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Figure 1. The proposed framework is capable of capturing fine, detailed, and highly expressive facial features (e.g., lip-pressing, mouth

puckering, mouth gaping, gaze, wrinkles). Top: Demonstrates how our re-synthesis results compare with a few state-of-the-art models:

FOMM [25], LIA [31], and StyleHEAT[34]. Bottom: Depicts zoomed-in images of synthesized frames generated through our approach

using the encoding of the ID-frame (ID-latent) and 35 parameters per frame capturing the facial deformations of the Groundtruth.

Abstract

While the recent advances in research on video re-
enactment have yielded promising results, the existing ap-
proaches fall short in capturing the fine, detailed, and ex-
pressive facial features (e.g., lip-pressing, mouth pucker-
ing, mouth gaping, and wrinkles), which are crucial in
generating realistic animated face videos. To this end, we
propose an end-to-end expressive face video encoding ap-
proach that facilitates data-efficient high-quality video re-
synthesis by optimizing low-dimensional edits of a single
Identity-latent. The approach builds on StyleGAN2 image
inversion and multi-stage non-linear latent space editing to
generate videos that are nearly comparable to input videos.
While existing StyleGAN latent-based editing techniques fo-
cus on simply generating plausible edits of static images, we
automate the latent space editing to capture the fine expres-

sive facial deformations in a sequence of frames using an
encoding that resides in the Style-latent space (StyleSpace)
of StyleGAN2. The encoding thus obtained could be
super-imposed on a single Identity-latent to facilitate re-
enactment of high-resolution face videos at 10242. The
proposed framework economically captures face identity,
head-pose, and complex expressive facial motions at fine
levels, and thereby bypasses training, person modeling, de-
pendence on landmarks/keypoints, and low-resolution syn-
thesis which tend to hamper most re-enactment approaches.
The proposed method is designed with maximum data effi-
ciency, where a single W+ latent and 35 parameters per
frame enable high-fidelity video rendering. This pipeline
can also be used for puppeteering (i.e., motion transfer).
Project page: https://trevineoorloff.github.io/

ExpressiveFaceVideoEncoding.io/.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Talking-head re-enactment, which involves animating a

static portrait image to mimic the changes in head-pose and

other facial attribute deformations of a driving video while

maximally preserving the identity across the frames, has a

wide range of applications such as AR/VR, telepresence,

and movie production. Intuitively to facilitate re-enactment,

one has to decompose the motion from the identity of the

driving sequence of frames, and to this end, most contem-

porary methods utilize facial landmarks/keypoints-based

[25, 29, 30], 3D facial representation-based [11, 22, 38],

and latent-based [31, 32, 37] approaches to encode the fa-

cial deformations. While these methods generate promis-

ing results and each of them has its own pros and cons

(Sec. 2), the most common drawbacks of the existing ap-

proaches include limitation to low resolution (commonly

2562 and 5122 at most), the requirement of extensive train-

ing data and person modeling, and especially the inability to

capture extreme poses and intricate expressive facial details

(see Fig. 1) which detracts from the realism of re-enacted

videos.

On the other hand, the recent advances in StyleGAN2-

based inversion techniques [1, 5, 6, 23] enable manipu-

lation of high-resolution (10242) real-world images [2, 3,

4, 16, 24, 33] due to the highly disentangled property of

their latent spaces. However, such latent-based manipula-

tion techniques are mostly limited to static images and focus

on simply generating plausible edits (e.g., changes to smile,

age, hair color, pose). While recent research [9, 17, 34]

have employed StyleGAN2 to generate high-resolution re-

enactment video, they utilize 3D parametric models to cap-

ture facial deformations. While such priors are able to cap-

ture global facial attributes, they are not capable of captur-

ing the fine and intensely expressive facial deformations.

In order to bridge the gap between high-fidelity

static portrait image synthesis/manipulation and face re-

enactment of intense expressions and speech, we propose

a novel end-to-end face video encoding approach that au-

tomates the latent-editing process to capture head-pose

and fine and complex expressive facial deformations using

merely 35 parameters per frame that reside in the Style-

latent space (StyleSpace, SS) of StyleGAN2. We extend

single image generation models, namely StyleGAN2 [18]

and StyleFlow [3] to the temporal dimension. Quantita-

tive evaluation of latent spaces: Z, W, W+, and SS, by

[33], indicates that within the StyleGAN2’s latent spaces,

the proposed StyleSpace has the best disentanglement, com-

pleteness, and informativeness. Thus, we perform edits on

SS as it enables control of individual facial attributes with-

out re-training a network to enforce disentanglement [10].

