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Abstract

The task of performing image semantic segmentation
faces challenges in achieving consistent and robust results
across a sequence of video frames. This problem becomes
more prominent for indoor scenes where small camera
movement can lead to drastic appearance changes, occlu-
sions, and loss of global context information.

To overcome these challenges, this paper proposes a
novel approach that combines multi-view semantic fusion
with spatial reasoning to produce view-invariant semantic
features for temporally consistent semantic segmentation
for indoor RGB-D videos.

The experiments are conducted on the ScanNet dataset,
showing that the proposed spatially aware multi-view fu-
sion mechanism significantly improves the state-of-the-art
image semantic segmentation methods Mask2Former and
ViT-Adapter. In particular, the proposed pipeline offers im-
provements of 5%, 9.9%, and 14.4% in 2D mIoU, cross-
view consistency, and temporal consistency, respectively,
when compared to Mask2Former. Similarly, when com-
pared to ViT-Adapter, the proposed mechanism offers en-
hancements of 4.8%, 8.9%, and 10.9% in the same metrics.

1. Introduction

While there has been considerable progress in image se-

mantic segmentation [36, 24, 4], there has been relatively

little research focused on achieving consistent results across

a sequence of video frames. However, the need for tempo-

rally coherent semantic segmentation has become increas-

ingly critical in many fields, including robotics, virtual re-

ality, and augmented reality.

The task of performing image semantic segmentation

faces challenges in achieving consistent results across a se-

quence of video frames, where viewpoint changes can cause

inconsistent predictions between views. In a single image,

the appearance is encoded through the relationship between

Figure 1: The qualitative results of state-of-the-art image-

based semantic segmentation algorithm, ViT-Adapter, on a

selected sequence of data from ScanNet. Despite the rel-

atively stable viewpoint and appearance, the algorithm en-

counters difficulties in predicting consistent and reliable la-

bels over time.

the scene and the camera viewpoint. However, in a video

sequence, the viewpoint changes over time, resulting in a

continuous variation in the appearance. This means that

small changes in camera viewpoint can cause significant

appearance changes, particularly in indoor scenes where the

scene is in close proximity to the camera. These appearance

changes can be attributed to the variation in the scene’s per-

spective and the occlusion of objects in the scene.

In addition, indoor scenes may present more challenging

appearances since the scene is often very close, and certain

views can lose global context information. For example,

when recording a corridor, the camera is often positioned

very close to the wall, resulting in a loss of global context

information.

Most existing methods on video semantic segmentation

exploit the temporal relationship between frames by prop-

agating features with optical flow [16, 22] or use atten-

tion mechanisms to establish temporal relations [34, 14].

These methods rely on the assumption of feature consis-

tency across frames to establish temporal relationships be-
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tween them. However, this assumption represents a signif-

icant challenge in the case of indoor scenes, where rapid

changes in viewpoint and high rates of occlusion can re-

sult in a significant appearance change. Consequently, these

methods have limitations in their capacity to effectively ex-

ploit the complete temporal relationship between frames for

indoor scenes.

Motivated by the more readily accessible RGB-D data,

a new approach is taken to video semantic segmentation

to circumvent the difficulties on indoor scenes. This task

can be re-framed into a multi-view semantic fusion prob-

lem by carrying the predictions from 2D to 3D space and

fusing them into a unified and consistent segmentation re-

sult. Then, by re-projecting the predictions to 2D, a tempo-

rally consistent video segmentation can be acquired. This

approach reduces the need for expensive temporal consis-

tency modeling in video segmentation networks, and can

generate temporally and spatially consistent segmentation

results from single-image segmentation networks. Addi-

tionally, by applying the multi-view fusion method directly

on 2D pixel-wise semantic labels, the proposed method can

process a whole video sequence at once, independent of the

2D segmentation network.

This approach has been demonstrated to improve seg-

mentation accuracy, particularly in cases where individual

views may lose global context information due to close

proximity to the scene, significant appearance change be-

tween frames or occlusion of objects. However, existing

methods that employ multi-view semantic fusion strategies

have not yet fully exploited the geometric and the view-

dependent features of the data, which can help to resolve

ambiguous predictions in 2D.

