions gener-

ated by BoDiffusion exhibit more significant similarity to

the ground truth across all the sequence frames and dis-

play fewer foot-skating artifacts compared to AvatarPoser,

which struggles to maintain coherence throughout the se-

quence and severely suffers from foot skating. Furthermore,

we empirically demonstrate that our method successfully

learns a manifold of plausible human poses while maintain-

ing temporal coherence. In practice, we are given the global

position of the hands and head as the conditioning; thus, it

is expected to have a lower error on these joints, while the

conditioning does not uniquely define the configuration of

legs and should be synthesized. However, Fig. 2, 4, 5 show

that BoDiffusion produces plausible poses not only for the

upper body but for the lower body as well, in contrast to the

state-of-the-art Transformer-based AvatarPoser method.

Fig. 2 qualitatively shows the improvement of our

Method Jitter MPJVE MPJPE MPJRE

BoDiffusion (Token input cond) 0.49 14.39 3.63 2.70

Timestep cond 1.38 52.78 7.19 4.00

Token input + Timestep cond 0.59 16.22 3.60 2.60
with stochasticity 0.53 15.37 3.53 2.67

Window size W = 1 19.71 174.9 4.77 3.13

Shuffled sequences 108.42 935.69 17.13 7.10

Table 3. Design Ablations. Up: We ablate our training scheme

by varying the conditioning approach. At inference, we demon-

strate that controlling the stochasticity smoothens our predictions.

Down: We assess the importance of including temporal context.

method in positional errors. In particular, our method pre-

dicts lower body configurations that resemble the ground

truth more than AvatarPoser. These results support the ef-

fectiveness of our conditioning scheme for guiding the gen-

eration towards realistic movements that are in close prox-

imity to the ground-truth sequences.

Furthermore, our method achieves a better performance

in the Foot Contact Accuracy metric (FCAcc), as shown in

Table 1 and the feet movements in Fig. 5. Thus, the itera-

tive nature of the DDPMs, along with our spatio-temporal

conditioning scheme, allows us to generate sequences with

high fidelity even at the feet, which are the furthest from the

input sparse tracking signals.

Table 1 shows the performance of a larger version of

AvatarPoser-Large compared to ours. In particular, we

demonstrate that enlarging this model increases its motion

capture capacity to the point where it reaches more com-

petitive results. By definition, this experiment also demon-

strates that using more complex methods leads to better

performance. However, BoDiffusion depicts a better trade-

off between the performance and computational complexity

than state-of-the-art methods. Since BoDiffusion can take

advantage of DiT, our approach will further improve in the

measure that foundation models reach better results.

Table 2 shows the quantitative comparison be-

tween BoDiffusion and other generative-based approaches

for the Transitions [28] and HumanEVA [44] subsets of

AMASS. AvatarPoser is included for reference. On the one

hand, even though we only train with three sparse inputs,

we have competitive results regarding an overall positional
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Method Jitter MPJVE MPJPE MPJRE

UNet w/o diffusion 1.44 33.35 4.36 2.81

Transformer w/o diffusion 1.27 27.62 3.92 2.60

BoDiffusion-UNet 1.24 20.65 3.63 2.48
BoDiffusion-Transformer (Ours) 0.49 14.39 3.63 2.70

Table 4. Architecture Ablations. We evaluate the relevance of

using DiT as our backbone and the effectiveness of the denoising

power of our DDPM by comparing it against the backbones with-

out diffusion.

DDIM steps Jitter MPJVE MPJPE MPJRE

10 0.56 16.16 3.89 2.84

20 0.52 15.05 3.72 2.75

30 0.51 14.75 3.66 2.73

40 0.49 14.55 3.64 2.71

50 0.49 14.39 3.63 2.70

100 0.48 14.12 3.44 2.59

Table 5. Ablation of inference sampling steps. At inference, we

use DDIM sampling with 50 steps. Note that the performance

improves when there are more sampling steps.

error (MPJPE) and upper body positional error (Upper

PE) with the methods that also use the pelvis information.

