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Abstract
This work focuses on the problem of reconstructing a 3D

human body mesh from a given 2D image. Despite the in-
herent ambiguity of the task of human mesh recovery, most
existing works have adopted a method of regressing a sin-
gle output. In contrast, we propose a generative approach
framework, called “Diffusion-based Human Mesh Recov-
ery (Diff-HMR)” that takes advantage of the denoising dif-
fusion process to account for multiple plausible outcomes.
During the training phase, the SMPL parameters are dif-
fused from ground-truth parameters to random distribution,
and Diff-HMR learns the reverse process of this diffusion.
In the inference phase, the model progressively refines the
given random SMPL parameters into the corresponding pa-
rameters that align with the input image. Diff-HMR, be-
ing a generative approach, is capable of generating di-
verse results for the same input image as the input noise
varies. We conduct validation experiments, and the results
demonstrate that the proposed framework effectively models
the inherent ambiguity of the task of human mesh recovery
in a probabilistic manner. Code is available at https:
//github.com/hanbyel0105/Diff-HMR.

1. Introduction
Human Mesh Recovery (HMR) is a task of regressing

three-dimensional human body model parameters, such as

SMPL [24], from a given 2D image. Along with joint-

based methods [29, 6, 23], HMR is a fundamental task in

computer vision and holds great significance in applications

like computer graphics and VR/AR. Despite significant ad-

vances in HMR, it remains a challenging problem due to

the inherent ambiguity caused by the loss of depth infor-

mation and occlusions in 2D images. Most existing ap-

proaches [14, 15, 4, 38, 5, 36] have relied on single-output

regression, limiting their ability to explain uncertainty in the

HMR process. Consequently, these methods often fail to re-

construct diverse and plausible 3D human body meshes that

accurately represent the actual posture of the human.

To overcome these limitations, we propose a generative

Figure 1: Diffusion model for human mesh recovery. (a)

A diffusion model defined by a Markov chain, consisting

of a forward process (“diffuse”) and a reverse process (“de-
noise”). (b) Diffusion model for the task of image genera-

tion. (c) We propose Diff-HMR, which formulates human

mesh recovery as a denoising diffusion process, enabling

the generation of multiple plausible meshes based on varia-

tions in a random noise input of SMPL.

approach framework called “Diffusion-based Human Mesh

Recovery (Diff-HMR)”. Unlike traditional perception-based

approaches [14, 15, 38, 20] that regress a single output from

the given image, our proposed framework draws inspira-

tion from the denoising diffusion process [10] and outputs

SMPL parameters in a generative way from random noise

input. By exploring multiple plausible outcomes during the

reconstruction process based on the input noise varying,

Diff-HMR can probabilistically model the inherent ambi-

guity in human mesh recovery.

Specifically, during the training phase, the SMPL param-

eters are diffused from ground-truth parameters to random

distribution, and Diff-HMR learns the reverse of this dif-

fusion process. In the inference phase, the model progres-

sively refines the initial random SMPL parameters to the
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parameters corresponding to the given input image. As a

generative approach, Diff-HMR can produce diverse plau-

sible human body meshes for the same input image as the

input noise varies as shown in Figure 1 (c).

Additionally, to overcome the limitation of the diffusion

model, which is sensitive to signal-to-noise ratio (SNR), we

adopt 6D rotation representations [39] instead of Axis-angle

representations as joint angle representations for SMPL. We

conduct experiments on various datasets [37, 22] and verify

the efficacy of Diff-HMR. Our contributions are as follows:

• We propose a novel generative HMR framework, Diff-

HMR, which utilizes the denoising diffusion process to

generate multiple 3D human meshes from a given image,

effectively modeling the inherent ambiguity of HMR.

• By adopting 6D rotation representations for SMPL joint

angles, Diff-HMR can maintain a suitable signal-to-noise

ratio (SNR), enabling stable training of diffusion models.

• The experimental results show that Diff-HMR effectively

models the inherent ambiguity of HMR, generating mul-

tiple plausible outcomes from a given image.