To address these challenges, our proposed approach

combines multi-view semantic fusion with spatial reason-

ing to produce view-invariant semantic features for indoor

video semantic segmentation. By leveraging the rich infor-

mation provided by multiple views, our method produces

more robust and accurate semantic features, which are re-

fined using geometric data through spatial reasoning. The

refined segmentation map is projected from 3D to 2D, re-

sulting in improved video semantic segmentation accuracy

for indoor scenes.

The proposed method has following contributions:

• A novel multi-view semantic fusion with spatial rea-

soning pipeline is proposed. The proposed pipeline

is tested using two off-the-shelf state-of-the-art image

semantic segmentation algorithms. The results show

that spatially-aware fusion helps predicting temporally

consistent and more robust semantic labels for indoor

RGB-D videos.

• The proposed method reaches state-of-the-art 2D

mIoU performance on semantic segmentation on Scan-

Net validation set. In addition, it reaches better 3D

mIoU performance than the previous best-performing

multi-view methods.

• To the best of our knowledge, we are the first to pro-

pose temporal coherency scores on ScanNet dataset.

The proposed method establishes a baseline for fur-

ther research and achieves the highest cross-view con-

sistency and temporal consistency scores on ScanNet

dataset.

• The proposed method is flexible and can be used with

any image semantic segmentation pipeline.

2. Related work
Multi-view semantic fusion. As a different approach to

directly processing 3D data, other research has focused on

segmenting images in 2D and projecting the segmentation

scores onto 3D space. Early works commonly extract pixel-

wise semantic features and aggregate them using weighted

averaging [33] and Bayesian fusion [26, 13] followed by

a Conditional Random Field model to regularize the 3D

segmentation, or employed a label diffusion method [25]

to unify both steps. These fusion methods, however, deal

with difficulties due to occlusion, illumination, and cam-

era pose inaccuracies present in RGB-D data. Some ap-

proaches [20, 11, 5, 21] have explored synthesizing virtual

views from real data to alleviate these problems, sampling

views from better viewpoints and even rendering additional

data channels. While this approach can improve segmenta-

tion in 2D, they still use simple multi-view fusion strategies

and do not leverage the geometric features, resulting in dif-

ficulties resolving ambiguous predictions in 2D.

Closer to our setting, 3DSceneGraph [1] and 2D3DNet

[10] proposed to aggregate semantic labels following a

distance-based weighting scheme. Similarly, 2D3DNet fur-

ther processes the features with 3D convolutions, but do not

exploit other viewing conditions for fusion. Additionally,

they focus on learning 3D segmentation using only pseudo-

labels from 2D, while our task assumes labels in 3D to fur-

ther improve performance for both the 2D and 3D domain.

Combined 2D/3D segmentation. Some existing meth-

ods have leveraged the complementary features between 2D

and 3D. They typically extract features using 2D convolu-

tions and project them back to 3D [8, 19]. Some approaches

[20, 11] generate virtual views to further improve perfor-

mance in 2D. Another method [15] jointly learns 2D and

3D segmentation, allowing information to flow from both

domains. While these approaches are similar to ours, they

do not leverage view-dependent and geometrical features to

learn multi-view fusion but instead use simple aggregation

methods. These multi-modal networks are generally con-

strained in the number of input images, effectively limiting

the performance on large scenes. More recently, Robert et
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al. [29] propose to learn multi-view feature fusion of 2D

extracted features for 3D segmentation. While they are able

to improve the computational efficiency of hybrid 2D/3D

frameworks, they are still limited to simple 2D backbones

during training. Our approach for multi-view semantic fu-

sion can be applied to any 2D segmentation network.