Our DDPM-based method outperforms the VAE-based

approaches VAE-HMD and VPoser-HMD and has com-

parable results with the conditional flow-based models

ProHMR-HMD and FLAG. On the other hand, we achieve

better performance than AvatarPoser in all the metrics, with

a significant improvement in the velocity-related metrics

MPJVE and Jitter. See the Supplementary for additional

quantitative and qualitative results.

4.2. Ablation Experiments

In Table 3, we report experiments on conditioning

schemes, stochastic inference, and the importance of tem-

poral context. Firstly, we compare different condition-

ing schemes. Our method utilizes token input concate-

nation (Token input cond) for conditioning, which keeps

time-dependent information, leading to smoother predic-

tions with low Jitter and MPJVE values. In contrast, using a

timestep embedding as conditioning (Timestep cond) results

in a compression towards a time-agnostic vector embed-

ding, thus, resulting in detrimental performance. Combin-

ing both token input and timestep conditioning still yields

less smooth sequences and low consistency compared to

using only token input conditioning. Secondly, we imple-

ment a purely stochastic inference scheme (w/ stochastic-
ity), which slightly decreases rotational and positional er-

rors and grants extra control over randomness, especially

benefiting sequences’ smoothness by the decreased MPJVE

and Jitter. Thirdly, we evaluate the importance of tempo-

ral consistency by using a sliding window of size one dur-

ing training (Window size W = 1) and randomly sorting

the sequence at inference time (Unordered sequence). As

expected, MPJVE and Jitter errors significantly increase,

along with other metrics. These experiments confirm the

relevance of enforcing temporal consistency.

Table 4 showcases the impact of different architec-

tural choices on the performance of our model. First, we

validate the effectiveness of using DiT as the backbone

(BoDiffusion-Transformer) by comparing it against UNet

(BoDiffusion-UNet), which has traditionally been used as

a backbone for DDPMs [5, 42]. Table 4 indicates that

the Transformer outperforms UNet across all metrics, even

without involving diffusion processes. Additionally, when

incorporating our diffusion framework on top of both back-

bones, significant improvements are observed in temporal

consistency and the quality of generated sequences. It is

important to note that while replacing the DiT backbone

with UNet results in a slight decrease (0.2◦) in rotation er-

ror, this improvement is overshadowed by significant in-

creases in Jitter and Velocity errors. Thus, these ablation

experiments demonstrate the complementarity of using a

transformer-based backbone in a diffusion framework, lead-

ing to smoother and more accurate predictions.

Based on empirical results in Tables 3 and 4, we con-

clude that both modeling motion sequences (rather than in-

dividual poses) and the diffusion process are crucial for

smooth generations. Our experiments show that without

temporal consistency the Jitter increases from 0.49 to 19.71

(window size W = 1, Tab. 3), and without the diffusion

process — to 1.27 (Transformer w/o diffusion, Tab. 4). We

notice a significant degradation in performance, emphasiz-

ing the critical role of both components. Ultimately, we gain

the most substantial benefits from the diffusion model when

we learn the sequences of poses, as it ensures smoother and

more consistent results in the generation process.

Table 5 presents an ablation experiment with different

sampling steps for DDIM during inference. Increasing the

number of sampling steps enhances our method’s perfor-

mance, proving the importance of the iterative nature of

DDPMs. However, more steps require more computational

capacity. Thus, we select 50 DDIM steps for an appropriate

trade-off between performance and complexity.

5. Conclusion
In this work, we present BoDiffusion, a Diffusion model

for conditional motion synthesis inspired by effective archi-

tectures from the image synthesis field. Our model lever-

ages the stochastic nature of DDPMs to produce realistic

avatars based on sparse tracking signals of the hands and

head. BoDiffusion uses a novel spatio-temporal condition-

ing scheme and enables motion synthesis with significantly

reduced jittering artifacts, especially on lower bodies. Our

results outperform state-of-the-art methods on traditional

metrics, and we propose a new evaluation metric to fully

demonstrate BoDiffusion’s capabilities.
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