2. Related Work
Monocular 3D Human Mesh Recovery can be catego-

rized into optimization-based, regression-based, and hy-

brid approaches. Optimization-based approaches [3, 17]

fit SMPL parameters to minimize errors between recon-

structed meshes and 3D/2D evidence like keypoints or sil-

houettes. Regression-based approaches [14, 27, 4, 28, 5, 38]

leverage deep neural networks to improve inference speed

and reconstruction quality by directly inferring SMPL from

input images. In recent studies, hybrid approaches [15, 13]

that combine both optimization and regression-based meth-

ods have emerged. This approach offers a more accurate

pseudo-ground-truth SMPL for 2D images. Despite these

advancements, such single-output regression methods still

limit their ability to explain the uncertainty in the HMR. To

overcome this, we propose Diff-HMR that produces multi-

ple plausible outcomes from random noise of SMPL, which

provides comprehensive modeling in probabilistic manner.

Probabilistic Inference for Human Body Mesh. Esti-

mating a person’s 3D pose from a single image remains

challenging due to inherent ambiguities such as occlusions

and depth ambiguities. To address this problem, Jahangiri et
al. [12] adopted a compositional model and utilized anatom-

ical evidence to infer multiple hypotheses of 3D poses. In

addition, Li et al. [18] used a Mixture Density Network,

considering the Gaussian kernel centroids as individual hy-

potheses. Sharma et al. [33] utilized CVAE et al. [35] to

generate hypotheses and generated the final output by using

the weighted average of hypotheses based on joint-ordinal

relations. In the field of human mesh recovery, following

this trend, recent works such as Biggs et al. [2] have uti-

lized Normalizing flow to output N pre-defined predictions,

and Kolotouros et al. [16] directly outputs likelihood val-

ues. However, despite the excellent capabilities of a denois-

ing diffusion process for probability distribution modeling,

it has not yet been applied to probabilistic HMR.

Denoising Diffusion Probabilistic Models. Denoising

diffusion probabilistic models (DDPMs) [10], also known

as diffusion models, are generative models composed of

two stages: a forward process (“diffuse”) and a reverse

process (“denoise”). In the forward process, the input

data is diffused into a random distribution through multi-

ple steps by adding Gaussian noise. In the reverse process,

the model learns to reverse the forward process, denoising

the noised data, and consequently learns the distribution of

data. DDPMs have shown excellent performance in density

estimation and have recently been applied to tasks such as

image/text generation [34, 25, 7, 30, 19, 21], despite the

computational cost of the sampling process. In the con-

text of joint-based 3D human pose estimation, DDPMs have

been applied to tackle ambiguities [8, 32]. However, there is

no method for human mesh recovery yet; therefore, in this

work, we propose a probabilistic HMR method that consid-

ers multiple outputs by applying DDPMs for the first time.

3. Method
The overall framework of our Diff-HMR is depicted in

Figure 2. In this section, we first recapitulate DDPMs [10]

and then explain the model architecture of Diff-HMR.

3.1. Preliminary: DDPMs
Denoising diffusion probabilistic models (DDPMs) are

composed of two stage, each defined as a Markov chain:

the forward process and the reverse process.

Forward Process. Let x(0) be the observed original data,

and it follows an unknown distribution q(x(0)). The goal

of the forward process, referred to as the diffusion process,

is to transform x(0) into a Gaussian distribution N (0, I) by

gradually adding Gaussian noise over pre-defined T steps.

At each step t, the data is progressively disturbed by

adding noise according to the following equation:

q(x(t)|x(t−1)) ∼ N (
√
1− βtx

(t−1), βtI) (1)

where t = 1, · · · , T and βt is pre-defined noise schedule;

We can rewrite x(t) as x(t) =
√
1− βtx

(t−1) +
√
βtεt,

where εt follows a Gaussian distribution N (0, I).
For any given t, since εt are i.i.d., we can directly gener-

ate x(t) from x(0) in a closed form as follows:

q(x(t)|x(0)) ∼ N (
√
ᾱtx0, (1− ᾱt)I) (2)

where αt := 1− βt and ᾱt :=
∏t

s=1 αs.
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Figure 2: Illustration of Diff-HMR architecture. For a given image, Diff-HMR can predict multiple plausible human

body meshes that a person in the image may take. To model the ambiguity of the posture taken by the person, Diff-HMR

progressively generates the final human mesh θ̂(0) from the noise SMPL pose parameters θ̂(T ) that follows N (0, I). During

the reverse process, the denoising network fω(·) denoises θ̂(T ) as the correct SMPL pose θ̂(0), referring to the feature vector

z extracted from the input image as fω(θ
(t−1)|θ(t), t, z). In order to train fω(·), the forward process gradually perturbs the

ground-truth SMPL pose θ(0) as q(θ(t)|θ(t−1)) to produce the noised SMPL pose θ(t) required for training.

