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Figure 1: Visualization of the key components of our proposed pipeline. The color image is blended with class and instance information,

and shown along with the optical flow with respect to the previous frame (first image). This information is integrated to produce a mask

that segments the frame into static and dynamic regions (second image). Together with an accumulated 3D motion estimate (third image),

the scene is streamed to one or multiple remote clients for immersive exploration in VR (fourth image). In this example, the user chose to

view the accumulated 3D motion.

Abstract

Despite the impressive progress of telepresence systems
for room-scale scenes with static and dynamic scene enti-
ties, expanding their capabilities to scenarios with larger
dynamic environments beyond a fixed size of a few square-
meters remains challenging.

In this paper, we aim at sharing 3D live-telepresence ex-
periences in large-scale environments beyond room scale
with both static and dynamic scene entities at practical
bandwidth requirements only based on light-weight scene
capture with a single moving consumer-grade RGB-D cam-
era. To this end, we present a system which is built upon a
novel hybrid volumetric scene representation in terms of the
combination of a voxel-based scene representation for the
static contents, that not only stores the reconstructed sur-
face geometry but also contains information about the ob-
ject semantics as well as their accumulated dynamic move-
ment over time, and a point-cloud-based representation for
dynamic scene parts, where the respective separation from
static parts is achieved based on semantic and instance in-
formation extracted for the input frames. With an indepen-
dent yet simultaneous streaming of both static and dynamic
content, where we seamlessly integrate potentially moving
but currently static scene entities in the static model until
they are becoming dynamic again, as well as the fusion of
static and dynamic data at the remote client, our system is
able to achieve VR-based live-telepresence at close to real-

time rates. Our evaluation demonstrates the potential of our
novel approach in terms of visual quality, performance, and
ablation studies regarding involved design choices.

1. Introduction
Sharing immersive, full 3D experiences with remote

users, while allowing them to explore the respectively

shared places or environments individually and indepen-

dently of the sensor configuration, represents a core element

of metaverse technology. Beyond pure 2D images or 2D

videos, 3D telepresence is defined as the impression of indi-

vidually being there in an environment that may differ from

the user’s actual physical environment [98, 38, 49, 170, 28].

This offers new opportunities for diverse applications in-

cluding remote collaboration, entertainment, advertisement,

teaching, hazard site exploration, rehabilitation as well as

for joining virtual sports events, work meetings, remote in-

spection, monitoring and maintenance, consulting applica-

tions or simply enjoying social gatherings. In turn, the pos-

sibilities for virtually bringing people or experts together

from all over the world in a digital twin of a location as

well as the live-virtualization of such environments and

events may reduce the effort regarding on-site traveling for

many people, which not only helps to reduce our CO2 foot-

print and increase the efficiency of various processes due

to time savings, but also facilitates economically less well-

situated or handicapped people to access such environments
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or events.

The creation of an immersive telepresence experience re-

lies on various factors. Respective core features are visu-

ally convincing depictions of a scenario as well as the sub-

jective experience, vividness, and interactivity in terms of

operating in the scene [138, 133]. Therefore, the involved

aspects include display parameters (e.g., resolution, frame

rate, contrast, etc.), the presentation of the underlying data,

its consistency, low-latency control to avoid motion sick-

ness, the degree of awareness and the suitability of con-

troller devices [98, 38, 49, 170, 28, 138, 133]. Furthermore,

experiencing 3D depth cues like stereopsis, motion paral-

lax, and natural scale also contribute to the perceived level

of immersion and copresence [45, 103].

However, such immersive 3D scene exploration experi-

ence becomes particularly challenging for telepresence in

live-captured environments due to the additional require-

ment of accurately reconstructing the digital twin of the

underlying scene on the fly as well as its efficient stream-

ing and visualization to remote users under the constraints

imposed by available network bandwidth and client-side

compute hardware. Among many approaches, impressive

immersive AR/VR-based live-3D-telepresence experiences

have only been achieved based on advanced RGB-D ac-

quisition for dynamic scenes on the scale of rooms, i.e.

areas of only a few square-meters, using special expen-

sive static capture setups [47, 162, 92, 91, 21, 127, 34,

194, 113, 59, 69, 145, 29, 114, 23, 76] and display tech-

nology [76], as well as for static scenes beyond that scale

based on low-cost and light-weight incremental scene cap-

ture with a moving depth camera [101, 139, 142, 141, 140].

