
On-device Real-time Custom Hand Gesture Recognition

Esha Uboweja David Tian Qifei Wang Yi-Chun Kuo Joe Zou Lu Wang
George Sung Matthias Grundmann

Google LLC
1600 Amphitheatre Pkway, Mountain View, CA 94043, USA

{eshauboweja, dctian, qfwang, yichunkuo, zouj, luwa, gsung, grundman}@google.com

Abstract

Most existing hand gesture recognition (HGR) systems
are limited to a predefined set of gestures. However, users
and developers often want to recognize new, unseen ges-
tures. This is challenging due to the vast diversity of all
plausible hand shapes, e.g. it is impossible for developers
to include all hand gestures in a predefined list.

In this paper, we present a user-friendly framework that
lets users easily customize and deploy their own gesture
recognition pipeline. Our framework provides a pre-trained
single-hand embedding model that can be fine-tuned for
custom gesture recognition. Users can perform gestures in
front of a webcam to collect a small amount of images per
gesture. We also offer a low-code solution to train and de-
ploy the custom gesture recognition model. This makes it
easy for users with limited ML expertise to use our frame-
work. We further provide a no-code web front-end for users
without any ML expertise. This makes it even easier to build
and test the end-to-end pipeline. The resulting custom HGR
is then ready to be run on-device for real-time scenarios.
This can be done by calling a simple function in our open-
sourced model inference API, MediaPipe Tasks. This entire
process only takes a few minutes.

1. Introduction
Hand gesture recognition (HGR) plays a pivotal role in

enabling natural and intuitive human-computer interactions,

such as in augmented reality (AR), virtual reality (VR),

video conferencing and remote control applications. As

these technologies evolve, the ability to accurately detect,

interpret and respond to hand gestures is key to creating im-

mersive user experiences without disruption.

We present an innovative approach to train accurate and

robust HGR models with limited training data. Our ap-

proach uses a pre-trained model that has been trained on

a large dataset of videos of people fingerspelling words in

sign language. We then fine-tune the weights of this pre-

Figure 1. Our custom hand gesture recognition system enables any

user without ML expertise to use a small number of images per

gesture class for training and immediately use the model for real-

time on-device inference. Here we show how our solution extracts

the hand landmarks of each hand to compute a 128 dimensional

embedding vector which is used for custom gesture classification.

(The landmarks in this figure are best viewed digitally).

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

4273



Figure 2. Model architecture used for training the word-level fin-
gerspelling model and the single-hand embedding sub-model.

trained model for custom gesture classification (see Fig-

ure 1). This approach has two main benefits:

1. We are able to train an accurate model with a relatively

small amount of training data, as few as 50 images per

gesture.

2. The pre-trained model captures information of a wider

range of hand shapes and movements, including tran-

sition states that are harder to capture with still images.

Our HGR inference pipeline works as follows:

1. An RGB camera captures an image.

2. The HGR extracts the 3D skeletal key points (or land-

marks) and the handedness (left, right) of each hand

from the input image.

3. The landmarks and handedness information are sup-

plied to the newly trained custom gesture recognition

model for inference.

Our HGR runs real-time at 30+ FPS (frames per second)

on mainstream mobile devices.

2. Architecture
We use the work presented in “On-device Real-Time

Hand Gesture Recognition” [1] as the starting point for

building a system for custom hand gesture recognition. As

shown in Figure 1, our solution uses a model that extracts

hand landmarks and runs in real-time [2].

To train our word-level fingerspelling model, we use an

in-house collected dataset of 79K videos of 21K unique

fingerspelled words. In each video, a subject fingerspells a

word using either the left or the right hand. During train-

ing we discard frames that don’t contain any hands. We

use normalized hand landmarks after processing the input

videos using the hand landmark model [2].

As shown in Figure 2, the word-level fingerspelling
model extracts embedding vectors from each hand’s land-

marks in each video frame. Since each frame contains only

one of left, right hands, the model extracts a single-hand
embedding for each hand and adds the two embedding vec-

tors. Since addition is commutative, the model is invari-

able to the order of the two embedding vectors. The em-

bedding vector of a single video frame contains structural

piece-wise skeletal information. All per-frame embedding

vectors along with hand location information are sent to a

lightweight bidirectional LSTM [3] [4] to predict character

level sequences of the fingerspelled word.

Using a Connectionist Temporal Classification (CTC)

loss [5] for training the word-level fingerspelling model in

Figure 2, we are able to guide the single-hand embedding
sub-model to extract discriminative features that capture the

subtle differences in a wide range of real-world hand config-

urations. We are thus able to use weights of the single-hand
embedding model for training a custom gesture recognition

model with minimal training data via transfer learning [6].