Moreover, since the latent spaces are sparse (i.e., only spe-

cific points in the space are visually valid and meaningful)

we propose optimization frameworks that anchor the latent

space attribute editing to the real images. The computed

latent paths between frames are non-linear and therefore

avoid the limitations of common linear latent editors [31].

In this research, we focus on both the re-synthesis and

puppeteering of face videos using a compact encoding

scheme while focusing on accurate reconstruction of ex-

pressive facial deformations. In re-synthesis, we encode a

face video using a low-dimensional representation of small

edits of a single Identity-latent (ID-latent). The proposed

pipeline is capable of capturing and regenerating complex

facial features as shown in Figs. 1 and 3 while achieving

state-of-the-art performance at 10242. Further, since the en-

coding is independent of the subject in the video, we can

substitute the ID-latent (i.e., an inversion of a real face)

of a different subject and apply the face deformation pa-

rameters to generate high-fidelity puppeteering videos. Our

face video encoding is extremely compact: a single latent

(18 × 512) corresponding to an ID-latent and only 35 pa-

rameters per frame that control the head-pose (3 parame-

ters) and the facial features edits (32 parameters), which

amounts to merely 70 bytes per frame.

In summary, the key contributions of the paper are:

• A novel algorithm for high-resolution (10242) face

video encoding for re-synthesis and puppeteering with

emphasis on precise reconstruction of both expressive

and talking facial attributes in contrast to common

models that do not focus on fine/complex expressive

facial details,

• A novel approach that employs image inversion and

sparse latent space editing to produce an extremely

compact face video encoding scheme (35 parameters

per frame), in contrast to most prevailing work on la-

tent space editing that simply illustrate plausible se-

mantic visual results,

• A novel method to find StyleSpace channels corre-

sponding to facial attributes based on index sensitivity.

2. Related Work
2.1. Latent Space Based Editing

Understanding the latent space of a pre-trained GAN has

led to better controllability over the generated output. Re-

search such as [16, 24] explore the latent space of Style-

GAN to identify the interpretable semantic directions that

control attributes such as aging, smile, gender, pose, etc.

within the latent space. However, the entangled nature of

the latent space limits the manipulation, as it often leads to

undesirable artifacts.

StyleSpace [33], StyleFlow [3], and StyleRig [26] are a

few prominent algorithms based on the StyleGAN2 archi-

tecture that yield impressive control over latent-based ma-

nipulations. The authors of StyleSpace analyzed SS and
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Figure 2. The multi-stage pipeline for encoding a video in latent space: The (1) pre-processing stage aligns the input sequence of

frames, which are fed to the (2) GAN inversion to obtain the corresponding sequence of W+ latents. Out of which the best inversion

which also has near frontal head-pose is chosen to be the ID-latent in the (3) ID-latent selection stage. The (4) Head-pose encoding stage,

encodes the yaw and pitch of the target frames, in reference to the ID-latent while generating a series of head-pose adjusted ID-latents.

Subsequently, the (5) facial-attribute encoding stage, encodes the facial deformations using 32 parameters anchoring onto the head-pose

adjusted ID-latents. Finally, the encoded parameters (35/frame) and the ID-latent are used to synthesize the re-enacted frames at the (6)

Rendering stage.

formulated an algorithm to identify the style channels that

control specific attributes by backtracking gradients. Style-

Flow, on the other hand, uses a flow-based model condi-

tioned on the attributes to enable non-linear and conditioned

latent space edits. Even though the StyleRig algorithm en-

ables a rig-like control over the 3D semantic parameters of

faces generated through StyleGAN, it has limited manipu-

lative directions [26]. In contrast to these latent editing ap-

proaches, which simply generate plausible edits to static im-

ages, our algorithm attempts to automate the latent editing

to quantify facial deformations in the form of StyleSpace

edits.