Video semantic segmentation. Existing work on video

semantic segmentation focuses on increasing temporal con-

sistency in the predictions. Most methods are based on op-

tical flow [16, 22], either using it to propagate semantic pre-

dictions or features to following frames, or as regularization

for network training [23]. Although optical flow is widely

used, it is still computationally expensive and is susceptible

to errors from sudden viewpoint changes and occlusions,

which is especially prevalent in indoor scenes. Differently,

some works focus on integrating temporal relations using

attention mechanisms [14, 34], but still assume conformity

of features between frames.

3. Method
Given a semantic video sequence with segmentation

maps M , a 3D point cloud reconstruction of the scene P and

the aligned camera poses of each view, our goal is to refine

M by leveraging multi-view information inherent in corre-

spondences between 3D points and 2D pixels. The overall

structure of the pipeline is presented in Figure 2. First, the

correspondences between points and masks are calculated

using a visibility model. For each point-image pair, viewing

descriptors are computed using camera pose and local point

geometric information. Then, for each point, the viewing

descriptors and segmentation labels from all corresponding

views are processed simultaneously by an attention-based

fusion module to aggregate relevant view-dependent, geo-

metric and semantic features. These multi-view fused fea-

tures are concatenated to the XYZ-features of the points and

further processed by a 3D network to to spatially refine pre-

dictions. Finally, the refined predictions are projected to

2D, acquiring multi-view refined segmentation masks.

3.1. Preprocessing

Prior to training the multi-view refinement network, a se-

ries of steps were taken to prepare the input data. This sec-

tion explains the construction of the point-image mapping

and its viewing descriptors.

3.1.1 Point-image mapping

Pixels in 2D space cannot be easily back-projected to 3D

space because of occlusions. Ambiguity arises when two

objects share the same line of sight from the camera view.

To resolve this pixel to object assignment, a visibility model

is needed. Z-buffering [29] method is used to compute the

point-image mapping between the point cloud and images.

Compared to the traditional methods that either use true

depth maps from a depth-sensor or an expensive mesh re-

construction step, this method is computationally more ef-

ficient while removing the need for true depth maps.

The valid point-image pairs (p, i) ∈ P ×I are calculated

for each point p in the point cloud and each image i in the

video sequence. A pair is valid if p is seen in i without it

being occluded. The projected pixel location of p within i
is denoted as pix(p, i).

The point-image mapping is then constructed as fol-

lowed. For each image i ∈ I , the points in the frustum of i
are first placed on a plane orthogonal to i at a set distance.

Each point is assigned a cube of varying size that decreases

based on its distance to i, ensuring that cubes closer to the

image hide cubes behind them. The maximum distance was

set to 8m and points further away were dropped. Then, the

projection mask or splat of each cube is calculated using the

camera parameters of i. Repeatedly, each splat is collected

in a depth map, called Z-buffer, which stores the closest

distance of each point-pixel projection. The indices of the

closest points are stored in a separate index buffer. After this

process, the Z-buffer contains only the non-occluded points

and the projected pixel location for each point p within each

image i is saved in pix(p, i), which forms the final point-

image pairs (p, i).

3.1.2 Viewing descriptors

The correctness of segmentation masks produced by a 2D

network can depend on the viewpoint from which the im-

age was taken. To describe the properties of a point-image

pair, several view-dependent features and local geometric

features are calculated, following Robert et al. [29]. A vec-

tor of 7 computed features is assigned to each (p, i) pair,

forming the viewing descriptors o(p,i).
The view-dependent features are:

• Projected depth. The distance between the camera

and seen object can affect the quality of cues received

by the 2D network. For example, an object too distant

from the camera may be perceived with less detail. The

depth is computed by taking the distance between a

point and its corresponding viewpoint, and is further

normalized by the maximum distance of 8m.

• Viewing angle. When a surface is viewed at a right an-

gle, it could be captured more completely than when it

is viewed at a slanted angle. This in turn affects the

segmentation. The viewing angle is computed by tak-

ing the absolute cosine of the angle between the esti-

mated normal vector and the camera viewing direction.