For the latter category, bandwidth requirements have been

reduced from hundreds of MBit/s for a single user [101]

to around 15MBit/s for group-scale sharing of telepresence

in live-captured environments while also handling network

interruptions [139, 142, 140], thereby even allowing live-

teleoperation of robots [141]. However, expanding the ca-

pabilities and, thereby, overcoming the aforementioned lim-

itations in large dynamic environments for many users with

low-cost setups still remains an open challenge.

In this paper, we aim at sharing 3D live-telepresence ex-

periences in large-scale environments beyond room scale

with both static and dynamic scene entities at practical

bandwidth requirements and based on light-weight scene

capture with a single moving consumer-grade RGB-D cam-

era. For this purpose, we propose a respective system that

relies on efficient 3D reconstruction, streaming and immer-

sive visualization for dynamic large-scale scenes.

In particular, the key contributions of our work are:

• For the sake of efficiency, our system leverages a hy-

brid volumetric scene representation, where we use op-

tical flow and instance information extracted from the

input frames to detect static and dynamic scene en-

tities, thereby allowing the combination of a classic

implicit surface geometry representation enriched with

the object semantics as well as their accumulated dy-

namic motion over time, with a point-cloud-based rep-

resentation of dynamic parts.

• We achieve efficient data streaming to remote users by

the separate yet simultaneous streaming of both static

and dynamics scene information, where we seamlessly

integrate potentially moving but currently static scene

entities in the static model until they are becoming dy-

namic again. Additionally, the fusion of static and dy-

namic data at the remote client allows VR-based visu-

alization of the scene at close to real-time rates.

• We demonstrate the potential of our approach in the

scope of several experiments and provide an ablation

study for respective design choices.

Furthermore, while not being among the main contributions

of our work, our approach also inherits the robustness of

previous techniques to network interruptions for the recon-

struction of the static scene parts as well as the scalability

to group-scale telepresence [139, 142, 141]. An overview

of our proposed system is depicted in Figure 1.

2. Related Work
Telepresence Systems Despite almost two decades of

progress, the development of systems that allow immer-

sive telepresence experiences remains challenging due to

the prerequisite of simultaneously achieving high-fidelity

real-time 3D scene reconstruction, the efficient stream-

ing and management of the reconstructed models and the

high-quality visualization based on AR and VR equipment.

Early approaches were limited by the capabilities of the

available hardware [41, 64, 104, 157, 152, 71] or inaccu-

rate silhouette-based reconstruction techniques [121, 88].

Depth-based 3D scanning led to improved reconstruction

quality and allowed telepresence at the scale of rooms [55,

91, 93, 99, 62, 42], however, remaining artifacts induced

by the high sensor noise and temporal inconsistency in

the reconstruction process still impacted the visual experi-

ence. More recently, advances in 3D scene capture, stream-

ing, and visualization technology led to impressive im-

mersive AR/VR-based live 3D telepresence experiences.

Live-telepresence for small-scale scenarios of a few square-

meters has been achieved based on light-weight capture

setups for teleconferencing [109, 61, 32, 117, 4, 19] and

other collaborative scenarios [185, 137, 89, 46, 153, 33]

as well as based on expensive multi-camera static and

pre-calibrated capture setups [47, 162, 92, 91, 21, 127,

34, 194, 113, 59, 69, 145, 29, 114, 23, 76]. Further-

more, live-telepresence for scenarios beyond a few square-

meters has been achieved based on low-cost and light-
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weight incremental scene capture with a moving depth cam-

era [7, 101, 139, 141, 142, 140, 182], allowing remote users

to immersively explore a live-captured environment inde-

pendent of the sensor configurations. Regarding the latter

approaches, impractical bandwidth requirements of up to

175 MBit/s for immersive scene exploration by a single user

[101] have been overcome by more recent approaches that

allow group-scale sharing of telepresence experiences in

live-captured environments while also handling network in-

terruptions [139, 142, 141, 140] as well as live-teleoperation

of robots [141]. Furthermore, mechanisms for annotation,

distance measurement [141] and efficient collaborative VR-

based 3D labeling were added [193]. However, practical

sharing of live-captured 3D experiences in dynamic large-

scale environments for many users with low-cost setup still

remains an open challenge. The same applies for immersive

robot teleoperation, where approaches focused on small-

scale scenarios with dynamics [120, 70, 85, 156, 168, 129,

106] and large-scale, static scenarios [141].