2.2. Face Video Re-enactment

Controlling the facial attributes and their motion through

facial keypoints/landmarks are popularly used in video re-

enactment [15, 30, 36, 35, 25]. While these approaches

provide a strict guidance over the facial attributes, they are

challenged to capture fine expressive facial details (e.g.,

teeth, lip compression, wrinkle dynamics, etc.) and acces-

sories (e.g., eyeglasses). Further, they are dependent on

the accuracy of the landmarks and suffer in re-enactment

video synthesis when the head and/or face geometries of

the source and target considerably differ [29].

Approaches such as [11, 13, 14, 20, 40] employ 3D fa-

cial structural models (e.g., 3DMM) to guide the synthesis,

and are excellent at capturing facial movements. Despite the

potential of 3D model-based approaches to generate high-

quality videos, they represent only the inner-face region;

thus are comparatively poor at constructing complex fea-

tures such as teeth, wrinkles, complex mouth motion and

require 3D training data that are resource and computation

intensive.

2.3. StyleGAN-based Video Synthesis

The ability to synthesize high-resolution photo-realistic

images and the rich latent space of StyleGAN are stimu-

lating video synthesis research. MoCoGAN-HD [27] and

StyleVideoGAN [12], each train a temporal architecture

that is used to navigate the latent space of a pre-trained

StyleGAN2 to search for temporally coherent directions for

synthesizing videos at 10242. While the former is limited to

generating random video clips, StyleVideoGAN facilitates

re-enactment using a PCA-based approach to transform the

learned motion trajectories to the source image. While au-

thors of [9] propose a method to find controllable directions

of the W+ space of StyleGAN2 with the help of a 3D model

synthesizing videos at 2562, the research of [17, 34] uti-

lize 3D models to capture the facial motion, hence share the

drawbacks of 3D structural prior based models discussed

above, despite their ability to generate 10242 videos.

In addition to the inability of capturing the highly expres-

sive facial attributes precisely, all these approaches attempt

to learn a model that decomposes the motion-related content
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and hence requires a training phase. In contrast, our model

extends the inherent disentangled nature of the StyleSpace

(SS) of a pre-trained StyleGAN2 to achieve this decom-

position in our pipeline. Further, in contrast to the above

StyleGAN-based approaches which require the entire latent

(18× 512) per frame, the proposed framework provides an

extremely compact encoding scheme comprising of 0.38%

of parameters per frame (35 vs.18 × 512) while generating

videos at 10242.

3. Methodology

3.1. Overview

Our approach consists of six stages: video pre-

processing, GAN inversion, ID-latent selection, head-pose

encoding, facial attribute encoding, and rendering. The en-

tire flow is represented in Fig. 2.

We use the following notation to describe the pipeline.

Notations beginning with L and Lss denote W+ latents and

the corresponding SS latents, respectively. Lss is obtained

using the affine transform A(·), i.e., Lss = A(L). I denotes

a real image and S denotes a synthesized image from a la-

tent. For example, St = G(Lt) describes the generation of

an image from a latent, and the subscript refers to the frame

at time t. G is the original StyleGAN2 generator, but it is

supplemented by two style generators, Gsf for StyleFlow

and Gss for StyleSpace. Both Gsf and Gss are derivations

of G, with the difference being in the input, where Gsf take

attribute edits such as yaw, pitch, etc. as input operating on

the W+ space and Gss takes StyleSpace latents as input

(i.e., G(L) = Gss(A(L))). E is the e4e encoder used for

real image inversion into W+ space. Yt and Pt are the op-

timal Yaw and Pitch used by Gsf at time t. Finally, αt is a

32-dimensional vector that controls the facial deformations

of the generator Gss, given a latent Lt.

The pre-processing stage generates a set of face images

that are stabilized and aligned so that their inversion to la-

tent space achieves maximal identity preservation and conti-

nuity of spatio-temporal head and face motions. The inver-

sion employs the e4e encoder [28] to generate a sequence

of latents, L1, . . . , Lt in the W+ space corresponding to

the sequence of frames. The images generated from these

latents serve as the basis for rigid and non-rigid optimiza-

tions, replacing the raw image input. They enable con-

trolled editability in conjunction with image loss metrics

(see Sec. 4.2). Further details on video pre-processing and

GAN inversion stages are respectively in Sec. B and C of

the supplementary.