• Occlusion rate. Objects and surfaces in the back-

ground are often partially occluded. This reduces the

relevant context, thus views with less occlusion tend to
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Figure 2: Our multi-view fusion and spatial refinement pipeline. First, the data is preprocessed for a scene. Then, multiple

semantic views are fused into one consistent semantic feature based on their viewing conditions. Lastly, the semantic and

geometric features are jointly processed by a 3D network to refine predictions, and the per-point semantics are predicted.

Semantic segmentation results in 2D are acquired by projection.

produce a better segmentation. The occlusion rate of

a point from a certain view is calculated as the ratio

of the 50 nearest points that are non-occluded in that

same view.

And the local geometric features are:

• Local density. The density around a point can affect

the significance of other neighborhood-based descrip-

tors. For example, occlusion rates provide more accu-

rate representations when computed on a locally dense

area, since the neighboring points are less spread out.

The local density is calculated as the area of the small-

est disk containing all 50 nearest neighbors, divided by

the square of the voxel grid resolution.

• Linearity, planarity and scattering. These geomet-

ric descriptors provide information on the shape of a

local area. They signal the spread of points in one, two

and three dimensions, respectively. Surfaces that are

planar can be best captured in 2D, while highly linear

and thin surfaces can be more difficult for a 2D net-

work to segment. Moreover, highly irregular surfaces

can occlude parts of itself when captured in 2D. Hence,

these features can help discern the quality of the cam-

era views. They are calculated using the eigenvalues

from the covariance matrix of a point and its 50 near-

est points, following Demantké et al. [9].

3.2. Learning multi-view semantic fusion via Trans-
formers

In indoor scenes, a 3D point can be seen from multiple

views. Since viewpoint changes can affect the predicted

segmentation mask, its corresponding 2D labels can be-

come inconsistent with each other. To produce multi-view

consistent predictions for each point, simple fusion meth-

ods, such as taking the average, can be used. However,

these do not take the quality of each view into account when

fusing the predictions, thus producing a wrong label when

the correct label was not the majority vote. To tackle this

challenge, this section proposes a multi-view feature fusion

method based on Transformer self-attention that learns to

aggregate relevant features from multiple views based on

their viewing conditions.

3.2.1 View fusion

The viewing conditions of a point-image pair is described

by a set of view-dependent and local geometric features.

However, the factors that define a high quality view are

context dependent. For example, a wall is best recogniz-

able from a distance with a frontal view, while a sink is best

viewed from up close with a downwards view. To capture

these complex dependencies between viewing conditions

and semantic object classes, the predicted class labels are

concatenated to the viewing conditions to form the Trans-

former input.

The steps to produce a multi-view fused feature vector

for one 3D point p is given as follows. First, a maximum

of K views that contain p are randomly selected. The se-

mantic label of the selected point-image pairs (p, i) is then

extracted:

s(p,i) = Mi[pix(p, i)], (1)

where Mi is the segmentation map from the 2D model for
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image i. They are then concatenated to the viewing descrip-

tors to form feature vectors:

x(p,i) = [o(p,i), s̃(p,i)], (2)

with s̃(p,i) being the one-hot encoded semantic label. These

features are then projected to embedding vectors θ(p,i) ∈
R

D using a single linear layer:

θ(p,i) = Linear(x(p,i)) (3)

To satisfy the sequential input format of Transformers, each

selected view i and its embedding vector θp,i is treated as

a single sequence element, and the number of vectors in θp
is zero padded to length K. The Transformer then takes the

embedding vectors and predicts a multi-view fused feature

φ ∈ R
D:

φp = Transformer([θ(p,1), ..., θ(p,K)]) (4)

These final features are further used in the 3D network.

3.3. Spatial refinement

Although the view fusion module produces view-

consistent features, these features are still processed inde-

pendently for each 3D point, resulting in incoherent seg-

mentation between object boundaries. We exploit the geo-

metric context to refine the initial segmentation by applying

a sparse convolutional network to the fusion output. For

each point p ∈ P , we first concatenate its XYZ-coordinates

to the fused features φp ∈ R
D, forming the 3D input fea-

tures φ̃p ∈ R
D+3. These are then concurrently process-

esed at various scales by down-sampling and up-sampling,

allowing the network to attend to neighboring features on

both local and global spatial contexts.