In contrast to the aforementioned approaches, we pro-

pose a live-telepresence system for large-scale environ-

ments while also taking scene dynamics into account.

3D Reconstruction and SLAM Techniques Current

state-of-the-art telepresence systems rely on depth-based si-

multaneous localization and mapping (SLAM) techniques.

Examples are the use of depth-sensor-based 3D scene

capture based on surfels [51] or extensions of Kinect-

Fusion [108, 55] in terms of voxel block hashing tech-

niques [110, 75, 73, 74, 122] for incremental scene cap-

ture for large-scale telepresence applications [101, 139,

142, 141, 140]. To avoid the need for depth sensors,

more recent SLAM approaches for incremental scene cap-

ture – that might be applicable in respective telepres-

ence applications – leveraged principles of deep learning

[72, 178, 66, 68, 177, 25, 169]. Further approaches inves-

tigated 3D reconstruction from multiple synchronized cam-

eras [100, 2, 31, 1, 54].

Recently, neural scene representation and rendering

techniques [154, 155] have led to significant improvements

in reconstruction quality for small-scale objects or scenes.

The underlying idea originates from novel view synthe-

sis and consists of training a neural network to represent

a scene with its weights, so that respectively synthesized

views match the input photographs. In particular, this in-

cludes implicit scene representations based on Neural Ra-

diance Fields (NeRFs) [97] and respective extensions to-

wards speeding up model training [125, 39, 16, 26, 10,

164, 147, 105, 37, 9, 11, 188, 179, 102] with training times

of seconds, the adaptation to unconstrained image collec-

tions [94, 13, 63], deformable scenes [115, 123, 43, 158,

124, 111, 160, 118, 116, 12, 87, 58, 83, 37] and video in-

puts [82, 174, 30, 119, 44, 81, 151, 79], the refinement or

complete estimation of camera pose parameters for the in-

put images [181, 165, 146, 20, 192, 191, 130, 187, 95, 84,

57, 173, 90, 6, 17, 15, 14, 52, 148, 86], combining NeRFs

with semantics regarding objects in the scene [163, 189,

40], incorporating depth cues [166, 26, 128, 126, 3] to guide

the training and allow handling textureless regions, han-

dling large-scale scenarios [150, 161, 96], and streamable

representations [18, 149]. However, despite promising re-

sults, current solutions [146, 192, 191, 130, 187, 90] do not

yet reach real-time performance but only reach 12 FPS on

a high-end GPU [130] or less within completely static en-

vironments. Further improvements regarding efficiency and

the handling of dynamic scenes are required to achieve real-

time performance for the joint camera pose estimation and

neural scene reconstruction in a SLAM setting in dynamic

environments.

Particularly addressing dynamic environments, various

approaches focused on filtering dynamic objects and only

reconstructing the static background [67, 134, 35, 5, 183,

186, 176, 175, 24, 77, 171, 36] or additionally reconstruct-

ing the dynamics based on rigid object tracking and recon-

struction [144, 172, 80, 132, 131, 50] and non-rigid object

tracking and reconstruction [78, 65, 180, 107, 48, 167, 53,

167, 27, 184, 135, 56, 136, 143, 159, 8]. Taking inspiration

of the non-rigid scene reconstruction approaches in terms

of separating static and dynamic scene parts, the 3D recon-

struction approach involved in our live-telepresence system

is particularly designed for capturing large-scale environ-

ments (i.e., beyond scenarios limited to a small area of a few

square-meters) with both static and dynamic entities based

on a single moved RGB-D camera. Our hybrid volumet-

ric scene representation leverages semantic and instance in-

formation to detect dynamic scene entities and combines a

voxel-based scene representation for the static parts, where

we also accumulate information on whether and how sig-

nificant objects have been moved, with a point-cloud-based

representation of dynamic parts. A major contribution of

our work is the separate but simultaneous streaming of both

static and dynamics scene information and its VR-based vi-

sualization at close to real-time rates.