By using Eq. 2, we can efficiently generate noised sam-

ples x(t) during the training phase. In Diff-HMR, we em-

ploy ground-truth SMPL pose parameters θ(0) as x(0) to get

the noised SMPL pose θ(t) in the forward process.

Reverse Process. Let us define the joint distribution

pω(x
(0:T )), parameterized by the learnable parameters ω,

which aims to mimic the distribution q(x(0)) as follows:

pω(x
(0:T )) = p(x(T ))

T∏
t=1

pω(x
(t−1)|x(t)) (3)

where pω(x
(t−1)|x(t)) ∼ N (μω(x

(t), t),Σω(x
(t), t)) and

p(x(T )) ∼ N (0, I). The goal of the reverse process is to

find ω that maximizes p(x(0)) when x(0) follows q(x(0)).
To achieve this, we need to learn μω(x

(t), t) (mean) and

Σω(x
(t), t) (variance). However, according to DDPMs,

variance can be expressed as Σω(x
(t), t) = βt

1−ᾱt−1

1−ᾱt
I,

which only depends on t; Thus we only need to learn mean.

Furthermore, since the mean can be reparameterized as

μω(x
(t), t) = 1√

αt
(x(t) − βt√

1−ᾱt
εω(x

(t), t)), we can sim-

ply train a neural network εω(x
(t), t) parameterized by ω

to predict the noise ε at each reverse step.

In Diff-HMR, the model extracts a feature vector z from

the input image and predicts conditioned noise ε on the z
to generate the pose corresponding to the person of the in-

put image. Therefore, the training objective for the reverse

process in Diff-HMR is E[‖ε − εω(x
(t), t, z)‖2], where

ε ∼ N (0, I) and x(t) is as the following equation:

x(t) =
√
ᾱtx

(0) +
√
1− ᾱtε. (4)

3.2. Diffusion-based Human Mesh Recovery
In this work, we propose a diffusion-based human mesh

recovery (Diff-HMR) by incorporating denoising diffusion

probabilistic models (DDPMs) [10] into the existing HMR

framework to address the inherent ambiguity of the HMR.

Overall Framework. To tackle the inherent ambiguity of

human poses in the given image, Diff-HMR gradually gen-

erates the correct human mesh θ̂(0) corresponding to the

image from noise SMPL pose parameters θ̂(T ) as in the re-

verse process in DDPMs. To this end, we first extract the

image feature z from the given image I using the ResNet-

50 [9]-based image encoder g(·) as z = g(I) ∈ R
2048×7×7.

At each reverse step t, the denoising network fω(·) with

1D U-Net [31] architecture is conditioned on the time step

t and image feature z to predict the noise ε̂t necessary to

estimate the previous pose θ̂(t−1) from θ̂(t). To train fω(·),
the ground-truth noise εt is generated from the ground-truth

SMPL pose θ(0) through the forward process using Eq. 4.

We define loss function for typical DDPMs training that

predicts the noise ε̂t as Ldiff = E[‖εt − fω(θ
(t), t, z)‖2]

and use this for training of the denoising network fω(·).
Training Objective. In addition to using Ldiff, we also

impose constraints on the final SMPL pose θ̂(0) and the de-

rived 2D (J2D) and 3D (J3D) joints as in conventional HMR

methods [14, 5], which are represented as Lhmr. However,

since fω(·) predicts the noise at each time step t, we can-

not directly access θ̂(0). To overcome this, we deduce θ̂(0)

from the predicted noise ε̂t by reparameterizing Eq. 4 as
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Figure 3: Predicted meshes obtained by varying seeds.
Diff-HMR outputs a plausible human body mesh of differ-

ent possibilities for each sampled seed θ̂(T ) ∼ N (0, I).

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓
SPIN [15] ICCV’19 96.9 59.2 116.4

Biggs et al. [2] NeurIPS’20 N/A 59.9 N/A

ProHMR [16] ICCV’21 N/A 59.8 N/A

Diff-HMR, n = 1 98.9 58.5 114.6

Diff-HMR, n = 5 96.3 57.0 111.8

Diff-HMR, n = 10 95.5 56.5 110.9

Diff-HMR, n = 25 94.5 55.9 109.8

Table 1: Multiple hypotheses results on 3DPW. Values

are in mm. n denotes the number of inferences performed

by varying the seed θ̂(T ). We report the error calculated

based on the minimum error among n samples. Best in bold,

second-best underlined.