3.3.1 Network architecture

The work of Xiong et al. [35] was followed for the archi-

tectural design. The view fusion module is visualized in

Fig. 3. The Transformer encoder consists of four stacked

layers. Each layer has a Multi-Head Attention block with

two attention heads and a Feed-Forward Network, as well

residual connections. The Feed-Forward Network consists

of two linear layers and two dropout layers, with a GELU

activation layer in between. For the network’s embedding

and hidden dimensions, we use D = 64 and H = 256.

Layer normalization [2] is used throughout the architecture.

In order to aggregate features from multiple views

into one multi-view fused feature, a learnable embedding

([CLS] token) is appended to the input sequence. In the

Transformer encoder, this token interacts with other ele-

ments from the input sequence through an attention scheme.

After processing it with the Transformer encoder, we extract

LayerNorm

Multi-Head
Attention

LayerNorm

MLP

+

Lx

+

Multi-View Fused
Features

Extract CLS
Token

Add CLS Token

Viewing Conditions

Viewing Conditions

Viewing Conditions

Linear

Sequence of
Embedded
Features

View Fusion

Figure 3: Transformer encoder

this [CLS] token, which finally forms the multi-view fused

feature φ ∈ R
D.

Res16UNet34 is used as our 3D network, which is based

on MinkowskiNet [6] and is similar in structure to the UNet.

This architecture consists of 5 encoding and 5 decoding lay-

ers, with skip connections on each layer depth. The en-

coding layers are composed of a strided convolution with

kernel size=[3, 2, 2, 2, 2] and stride=[1, 2, 2, 2, 2], and

is followed by N=[0, 2, 3, 4, 6] ResNet blocks [12] with

channel size=[64, 32, 64, 128, 256]. The decoding layers

each begin with a strided transposed convolution with ker-

nel size=[2, 2, 2, 2, 3] and stride=[2, 2, 2, 2, 1], followed by

N=1 ResNet blocks of channel size=[128, 128, 96, 96, 96].

Each convolutional layer is followed by a BatchNorm [18]

and a ReLU layer. Finally, the output passes through a 3D

classification head with a single linear layer and a softmax

activation to get per-class predictions.

4. Experiments
4.1. Dataset

ScanNet [7] is a large-scale RGB-D video dataset with

over 2.5 million frames and their corresponding camera

poses, captured with an IPad Air2 and an attached depth

sensor. It contains 3D reconstructions of various scenes,

such as offices, living rooms and bathrooms. The dataset

is split into a training set with 1201 scans and a valida-

tion set with 312, all annotated with 20 semantic label cat-
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Fusion method 2D mIoU CC TC

- 72.4 70.4 78.2

Random selection 69.6 68.3 80.9

Majority voting 73.7 72.2 87.4

Weighted averaging [1] 73.9 73.7 87.4

Ours 77.4 80.3 92.6

(a) Mask2Former

Fusion method 2D mIoU CC TC

- 74.4 72.1 81.9

Random selection 71.8 69.9 82.5

Majority voting 75.4 73.1 88.1

Weighted average [1] 75.6 74.7 88.1

Ours 79.2 81.0 92.8

(b) ViT-Adapter

Table 1: Comparison of the proposed multi-view semantic fusion approach against statistical fusion methods, as well as

state-of-art single image semantic segmentation baselines, Maks2Former and ViT-Adapter. The performance is measured

in 2D mIoU, cross-view consistency (CC) and temporal consistency (TC). The proposed method significantly improves the

performance of our baselines in all metrics.

egories. Additionally, there is a withheld test set containing

100 scenes for the online benchmark.

We extract point clouds from the reconstructed surfaces

and use the XYZ-coordinates as 3D input. For each scene,

we subsample the image sequence by selecting key frames,

following [31]. A key frame is selected if its relative trans-

lation is larger than tmax = 0.3 and its relative rotational

angle is greater than trot = 15. This leaves an average of

150 views per scene. We resize the 2D images to 640× 480
pixels.