3. Methodology
As shown in Figure 2, our live-telepresence system for

large-scale environments with scene dynamics at practical

bandwidth requirements takes a continuous stream of RGB-

D images (I1, D1), (I2, D2), ... from a moving depth cam-

era as input, where Ik(u) ∈ R
3 represents the red, green,

and blue color values of frame k, and Dk(u) ∈ R the cor-

responding raw depth measurement at pixel u ∈ U ⊂ N
2,

with U being the image domain. The main challenge con-

sists in an efficient processing of these measurements, their

efficient integration into a consistent model and the efficient

streaming of the latter over the network at practical band-

4260



Color 

Depth

Exploration
Client(s)

Server
Instance 

Segmentation 

Dynamicity 

Odometry Flow 

Optical Flow 

EPE 

Accumulated
Dynamicity 

Voxel Block 
Model (Static)

Reconstruction Client

Dynamic Regions 

Combined (VR) 
Visualization

Figure 2: Visualization of different processing stages for the k-th RGB-D frame in the pipeline. Starting with color Ik and depth Dk,

instance segmentation Lk (class labels) and ιk (instance IDs), optical flow Fk and odometry flow Ψk (i.e., the flow generated from the

estimated camera motion) are computed. Next, the end-point-errors (EPE) between the flows are computed, normalized and propagated

using the instance segmentation to generate the dynamicity scores Sk. The scores are accumulated in Ak and Lk, ιk, Sk and Ak are used

to integrate information about static regions in the voxel block model. New static voxels and current dynamic regions are sent to the server,

which forwards this information to the exploration clients appropriately.

width requirements to remote clients, where it has to be vi-

sualized at adequate visual quality and at tolerable overall

latency. For this purpose, we use a hybrid scene representa-

tion that separately handles static and dynamic scene parts,

thereby allowing the combination of efficient large-scale

3D scene mapping techniques, that face problems with dy-

namic regions, with efficient point-based reconstruction for

the dynamic parts. In more detail, we segment the frames

of the input stream into static and dynamic regions by de-

termining score maps Sk, where Sk(u) ∈ R describes the

amount of dynamicity in frame k at pixel u. This separa-

tion allows us to efficiently reconstruct, stream and immer-

sively visualize static regions using existing state-of-the-

art large-scale telepresence techniques [139, 142] while si-

multaneously reconstructing, streaming and visualizing dy-

namic scene parts based on a point-based representation in

terms of a partial RGB-D image and its corresponding es-

timated camera pose, thereby limiting the amount of data

to be transferred and reducing the processing time. After

streaming the hybrid scene representation to remote users,

its static and dynamic parts are joined in a combined 3D

visualization.

In the following subsections, we explain the different

steps of our pipeline. Please refer to the supplemental ma-

terial for more details.

3.1. Segmentation into Static and Dynamic Regions

For the sake of efficiency, we segment the RGB-D

frames of the input stream into static and dynamic regions,

which will later allow the efficient treatment of the differ-

ent types of scene parts. For this purpose, we compute

the aforementioned score maps Sk. In the following, we

will ensure that these scores are normalized in the sense

that a pixel is deemed static if Sk(u) ≤ 1, and dynamic if

Sk(u) > τ , where τ ≥ 1 is a threshold that allows for a re-

gion of uncertainty between the static and dynamic labels.

Instance Segmentation To compute the dynamicity score

Sk of frame k, we first detect objects in Ik using in-

stance segmentation [60], which yields both a class la-

bel and an instance ID for each pixel in the image, i.e.

(Lk, ιk) = fseg(Ik) of Ik, where Lk(u) ∈ N is the predicted

class label and ιk(u) ∈ N is the instance ID at pixel u.

The raw output of the segmentation network may consist of

multiple, potentially overlapping region proposals, which

we integrate into the instance and label maps using non-

maximum suppression. The resulting indices are then asso-

ciated with the IDs from the previous frame to get the final

map ιk of instance IDs. The label map Lk is set to the class

labels corresponding to the instances. In our experiments,

we used YOLOv8 [60] as the segmentation network.