Figure 3. Custom hand gesture model. This model classifies the

input hand data into one of N +1 classes,(N gestures and 1 back-
ground class).

We propose that the weights of the pre-trained single-
hand embedding model represent essential features that are

useful for custom gesture recognition. By fine-tuning the

weights of the pre-trained embedding model and the custom

hand gesture model head, we observe that our model can

recognize gestures accurately. This approach significantly

reduces number of images required for training. Figure 3

shows the model architecture of the custom hand gesture

recognition model with the single-hand embedding model

as its feature extractor.

3. Results
In Figure 4, we report the results of training a custom

gesture recognition model by fine-tuning the weights of the

single-hand embedding model (shown in Figure 3).

4274



We used an in-house dataset of 8 classes, with 7 ges-

ture classes and 1 background class. Samples that could

not be labeled as any of the 7 gesture classes were labeled

as the background class. To explore how much data is re-

quired to train the custom gesture recognition model, we

conducted trials with varying values of the average number

of training samples per gesture, K. We used the following

values of K : 10, 20, 50, 100, 200, 500. For example, when

K = 20, we train a model with 20 positive and negative

samples of each of the N gesture classes, i.e. the total num-

ber of samples used for training were N × 20 (140 for 7
gesture classes). The negative samples are labeled as the

background class.

During inference, an input hand shape can be labeled as

one of the 8 classes. We report the performance on the 7
gesture classes. To account for the performance of the back-
ground class in our results, we use specificity and sensitiv-
ity:

Specificity =
True Negatives

True Negatives + False Positives

Sensitivity =
True Positives

True Positives + False Negatives

True negatives account for samples that are correctly la-

beled as the background class. Similarly, false positives
account for samples that belong to the background class

but are incorrectly labeled as one of the gesture classes. To

concisely represent our results, we combine sensitivity and

specificity into one metric, namely the SS F1score which is

the harmonic mean of these two metrics:

SS F1score =
2× Sensitivity × Specificity

Sensitivity + Specificity

Most of our models achieve SS F1score values close to 1.0.

So we present results in Figure 4 as

complementary SS F1score = 1− SS F1score

This allows us to measure the model’s performance by fo-

cusing on misclassification errors.

To explore the effectiveness of the fine-tuned embedding
model for custom gesture classification, we conducted an

ablation study on the model’s weights. The models we

trained for the study have the same architecture as the fine-
tuned embedding custom gesture model. We defined two

experiments:

1. Random initial weights: The initial weights of all lay-

ers are randomized, so the model trains on raw hand

landmark data from scratch.

2. Frozen embedding: The weights of the single-hand
embedding model layers are frozen. Only the weights

of the classification head are updated during training.

Figure 4. Complementary SS F1score for K-shot gesture classi-

fication.

We report the results of K-shot gesture classification for

these models in Figure 4. All models perform reasonably

well when the value of K is high, i.e. K = 500. For very

small values of K, i.e. K = 10 and K = 20, all models

perform poorly. Note that the model with random initial

weights performs well for these values of K but the com-
plementary SS F1score is still unacceptably much higher

than 10%.

For values of K = 50 and above, we observe that the

complementary SS F1score is lower than 10%, steadily

decreasing for higher values of K. The fine-tuned embed-
ding model outperforms the other two models at K = 50,

K = 100 and K = 200. These results demonstrate the

advantage of fine-tuning a pre-trained single-hand embed-
ding model instead of training a model with random ini-

tial weights to recognize hand gestures from raw hand land-

marks.

4. Hand Landmark Detection Improvements
When two hands are very close to each other or occlude

each other, the landmark model fails to accurately extract all

hand landmarks for both hands. This failure cascades to the

gesture recognition system that relies on accurate landmark

detection to correctly infer the gesture depicted by a hand

shape. In Figure 5 for example, we can see that the baseline

hand landmark model is unable to extract landmarks of the

right hand in panels (a) and (b).

To improve landmark accuracy when two hands are near

each other or are overlapping with each other, we experi-

mented with providing a handedness hint to the hand land-

mark model during training and inference. This guides the

model to extract the landmarks of the hand with the same

handedness as the input handedness hint.

In Figure 5, we can see that the new model extracts both

the left and right hand’s landmarks respectively with the

correct handedness hint.

4275



Figure 5. Results of using a hand landmark model with a hand-

edness hint input compared to using the baseline hand landmark

model without a handedness hint input.

Quantitatively, on an in-house dataset of 3, 310 images

where hands are near or overlapping each other, the new

model has a Mean Normalized Absolute Error (MNAE) of

13.09 compared to the baseline model’s MNAE of 13.89.