4.2. Implementation Details

The maximum number of selected views per point is set

to K = 6 for the view fusion Transformer.

Our network is trained using the cross entropy loss

and stochastic gradient descent solver with momentum and

weight decay set to 0.85 and 10−4, respectively. The

OneCycleLR scheduler from the Pytorch [28] library is em-

ployed with a minimum and maximum learning rate be-

tween 0.012 and 0.3. A batch size of 6 is used and the net-

work is trained for 60 epochs. Data augmentation is applied

to the input point clouds including random scaling, rota-

tion around all three axes, symmetry around X and Y axes,

and a Gaussian jitter is added to the input viewing condi-

tions. Additionally out-of-context data augmentation using

Mix3D [27] is applied, which combines two point clouds

of different scenes. During training, the number of sampled

views per scene is limited to 100.

4.3. Evaluation Metrics

The proposed method is evaluated considering two as-

pects: accuracy and consistency of predictions. The accu-

racy is measured using the mean of class-wise Intersection

over Union (mIoU) on the 2D and 3D predictions. For tem-

poral consistency (TC) [32], the segmentation from every

two neighboring frames is warped and the mIoU difference

is calculated, taking the first frame as source and second as

target. FlowNet2 is used [17] to calculate the optical flow.

A downside of the TC metric is that it does not account

for longer dependencies within the video, which occurs fre-

quently in indoor video data. Ideally, predictions of objects

that re-appear in view should be consistent with respect to

associated predictions in the past. To capture this aspect,

the cross-view consistency metric is formulated based on

Shannon Entropy [30]:

CC(X) = −
∑

x∈X
p(x) log p(x) · 1

log |X| , (5)

where X denotes the set of distinct class labels from the

predictions, p(x) the likelihood of x and |X| the size of

the label set. p(x) is estimated as the proportion of labels

belonging to class x. The cross-view consistency measures

the coherence between predictions from multiple views. It

is further normalized by the length of the set to handle label

sets with varying number of classes.

4.4. Results

Comparison to statistical multi-view semantic fusion
methods. In this experiment, the effect of the proposed

multi-view fusion pipeline on indoor video semantic seg-

mentation is compared against statistical multi-view seman-

tic fusion methods. The performance is evaluated using 2D

mIoU, cross-view consistency (CC) and temporal consis-

tency (TC). These metrics are used to highlight the improve-

ment on individual frame semantic segmentation as well as

temporal coherency.

The experiments are performed using two off-the-

shelf state-of-art image semantic segmentation algorithms,

Mask2Former [4] and ViT-Adapter [3], and these are con-

sidered as the baselines. These networks are first trained

on labeled images to create dense semantic predictions for

images, which are then used by the proposed multi-view

fusion pipeline and other multi-view semantic fusion ap-

proaches. Unless otherwise specified, evaluations are car-

ried out on the ScanNet validation split, using all sampled

images in a scene. The final 2D segmentation masks are
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Mask2Former 72.4 85.7 91.2 66.9 82.4 77.1 72.7 78.4 65.6 62.0 73.9 47.1 60.0 63.2 73.0 71.4 74.5 92.5 71.8 83.5 55.2

Majority voting 73.7 85.5 92.3 70.4 84.9 80.0 77.6 79.1 69.4 63.1 72.0 43.9 59.6 66.6 75.2 73.4 74.9 91.3 67.8 83.5 62.9

Weighted averaging [1] 73.9 86.0 92.5 70.2 85.0 80.7 77.7 79.6 69.9 63.9 72.4 43.8 59.4 66.6 75.7 73.7 75.6 91.9 67.9 83.8 62.5

Mask2Former (Ours) 77.4 88.7 95.7 72.9 86.7 88.6 83.2 83.5 73.4 66.2 71.7 46.3 63.8 68.8 81.8 78.1 81.1 93.8 69.7 87.6 67.2