Optical Flow Estimation Next, we estimate the back-

ward optical flow Fk = fflow(Ik, Ik−1), where Fk(u) ∈ R
2

is the corresponding flow vector at pixel u, such that u in

Ik corresponds to u+ Fk(u) in Ik−1. For fflow, we use the

NVIDIA Optical Flow Accelerator (NVOFA) [112]. We ad-

ditionally generate a map of confidence weights Wk(u) ∈
[0, 1] based on the agreement with the inverse flow and per-

pixel costs given by the NVOFA to reduce the influence of

bad correspondences.

Odometry Subsequently, we estimate the camera motion

ξk ∈ se(3) between the previous and current frame, yield-

ing an absolute camera pose Tk ∈ R
4×4 when we assume

T1 to be centered at the world origin. Our implementation
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uses a standard point-to-plane RGB-D registration imple-

mentation [190].

End-point-error Based on Fk, Tk and Wk, we determine

a per-pixel end-point-error Ek between the estimated flow

and the flow Ψk we expect from a completely static scene

where only the camera is moving by ξk, i.e.,

Ek(u) = Wk(u) · ‖Fk(u)−Ψk(u)‖2. (1)

Dynamicity Score To decide which of the resulting

scores Ek(u) indicate dynamic regions, we found that a

simple thresholding is not sufficient, because the average

error varies too strongly, especially for frame pairs where

the camera tracking or optical flow network yield poor esti-

mates. To reduce the influence of these fluctuations, we in-

stead analyze the histogram of per-pixel errors for all pixels

of each instance i. More specifically, we are selecting the

rightmost mode sk(i) that is above a minimum size thresh-

old by finding the corresponding bin index and choosing

sk(i) as the center of that bin.

We normalize all scores by subtracting the smallest mode

from them, assuming that at least one of the detections is

of static nature. Together with an empirically chosen linear

rescaling by a factor δ ∈ R≥0, we get the normalized scores

E′k(u) = δ · (Ek(u)−min
i
{sk(i)}), (2)

which fulfill the previously mentioned criterion that scores

Sk(u) ≤ 1 are indicating a static object, while higher scores

indicate dynamic regions.

While E′k(u) can now be used for the segmentation into

static and dynamic regions, we found the visualization of

moving regions to be more coherent if the segmentation

happens on the object level. This is particularly impor-

tant for articulated or non-rigid objects like humans, where

potentially only a small part of the object (e.g. an arm) is

moving. To accomplish this, we use the normalized modes

s′k(i), which result from applying the transformation from

Equation (2) to sk(i). An instance i is deemed as dynamic

if its normalized mode is above the dynamic threshold τ ,

i.e., s′k(i) ≥ τ . To represent this in the resulting score

map, we propagate s′k(i) in the final score map by setting

Sk(u) = s′k(i) for all pixels u with ιk(u) = i, i.e., all pix-

els belonging to instance i. The score of each instance is

temporally smoothed to be more robust against outliers.

Score Accumulation As the object tracking is only per-

formed in 2D for efficiency reasons, we also accumulate the

dynamicity scores of each instance over time in 2D by up-

dating an accumulation map Ak(u) ∈ R≥0. To increase the

interpretability of the scores, we compute a 3D end-point-

error between the last and current frame by using Fk for

the correspondences between the pixels and backprojecting

the respective coordinates of into 3D using the correspond-

ing depth maps and camera poses. The resulting 3D flow

F̂k(u) ∈ R
3 is then combined with the warped previous ac-

cumulated score A′k−1 to Ak(u) = A′k−1(u) + ‖F̂k(u)‖2.

We also experimented to use F̂k as an input for the end-

point-error calculation, but found that the signal was too

noisy for our method to robustly distinguish between static

and dynamic scene parts.

3.2. Update of the Static Model

With the score map Sk computed, we are able to inte-

grate the static part of the frame into the static model. For

this purpose, we use a modified version of real-time 3D

reconstruction based on spatial voxel block hashing [110],

with an added extension for concurrent retrieval, insertion,

and removal of data [139]. However, in order to further in-

crease the efficiency of the approach, we seamlessly shift

potentially dynamic but currently static scene parts into

the static scene representation until they become dynamic

again. This requires us to additionally consider the follow-

ing situations:

1. Dynamic regions should not be integrated into the

static model. In case this happens erroneously, they

should be removed as quickly as possible.