In the ID-latent selection stage, a single latent from the

sequence, L1, . . . , Lt, is selected as the ID-latent, LID,

which serves as the base identity for the face and head-pose

deformations across the entire sequence of frames. LID is

obtained using,

LID = argmax
Lt

(IDsimilarity(It, G(Lt)) . (1)

Using a single LID as the anchor to perform head-pose and

facial motion edits, not only reduces the data requirement

of rendering but also minimizes the identity variation across

frames. In a re-enactment setting, the image corresponding

to LID functions as the source image and the sequence of

frames {It} function as the driving frames. Please refer to

Sec. D of the supplementary for further details.

The fourth stage: head-pose encoding, finds, for each

frame, the head transformation (i.e., Yt and Pt) in StyleFlow

latent space needed to render LID as close as possible to the

synthesized image G(Lt) by minimizing,

min
Yt,Pt

L (Gsf (LID, Yt, Pt) , G(Lt)) (2)

Gsf (LID, Yt, Pt) results in a new latent, LHt ∈ W+, that

captures the correct head-pose at time t starting from LID.

The fifth stage: facial attribute encoding, solves for each

frame, the set of facial deformations αt in SS, that when

applied to LHss
t matches as close as possible to G(Lt)

(where, LHss
t denotes the corresponding SS latent of LHt

obtained using LHss
t = A(LHt)). The result is a set of

32 parameters, αt, that achieve G(Lt) ≈ Gss(LH
ss
t , αt)

through minimizing,

min
αt

L (Gss(LH
ss
t , αt) , G(Lt)) . (3)

Finally at the rendering stage, the re-enacted frame at

time t is synthesized using a fixed LID and 34 style con-

trolling parameters (plus the initial Roll angle, Rt used in

pre-processing) as follows,

St = Gss(LH
ss
t , αt) = Gss (Gsf (LID, Yt, Pt), αt) . (4)

3.2. Video Pre-Processing

Face alignment is an important step in StyleGAN2-based

face image inversion regardless of whether an encoder or

optimization approach is employed since a pre-trained gen-

erator is used. Moreover, temporal consistency of the align-

ment is critical due to the role each frame plays in our op-

timizations. Slight misalignments may alter identity, head-

pose, or misinterpret facial feature attributes (shape and dy-

namics). The alignment used in StyleGAN2 depends on the

commonly used 68 facial landmarks [19], including mouth

and eye coordinates for warping. However, the eyes and

mouth undergo dynamic changes in a video clip which gen-

erate jitters and rescaling in face alignment. To avoid the

impact of dynamic coordinates, [12] cropped the full face

excluding the eyes and mouth coordinates. We consider

this insufficient to alleviate the combined effects of head-

pose and facial motions. Instead, our alignment aims to:
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(1) completely stabilize the head when head-pose does not

change between consecutive frames, so that non-rigid face

motions are captured in a maximally aligned form, (2) rely

on inversion to capture the relative head alignment when the

head pose rotates out-of-plane.

We employ [7] for detecting faces and tracking features

in a video clip. However, the landmarks are not sufficiently

accurate for face alignment over a sequence of frames.

Since our objective is to only align the rigid head motion be-

tween frames, we employ a parametric optical-flow model

[8] to register a frame at time t to a key frame ki at time i
(< t). When the rigid head motion is small or limited to the

2D plane, the registration is accurate for the duration (occa-

sionally, several tens of frames), but upon out-of-plane head

rotation, the registration requires adjusting the key frame to

a new ki+1. When the head out-of-plane rotation is rapid,

consecutive frames may become key frames. Kindly refer

to Sec. B in supplementary for further details.

3.3. Head-Pose Encoding

Temporally consistent head-pose is challenging to re-

cover and synthesize. Head-pose is represented by three

degrees of rotation, Yaw, Pitch, and Roll, computed with re-

spect to a virtual point at the center of the head. While there

are numerous landmark and mesh-based approaches for es-

timating head-pose, the estimate of angles from a single

image is fragile and insufficient for accurate re-synthesis.