ViT-Adapter 74.4 86.9 91.8 68.2 84.6 80.0 76.2 79.8 73.9 69.6 74.2 36.1 58.3 68.4 73.5 78.4 76.4 93.5 73.3 85.4 60.0

Majority voting 75.4 86.0 92.6 71.6 88.0 82.7 81.3 80.7 76.4 70.0 71.3 30.7 59.0 71.6 76.4 80.2 77.4 91.8 68.9 84.5 67.0

Weighted averaging [1] 75.6 86.6 92.7 71.8 87.7 82.8 80.1 81.0 76.1 70.5 71.7 31.5 59.8 71.5 76.8 80.0 77.6 92.4 69.2 84.1 67.1

ViT-Adapter (Ours) 79.2 88.7 95.8 75.0 87.9 91.2 87.4 84.8 79.8 72.6 73.5 31.8 65.6 76.6 81.6 84.7 85.1 94.2 69.7 88.1 69.0

Table 2: Class-wise 2D IoU scores.

acquired by re-projecting the aggregated 3D semantic pre-

diction. The voxel resolution is set to 0.03 and each point

cloud is downsampled accordingly using grid-sampling.

The performance of our approach is compared against

several statistical multi-view label fusion methods:

• Select random: selects a view at random and assigns

the associated semantic label to the 3D point.

• Majority voting: counts the semantic label from each

individual view and assigns the most frequent class to

the 3D point. This method is the closest to Bayesian

averaging [26, 13], which does not apply to our prob-

lem since we focus on hard labels.

• Weighted averaging [1]: gives labels from each view

a weight based on their distance to the 3D point, fol-

lowing the heuristic that objects closer to the camera

are better visible. It then aggregates the weights and

selects the label with the largest weight. This can be

seen as a weighted majority voting scheme.

The results on Mask2Former and ViT-Adapter are shown

in Table 1a and 1b, respectively. The proposed refine-

ment pipeline shows significant improvement with respect

to the baselines and outperforms all label fusion methods.

It achieves an mIoU score of 77.4% on Mask2Former, and

79.2% on ViT-Adapter, which is 3.5% and 3.6% higher than

the best-performing fusion method. Additionally, a large in-

crease in both temporal and cross-view consistency is seen

for the proposed method compared to majority voting and

weighted averaging. Specifically, the proposed method is

the only fusion method that is able to achieve a cross-view

consistency score above 80%, highlighting the benefits of

learning multi-view fusion directly from viewing conditions

and leveraging geometric context. Fig. 5 provides an exam-

ple visualization.

To gain a deeper understanding of model performance,

the 2D class-wise IoU scores are compared in Table 2.

Overall, the proposed method outperforms other statistical

fusion methods substantially on all classes or achieves a

Figure 4: Visualization of 2D refined semantic segmenta-

tion using ViT-Adapter as input. From left to right: rgb im-

age, weighted averaging segmentation, our segmentation,

ground-truth segmentation. Weighted averaging produces

ragged segmentation, while the proposed method shows

clearer boundaries and smoother surfaces.

Figure 5: Visualization of an ambiguous class in 2D. From

left to right: rgb image, weighted averaging segmentation,

our segmentation, ground-truth segmentation. It it obvious

that there are multiple views predicting chair as sofa. As a

result, weighted averaging fails to make a robust prediction.

In contrast, the proposed method predicts correct class la-

bels for chair.

similar performance. Moreover, it shows the largest im-

provement gains on classes that are geometrically distinct

but share similar appearances with other classes in 2D, such

as sofa, chair, curtain, shower curtain. Comparing to the

statistical fusion methods, they are not able to achieve sim-

ilar improvements on such classes. This demonstrates the

added benefit of spatial reasoning, which helps to recover

ambiguous predictions.

On the other hand, the refinement performs worse on the

picture and sink classes. This can be explained by the lim-

ited geometrical context surrounding a picture, which is of-

ten attached to walls, while sinks are generally more oc-

cluded and often do not have too many visible viewpoints

available.