2. Regions that change their state from dynamic to static

(e.g. a box was placed on a table) should be integrated

into the static model seamlessly.

3. Regions changing their state from static to dynamic

(e.g. a box is picked up) should be removed from the

static model immediately.

4. Static regions that changed while not in the camera

frustum should be updated as soon as new information

is available.

Following the suggested modification of the weighting

schema for dynamic object motion by Newcombe et al.

[108], we truncate the updated weight, which effectively

results in a moving average favoring newer measurements.

We extended the schema to incorporate the previously com-

puted dynamicity scores.This helps in situations 1 and 3,

since dynamic regions are updated with new information

more quickly, as well as in situation 4, as the weight is trun-

cated even for static regions.

In addition, we aid the timely removal of dynamic re-

gions from the static model (situations 1 and 3) by setting

the SDF value to −1 for voxels where the associated dy-

namicity score Sk(u) exceeds a threshold τSDF > 0. In con-

junction with the modified integration weight, this invali-

dates the existing surface estimate at that location.

Situation 2 is covered by the temporal smoothing of the

scores. Details can be found in the supplementary material.
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3.3. Visualization

After having streamed the hybrid scene representation to

remote users’ devices, the static and dynamic scene enti-

ties have to be combined within an immersive scene explo-

ration component, where we focus on VR-based immersion

of users into the live-captured scenarios. For this, we cre-

ated a client component that receives updates of the static

model as well as the dynamic regions of the current RGB-D

frame.

The static model is visualized as a mesh, where the lo-

cal mesh representation of the static scene is updated using

received MC voxel block indices and rendered in real time,

thereby following previous work [139]. In contrast, the dy-

namic parts are shown as a point cloud at the corresponding

location relative to the static mesh. For this, we backproject

the dynamic pixels of the current RGB-D frame using the

known camera intrinsics and the current camera pose.

The user is then able to individually and independently

of the sensor explore the captured scene by physically look-

ing and walking around, or use a teleportation functionality

for locomotion. The current position and orientation of the

RGB-D sensor and other users is also shown.

3.4. Streaming

To be able to run the described method with low latency

from the time of capturing to the visualization at remote

locations, we use a server-client architecture. The server re-

ceives and distributes data packages over a network to the

appropriate processing clients. The RGB-D capture, seg-

mentation into static and dynamic regions as well as the

integration into the static model are performed in the re-
construction client.

Updates of this representation are then broadcasted to

one or multiple exploration clients, which in turn update a

mesh representation of the static scene using the MC in-

dices. At the same time, the server also sends updates of the

dynamic regions as masked RGB-D images together with

the current camera pose estimate, such that the RGB-D pix-

els can be projected into the scene as a point cloud.

For all network communication, we use a general-

purpose lossless data compression scheme [22] to reduce

the bandwidth requirements.

3.5. Implementation Details

To take advantage of modern multiprocessor architec-

tures, the stages shown in Figure 2 are running concurrently,

such that each stage can start with the next item once the

processing of the current one has been completed. While

this leads to overhead due to inter-process communication,

the processing speed of the pipeline is no longer bound to

the latency, but the processing duration of the slowest stage

in the pipeline. We provide a more detailed, per-stage per-

formance analysis in the supplemental material.

4. Experimental Results
To evaluate the performance of the proposed pipeline,

we ran experiments on 10 self-recorded sequences captured

with a Microsoft Azure Kinect RGB-D sensor in different

office environments, and measured both speed and band-

width metrics.

The scenes contain varying types of motion, and we cat-

egorized them into three groups. Fixed (F.) are scenes that

have no camera motion once dynamic entities can be seen

in the camera, whereas Moving (M.) describes scenes with

an always-moving camera and simultaneous object motion.

A third category Outside (O.) contains a scene where the

camera is hand-held, but object motion only happens out-

side the camera view. A short description and some exem-

plary images of each scene are shown in the supplemental

material. To validate design choices, we also conducted an

ablation study regarding certain components of the pipeline

and compared them to baseline methods. Following that,

we will discuss the impact and limitations of the approach.