Thus, in this research, we choose an analysis-by-synthesis

approach to estimate the closest rendering of a latent to

the target image (Eq. (2)). StyleFlow proposed an effec-

tive system for a single latent-based edit of head-pose by

controlling the Yaw and Pitch angles. The Roll angle is a

2D image-based transformation and is relegated to a pre-

processing step necessary for face-alignment as required by

StyleGAN2.

An important feature of StyleFlow is that the attribute

editing direction is dependent and conditioned on the given

latent (i.e., it is specific to a person and relevant attributes

captured by the generator). This conditional architecture

leads to improved disentangling and it also allows continu-

ous parameter editing. Critically, the edit path is non-linear

in the latent space in contrast to previous latent manipula-

tion algorithms that rely on linear and fixed directions that

apply to all latents [3].

We re-formulate the head-motion as a head-pose match-

ing problem between a rendered image of the real-frame’s

encoded latent, Lt, and the rendered image of a rotated LID

which is solved as a minimization problem (Eq. (2)). The

minimization employs two losses, L2 and LPIPS [39] to

search the Yaw-Pitch space using gradient descent. These

losses are computed over a masked area of the face that is

based on an 81-landmark model (an extension of the 68

landmarks model to include the forehead). However, the

eyes, mouth, and eyebrows are excluded in the L2 loss,

since these non-rigid areas are not relevant to 3D head ro-

tations. The outcome of this stage is an alignment of the

LID to match the head-pose at time t, and it is represented

by a new latent LHt (in W+) that will be further edited to

capture the non-rigid motions of the eyebrows, eyes, mouth,

and chin.

3.4. Facial Attribute Encoding

The facial attribute encoding extends [33], where the au-

thors demonstrate the highly disentangled nature of the SS.

The facial-attribute encoding, αt, (32 parameters) of each

frame is applied to the latent LHss
t , which is a transforma-

tion of LHt to SS via LHss
t = A(LHt).

Choice of StyleSpace Indices: The StyleSpace indices

are analyzed to make sure that maximally disentangled in-

dices that capture complex and detailed expressive facial

attributes as shown in Figs. 1 and 3 are selected. For a spe-

cific facial feature f ∈ F , we score each index i ∈ {l, c}
using index sensitivity, Γf,i, which measures the change in

image space for a unit change in the StyleSpace index. Γf,i

is defined as,

Γf,i =
1

|{δk}|
∑
k

(LLPIPS(Sk ∗M,Sk−1 ∗M)

|δk − δk−1|
)
, (5)

where Sk = Gss(L
ss
ID+δk�i) is the synthesized image gen-

erated using LID perturbed by δk at SS index i, M is the

binary mask over the facial attribute considered, and �i ={1
when (l, c) = i; 0 elsewhere}. We choose {δk} to be a se-

quence of successive values with |{δk}| elements, and the

subscript k indicates the iterating index. Additionally, we

calculate the index sensitivity over the whole face (i.e., M
is a matrix of ones that covers the whole face) and is denoted

by Γi. Subsequently, we rank the indices based on Γf,i and

Γi values and choose the indices that have a higher Γf,i and

a negligible Γi based on simple thresholding. We repeat the

scoring on multiple subjects and frames sampled from the

dataset and obtain the prominent indices across the sampled

data. This novel approach enables the selection of maxi-

mally disentangled StyleSpace indices corresponding to the

specific facial attribute chosen. The list of facial attributes

F and the set StyleSpace indices, thus chosen (denoted as

V), are tabulated in Tab. 1 of the supplementary.

The significance of our SS indices selection process as

opposed to the algorithm proposed in [33] is as follows.

We observed that the StyleSpace, SS representation is not

unique. i.e., optimizing

min
αinvt

L (Gss(LH
ss
t + αt + αinvt), Gss(LH

ss
t )) (6)

does not necessarily yield αt + αinvt ≈ 0. Therefore,

as [33] back propagates to compute the gradient with re-

spect to an SS index, the gradients are less accurate, as the
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SS indices contributing to an identical facial deformation

of two frames would differ (as not unique). Instead, we

use a forward approach, perturbing each index separately

and computing the corresponding deformation loss, thus di-

rectly computing the true gradient (sensitivity in the image

space for a unit change of each SS index) which is more

accurate.