θ̂(0) = 1√
ᾱt
θ̂(t)−(

√
1
ᾱt

− 1)fω(θ̂
(t), t, z). Thus, our over-

all loss function is Lall = Ldiff + Lhmr.

Since the ambiguity of human mesh recovery is mainly

related to pose, Diff-HMR predicts SMPL shape param-

eters β and weak-perspective camera parameters π ∈
[s(scale), t(translation)] simply using MLP-based regres-

sor R(·) as {β,π} = R(z). From predicted results, we

can get mesh vertices M = M(θ,β) ∈ R
6890×3 where M

is transform function and get 3D joints J3D = WM and 2D

joints J2D = Π(J3D) where W and Π denote pre-trained

linear regressor and projection function, respectively.

4. Experiments
4.1. Datasets and Evaluation Metrics

In order to train our model, we use H36M [11] and MPI-

INF-3DHP [26] as 3D datasets and pseudo-ground-truth

SMPL annotated COCO [22] and MPII [1] as 2D datasets.

For quantitative evaluation, we use 3DPW [37] test split and

use the Mean Per Joint Position Error (MPJPE), Procrustes-

Aligned MPJPE (PA-MPJPE), and Per-Vertex Error (PVE)

as our evaluation metrics. For qualitative evaluation, we use

the sample image from the validation set of COCO [22].

4.2. Experimental Results
This section includes basic experiments to validate Diff-

HMR. We show quantitative and qualitative results and ex-

Method 3DPW [37] MPI-INF-3DHP [26]

Axis-angle repr. 116.3 146.0

6D rotation repr. [39] 64.5 92.5

Table 2: Performance comparison based on SMPL joint
angle representations. We report PA-MPJPE in mm. Diff-

HMR shows better results when adopting 6D rotation rep-

resentations as joint angle representations. Note that only

the COCO [22] is used for training here. Best in bold.

plore the efficacy of using 6D rotation representations as

joint angle representations for SMPL in diffusion models.

Quantitative results. Table 1 shows quantitative results

of Diff-HMR. When n is 1, Diff-HMR shows comparable

performance to existing HMR methods [15, 2, 16]. More-

over, as n increases to 5, 10, and 25, the errors decrease sig-

nificantly, indicating that Diff-HMR has strong representa-

tional power for modeling the inherent ambiguity of HMR.

Qualitative results. Figure 3 shows human mesh recon-

struction results of Diff-HMR. As the input noise SMPL

pose parameters θ̂(T ) vary along Gaussian distribution

N (0, I), the model exhibits diverse inference outcomes for

probabilistically ambiguous body parts.

Efficacy of using 6D rotation representations. For sta-

ble training of diffusion models [10], the ratio between the

magnitude of the original data and the injected noise, known

as the signal-to-noise ratio (SNR), is crucial. To incorporate

diffusion models into HMR, we adopt 6D rotation represen-

tations [39] with the same scale as Gaussian distribution as

joint angle representations of SMPL pose parameters. As

shown in Table 2, we can confirm that it is more reasonable

to adopt 6D rotation than Axis-angle representations.

5. Conclusion and Future Work
Conclusion. In this work, we focus on the task of human

mesh recovery, which reconstructs 3D human body mesh

from a given 2D observation. To probabilistically model

the inherent ambiguity of the task, we propose a generative

approach framework, called “Diff-HMR” that takes advan-

tage of the denoising diffusion process to account for mul-

tiple plausible outcomes. To overcome the limitation of the

diffusion model, which is sensitive to the signal-to-noise ra-

tio (SNR), we adopt 6D rotation representations instead of

Axis-angle representations as joint angle representations for

SMPL. The evaluations on benchmark datasets demonstrate

that the proposed framework successfully models the inher-

ent ambiguity of the task of human mesh recovery.

Future Work. We will focus on improving the condition-

ing module of the 1D U-Net to better understand the spatial

context of the input image. By enhancing the module, we

can expect Diff-HMR to infer more plausible results, espe-

cially in occluded situations.
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