This improvement enables the custom hand gesture recog-

nition pipeline to perform well when multiple hands are

present in the input image or video.

5. Implementation

Figure 6. Training and Inference Pipelines.

5.1. Training Pipeline

We developed a low-code training pipeline called Medi-
aPipe Model Maker [7], that enables users to effortlessly

train new hand gesture recognition models. In the pipeline,

the custom gesture recognition model is defined as a set

of dense layers as shown in Figure 6. This model maps

the gesture embedding vectors generated by the pre-trained

single-hand embedding model to the target labels of the in-

put images.

To train the custom gesture recognition model, users

need to supply a small set of images. Each image should

be annotated with a hand gesture label. All input images

are pre-processed by the hand landmark model to generate

hand landmarks on the fly during model training.

Our training pipeline allows the users to customize the

neural network attributes such as the dense layer shapes and

the training hyperparameters such as learning rate, batch

size, and training epochs, etc. Because of low training

data requirements, each training session only takes a few

minutes on most local computers and on Google’s public

Colab [8] runtime to produce accurate gesture recognition

models. The trained custom gesture model is then converted

to a TFLite [9] model format for our end-to-end inference

pipeline introduced below.

5.2. Inference Pipeline

The gesture recognition inference pipeline has been im-

plemented as a modular structure, as shown in Figure 6.

The pipeline consumes a raw hand image sequence as

input and processes all images sequentially. The hand land-

mark detection module converts the input images into land-

mark vectors. The gesture embedding module further maps

the landmark vectors to 128-dimensional gesture embed-

ding vectors. The gesture recognition module outputs the

probabilities of each label. This modular graph structure

allows users to control or replace any module as desired.

Our benchmarks show that this end-to-end pipeline

achieves real time performance (16.76 ms per frame) on

Pixel 6 devices.

Our inference pipeline MediaPipe Tasks [10] offers a

user-friendly API that supports multiple platforms, includ-

ing Java, Python, and WebJs. This API allows users to

easily integrate their customized gesture recognition model

into the pipeline.

Both the training and inference pipeline have been open-

sourced via MediaPipe Model Maker [7] and Gesture Rec-
ognizer API in MediaPipe Tasks [10].

6. Conclusion
In conclusion, our research presents an easy-to-use ap-

proach to train accurate custom hand gesture recognition

models with just a small set of training examples by fine-

tuning pre-trained embeddings of hand landmarks. We

also present our improvements to the hand landmark model

which enhance the effectiveness of our hand gesture recog-

nition system. These findings underscore the practicality of

our custom hand gesture recognition system in real world

scenarios and pave the way for better human-computer in-

teractions in various domains, such as virtual reality, aug-

mented reality, video conferencing and remote control ap-

plications.

References
[1] George Sung, Kanstantsin Sokal, Esha Uboweja, Valentin

Bazarevsky, Eduard Gabriel Bazavan Jonathan Baccash,

Chuo-Ling Chang, and Matthias Grundmann. On-device

4276



Real-time Hand Gesture Recognition . In ICCV Workshop on
Computer Vision for Augmented and Virtual Reality, 2021. 2

[2] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, George

Sung, Chuo-Ling Chang, Matthias Grundmann, and Andrei

Tkachenka. MediaPipe Hands: On-device Real-time Hand

Tracking. In CVPR Workshop on Computer Vision for Aug-
mented and Virtual Reality, Seattle, WA, 2020. 2

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 2

[4] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber.

Bidirectional recurrent neural networks. Computational Lin-
guistics, 31(2):343–365, 2005. 2

[5] Alex Graves, Santiago Fernández, and Jürgen Schmidhu-

ber. Connectionist temporal classification: Labelling unseg-

mented sequence data with recurrent neural networks. In

Proceedings of the 23rd International Conference on Ma-
chine Learning, pages 369–376. ACM, 2006. 2

[6] Mohammadreza Iman, Hamid Reza Arabnia, and Khaled

Rasheed. A review of deep transfer learning and recent ad-

vancements. Technologies, 11(2):40, mar 2023. 2

[7] Custom Gesture Training by MediaPipe Model

Maker. https://developers.google.com/
mediapipe/solutions/customization/
gesture_recognizer, 2022. 4

[8] Google Colaboratory. https://colab.research.
google.com, 2023. 4

[9] TensorFlow Lite. https://www.tensorflow.org/
lite, 2023. 4

[10] Custom Gesture Inference by MediaPipe Tasks.

https://developers.google.com/mediapipe/
solutions/vision/gesture_recognizer, 2022.

4

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift, 2015.

4277