4.1. Experimental Setup

We set up three computers in a local network that each

run one of the three processes shown in Figure 2. All de-

vices use the same hardware except for the GPU, which is

an Nvidia GeForce RTX 3090 for the reconstruction client

and an Nvidia GeForce GTX 1080 for both server and ex-

ploration client, as they require less GPU performance.

We measured three different metrics in this setup: The

end-to-end latency of an RGB-D frame from the camera

to the exploration client, the frame-rate at which RGB-

D frames are being processed by the components of the

pipeline, and the network bandwidth between server and

connected clients. The latency and frame-rate is measured

using timestamped logs that are synchronized between all

computers to ensure a minimal deviation. The frame-rate is

given as the averaged arrival time difference between con-

secutive dynamic RGB-D images at the exploration client,

and the latency is the average between the emission times

of RGB-D frames into the pipeline and the corresponding

arrival times at the exploration client.

The hyperparameters used for the performance evalua-

tion and visualization were fixed for all scenes and are listed

in the supplemental.

4.2. Evaluation of Performance and Visual Quality

Table 1 shows the results of the frame-rate and latency

measurements. Here, the performance is largely indepen-

dent of the type of scene and exhibits an average of around

0.4 seconds in end-to-end latency and a frame-rate of 18.8

frames per second (FPS). A closer analysis reveals that the

frame-rate is upper-bound by the single image inference

speed of the instance segmentation network. We refer to

the supplemental for details.

4263



Figure 3: Results of our approach on different scenes. Left to right: Input color image; resulting segmentation into static (blue) and

dynamic (yellow) regions; the accumulated 3D flow magnitude; a novel view of the scene as visualized in the exploration client.

Scene F. M. O. end-to-end [s] FPS [1/s]

items 1 � 0.40 (0.02) 18.95 (5.75)

items 2 � 0.40 (0.03) 18.67 (5.95)

people 1 � 0.39 (0.02) 19.33 (5.94)

people 2 � 0.41 (0.03) 17.92 (5.12)

people 3 � 0.43 (0.03) 17.73 (4.81)

people 4 � 0.40 (0.03) 17.98 (5.34)

people 5 � 0.40 (0.02) 19.01 (5.64)

ego view � 0.40 (0.02) 18.93 (5.79)

oof 1 � 0.40 (0.08) 19.81 (6.05)

oof 2 � 0.40 (0.02) 19.56 (6.39)

Table 1: Performance results on the 10 self-recorded scenes. The

F., M., O. columns indicate the type of motion that was captured

(F: fixed camera when object motion is seen, M: camera always

in motion, O: static scene manipulation outside of camera view).

Latency and FPS columns show both the mean and standard devi-

ation (in parentheses) of the respective metrics.

Type F. M. O.

TSDF 44.80 (77.90) 69.72 (92.14) 65.70 (81.21)

MC 3.89 (6.13) 6.10 (7.31) 6.30 (5.83)

Dyn. 7.06 (7.37) 7.41 (8.43) 2.66 (4.42)

Table 2: Required mean bandwidth and respective standard de-

viation (in parentheses) in MBit/s of the different types of data

packages over the types of recorded scenes (F: fixed camera when

object motion is seen, M: camera always in motion, O: object mo-

tion only outside of camera view).

The network bandwidth requirements are summarized in

Table 2. Here, the measured package sizes are split up in

the type of data. TSDF represents the values of the trun-

cated signed-distance function generated by the voxel block

hashing of the reconstruction client, MC labels the March-

ing Cubes indices the server generates from the TSDF rep-

resentation and sends to the exploration client(s). The dy-

namic RGB-D that results from the segmentation of the re-

construction client and that is subsequently sent to the ex-

Figure 4: Comparison of design choices of the proposed pipeline.

Top row: An example output from the exploration client using

the standard voxel block weighting schema (left) vs. exponential

weight decay via weight capping. The second approach yields

a reconstruction of the box with fewer artifacts. Bottom row:

Thresholding of the normalized EPE before (left) and after (right)

propagation of the error modes into the static (blue) and dynamic

(yellow) object masks. Again, the second approach produces a

more plausible segmentation into static and dynamic regions.

ploration client(s) is called Dyn. The results indicate that

the majority of data is transferred between reconstruction

client and server. The Marching Cubes indices and dy-

namic RGB-D data, which are selectively streamed to the

exploration client(s), allow for multiple connections, even

over the Internet, considering modern bandwidth availabil-

ity. Furthermore, we provide qualitative results in Figure 3.