Comparison to 2D/3D segmentation methods. In the

second experiment, the proposed pipeline is compared to
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state-of-the-art segmentation methods that also exploit the

complementary information between 2D and 3D. To ensure

a fair comparison, we subsample every 100 frames on Scan-

Net validation set and upscale the final 2D segmentation to

1296 × 968. The 3D segmentation is interpolated to 0.01

voxel size and includes all points of the scene, consistent

with other methods. The proposed approach is evaluated

using ViT-Adapter’s image segmentation result.

Table 3 reports the mIoU results. The proposed method

outperforms on 2D mIoU, overtaking the previous best

method [20] by 4.6 points. Similarly, the proposed method

also shows strong performance in 3D, performing signifi-

cantly better than methods that jointly learn 2D feature ex-

traction [15, 29, 19], which arguably provide more flexi-

ble contextual information for 3D segmentation compared

to pure semantic features from 2D. This highlights the ben-

efit of processing a large number of images concurrently in

a multi-view fusion scheme, which is expensive for general

2D/3D methods. On the other hand, the images are still

limited in their viewpoints and, thus, important parts of the

scene can be left unseen.

2D 3D

BPNet [15] 71.9 73.9

VMFusion [20] 74.9 76.4

DeepViewAgg [29] - 71.0

MVPNet [19] - 68.3

ViT-Adapter 73.2 -

ViT-Adapter (Ours) 79.5 76.4

Table 3: Semantic segmentation results on the official Scan-

Net validation split of different state-of-the-art methods that

operate on point cloud and images.

Cross-model adaptation. To study the generalizability

of the method, the network is applied to an unseen 2D seg-

mentation network without re-training and its performance

is measured. Table 4 presents the results in 2D and 3D

mIoU. Training with Mask2Former and evaluating on ViT-

Adapter slightly decreases the performance in both domains

when compared to the default refinement setup for ViT-

Adapter. On the other hand, by first training on ViT-Adapter

and then refining Mask2Former segmentation, a small im-

provement is noticed in 2D and 3D mIoU. This suggests that

training the refinement network on a stronger 2D segmenta-

tion model can help generalization on smaller models.

Ablation study The final experiment aims to study the

effect of individual components in the network. Only keep-

ing the multi-view fusion module results in a 2D mIoU of

76.3, while the standalone 3D network achieves a score

of 78.9. In comparison, the complete network scores 79.1

mIoU. This shows that spatial refinement is more effective

in the full network, but the multi-view fusion module is nec-

Training Refinement 2D 3D

Mask2Former
Mask2Former 77.4 77.7

ViT-Adapter 78.8 79.5

ViT-Adapter
ViT-Adapter 79.2 79.8

Mask2Former 77.6 77.8

Table 4: Cross-model adaptation of the 2D semantic seg-

mentation network. We report performance in mIoU.

essary to further increase performance.

Moreover, the influence of each viewing condition on

the multi-view fusion module is measured by removing one

viewing condition at a time. Table 5 reports the results in

2D mIoU. The most impactful features are the viewing an-

gle, the projected depth and the occlusion. Intuitively, these

features are what determine the visibility of an object the

most. The drop-out of every feature results in a drop in per-

formance, which signals the usefulness of each proposed

feature.

Feature 2D mIoU

projected depth 75.7

linearity 76.1

planarity 76.0

scattering 76.0

viewing angle 75.4

density 76.1

occlusion 75.8

baseline 76.3

Table 5: Influence of the viewing conditions. We measure

mIoU performance after replacing each feature with its sta-

tistical mean.

5. Conclusion

In conclusion, we have presented a novel approach for

temporally consistent semantic segmentation for indoor

RGB-D videos that combines multi-view semantic fusion

with spatial reasoning to produce view-invariant semantic

features. By exploiting the rich information provided by

multiple views, our proposed approach can produce more

accurate and robust semantic features, even in cases where

individual views may lose global context information or

where there is significant appearance change or occlusion

between frames. The proposed approach has been validated

on ScanNet validation set, where it achieved state-of-the-art

results in terms of cross-view consistency, temporal consis-

tency, and 2D mIoU performance.
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