Facial Deformation Attribute Encoding: We compute

the optimal encoded latent values, αt, that edit facial at-

tributes to capture the facial deformations. αt represents

the offset values from LHss
t and is obtained through a per-

frame optimization (Eq. (3)) over the SS indices and is pre-

sented in Algorithm 1. The reconstruction of the latent Lt

obtained from the e4e encoder is used as the driving frame

in the optimization and denoted by St, while the rendered

re-enacted frame during the optimization is denoted by Ŝt.

Initialization of indices (LHss
t ): Due to the sparsity

of the latent space and as the optimization is over a multi-

dimensional space, it is highly probable for the optimization

algorithm to converge consecutive frames, which are nearby

in image-space, onto local-minima that are distant in the la-

tent space. The slight differences in the optimum point of

consecutive frames could introduce jitter in re-enactment.

Therefore, to bias the algorithm to solve for αt in the vicin-

ity of the previous frame’s optimum, we initialize the SS
indices that we optimize, i = (l, c) ∈ V of LHss

t as,

LHss
t (l, c) = LHss

t−1(l, c), ∀(l, c) ∈ V. (7)

Index-specific learning rate, ηf,i: We observed that dif-

ferent subjects and indices have different sensitivities to a

unit change in the StyleSpace (Γf,i) (see Sec. E.3 in sup-

plement). This observation corroborates the non-linear na-

ture of latent editing discussed in StyleFlow and the non-

homogentiy of latent spaces discussed in [21]. Hence, using

the same learning rate across all indices would result in an

undue dominance of high-sensitivity indices, thus generat-

ing non-optimal results. Therefore, for each input video and

each facial attribute, we compute the index-specific learning

rate,

ηf,i = exp

(
−1.5Γf,i /max

i∈Vf

(Γf,i)

)
, (8)

that was obtained empirically. For each epoch, optimization

is done in parallel for all the attributes and the optimization

over indices corresponding to the gaze is skipped for frames

where blinking is detected.

Loss Functions: The algorithm is optimized by mini-

mizing over multiple losses. The total loss is defined as,

L = Lm + Le + Lp + LID + LFP , (9)

where the loss terms LID and LFP represent the identity

loss and the Face-Parsing loss respectively and the sub-

scripts m, e, and p correspond to the losses computed over

Algorithm 1: Optimization Flow for frame t

Inputs:

• Head-pose adjusted W+ latents: LHt and LHt−1,

• Target frames: St−1 and St,

• Rendered frames: Ŝ1 and Ŝt−1,

• StyleSpace of t− 1: LHss
t−1 and αt−1.

• Optimizer F ′, N number of epochs, and Gss

Initialization:

• Obtain the StyleSpace latent, LHss
t = A (LHt)

• Initialize LHss
t (l, c), ∀i = (l, c) ∈ V

• αt = [0, . . . , 0]
• Compute the index-specific learning rates, ηf,i

η = {ηf,i; ∀f ∈ F , i ∈ V}
Optimization:
for n = [1:N] do

Ŝt = Gss{LHss
t + αt�i}

where �i = {1 when (l, c) ∈ V; 0 elsewhere }
L = L{Ŝ1, Ŝt−1, Ŝt, St−1, St}
αt ← αt − ηF ′(∇αtL, αt)

end
Output:

• 32-dimensional αt

extracted regions of the {mouth + chin/ jaw} , {eyes + eye-

brows}, and {pupil}, respectively.

Lm = LLPIPSm + LL2m + LIF m , (10)

Le = LLPIPSe + LL2e + LIFe , (11)

Lp = LL2p + LIF L2p , (12)

where LLPIPS , LL2, and LIF represent the LPIPS loss, L2

loss, and Inter-frame loss, respectively. Please refer Sec.

E.4 in supplementary for further details.

3.5. Rendering

Once the encoding is complete, the LID and the time-

series of the 35 parameters, {αt, Yt, Pt, Rt} are transmitted

to the renderer. To synthesize the re-enactment video, first

LHt is obtained from LID to adjust for the head-pose us-

ing StyleFlow for each frame. Then LHt is transformed to

LHss
t ∈ SS, on to which the 32 indices responsible for

the facial attributes, αt are applied to synthesize the image

using the generator, Gss.