4.3. Ablation Study

To validate some design choices of our approach, we

show the effects of removing certain elements of the

pipeline on the results. Figure 4 illustrates the effect of the

weighting function from Section 3.2, as well as the differ-

ence between error thresholding with and without propaga-

tion into the object mask (Section 3.1, Dynamicity Score).
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In the weighting example, we show that the update of incon-

sistent measurements results in less artifacts while walking

around the box when using an exponential decay. This moti-

vates our choice to enable this weighting schema for regions

with recent object motion. At the same time, the floor tex-

ture shows slightly more artifacts as the more recent mea-

surements are favored, but collide visually with regions that

were not recently seen by the camera. This effect is reduced

in the original weighting schema, which motivates the ex-

tension of the schema mentioned in Section 3.2.

The bottom row of Figure 4 shows how the propagation

of the error modes into the object masks aids to correctly

identify potentially dynamic objects. Due to weak motion

boundaries produced by fflow, a large region of pixels be-

hind the moving person is considered dynamic after nor-

malization. This can be filtered out completely in this case

using our approach.

We also conducted a performance comparison with dif-

ferent optical flow and instance segmentation approaches to

validate our choice. The results can be found in the supple-

mental material.

4.4. Limitations

While our approach shows promising results and is de-

signed with modularity and extensibility in mind, there are

also some limitations to consider. Most importantly, the

pipeline only runs at frame-rates close to real-time due to

the performance limitations inherited by the involved neu-

ral network approaches. In our scenario, we require high

single-image inference speed, which is not a functional-

ity most modern deep learning approaches are particularly

tuned for. Furthermore, our approach requires the seg-

mentation network to detect objects to be able to identify

dynamic regions, which limits its capabilities on out-of-

distribution samples (Figure 5). This is also the case for

the optical flow network, as it is also limited by the quality

of the training data and the domain overlap with the scenes

we recorded. However, due to the modular nature of our

approach, future developments with improved accuracy of

the predictions might address this current limitation of our

approach. Furthermore, future developments on increasing

the efficiency of the networks for the respectively involved

subtasks will further improve the overall performance.

5. Conclusions
We presented a novel live-telepresence system that al-

lows immersing remote users into live-captured environ-

ments with static and dynamic scene entities beyond an

area of a few square-meters at practical bandwidth require-

ments. In order to allow the respectively required efficient

3D reconstruction, data streaming and VR-based visualiza-

tion, we built our system upon a novel hybrid volumetric

scene representation that combines a voxel-based represen-

Figure 5: Failure case of our method. Shown are RGB (top left),

optical flow (top right), instance segmentation (bottom left) and re-

sulting segmentation into static and dynamic (bottom right). Even

though a clear motion cue is available in the optical flow image,

due to a missing object detection, our method fails to correctly

identify the dynamic region (orange circle).

tation of static scene geometry enriched by additional in-

formation regarding object semantics as well as their accu-

mulated dynamic movement over time with a point-cloud-

based representation for dynamic parts, where we perform

the respective separation of static and dynamic parts based

on optical flow and instance information extracted for the

input frames. The separation, determined frame-by-frame

on the 2D RGB-D data, remains unaffected by the length of

the input sequence and scale of the scene and therefore does

not impact the performance of the static reconstruction tech-

nique employed. As a result of independently yet simulta-

neously streaming static and dynamic scene characteristics

while keeping potentially moving but currently static scene

entities in the static model as long as they remain static,

as well as their fusion in the visualization on remote client

hardware, we achieved VR-based live-telepresence in large-

scale scenarios at close to real-time rates.

With the rapid improvements in hardware technology,

particularly regarding GPUs, we expect our system to soon

reach full real-time capability. Also, the modularity of our

system allows replacing individual components with newer

approaches, which might be particularly relevant for the in-

stance segmentation network as it represents the main bot-

tleneck of our current system.
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