Ŝt = Gss(LH
ss
t + αt�) (13)

4. Experiments and Results
4.1. Dataset and Evaluation

We selected 150 video clips (4K videos) from the video-

sharing site www.pexels.com that combine high visual

quality with expressive head and facial motions that are
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Figure 3. Qualitative examples yielded through our approach (in addition to Fig. 1). The StyleSpace indices and the optimization

procedure were carefully designed such that complex and fine facial details such as lip-pressing, mouth puckering, mouth gaping, and

wrinkles around the eyes, mouth, nasal-bridge, and forehead are well-captured.

Figure 4. Qualitative evaluation of puppeteering, where the en-

coded parameters of the puppeteer are applied to the ID-latent of

the puppet. It could be observed that even complex facial defor-

mations are transferred well across different identities.

present in common low-resolution datasets. Each video

contains a single face performing significant face deforma-

tions, head motion, and speech. Additional details of the

dataset are included in Sec. F.1 in supplementary. There

exists an inherent quality loss in the GAN inversion stage

as the real-world subjects would mostly be out-of-domain

of StyleGAN resulting in notable deviations between the

e4e encoded frames and real frames. Thus, to improve the

photo-realism of the initial GAN inversions while maintain-

ing editability, PTI [23] was used. Kindly refer Sec. C of

the supplementary.

We compare our results against two SOTA StyleGAN2-

based models (most relevant): StyleHEAT and StyleV-

ideoGAN, a latent-based model: LIA, and two other

SOTA models (keypoint/landmark-based) that facilitate re-

enactment: fs-vid2vid and FOMM. Publicly available mod-

els were used for all algorithms except StyleVideoGAN for

which the authors kindly processed six videos. Note: All

algorithms were evaluated at their native resolution using

multiple metrics scoring: spatial quality, spatio-temporal

quality and appearance, and temporal consistency of iden-

tity (details of metrics in Sec. F.2 in supplementary).

Referring to the top of Tab. 1, we achieve state-of-

the-art performance at 10242 with significantly improved

re-synthesis results compared to StyleGAN2-based mod-

els, StyleVideoGAN and StyleHEAT while utilizing only

0.38% of the latent space parameters used by them (35 vs.

18 × 512 per frame). Moreover, our approach also outper-

forms fs-vid2vid, FOMM, and LIA in all scores by large

margins. It is critical to note that lower native resolutions

[25, 30, 31] significantly favor several metrics since there

is no penalty for loss of details (e.g., L1, SSIM, FID, FVD,

etc.) with respect to 10242 metrics. Hence it is essential

to emphasize on the qualitative analysis which more accu-

rately reflects the potential of our framework.

Figs. 1 and 3 illustrate, qualitatively, the capturing of

fine facial details such as lip pressing, mouth puckering and

gaping, dynamic wrinkles around the eyes, mouth, nasal-

bridge, and forehead, etc. enhancing photo-realism of the

re-enacted videos which are not necessarily captured by the

metrics (see supplementary figures and videos for more ex-

amples). To the best of our knowledge, such fine expressive

details were not explicitly addressed by previous research.

Similarly, as shown in Tab. 2, we achieve the best pup-

peteering results across all metrics. Further, Fig. 4 demon-

strates the versatility of our method as even complex facial

attribute deformations (e.g., lip pressing, puckering, etc.) of

the driving frames are transferred successfully to the puppet

frame through the proposed framework.

4.2. Ablation Study

As ablations, we study several design choices in our

pipeline, namely: the use of a different GAN inversion en-
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Method res. L1 ↓ LPIPS↓ LID↓ PSNR↑ SSIM↑ FID↓ FVD↓ ρAU↑ ρGZ↑ ρpose↑
FOMM 2562 3.07 0.036 0.174 31.0 0.932 28.7 140.3 0.710 0.755 0.648

LIA 2562 3.24 0.042 0.164 30.0 0.929 30.2 162.9 0.546 0.693 0.619

fs-vid2vid 5122 5.75 0.093 0.158 25.2 0.900 42.4 359.6 0.571 0.784 0.629

StyleHEAT 10242 4.13 0.097 0.134 27.6 0.933 25.1 281.9 0.673 0.701 0.763

Ours 10242 1.99 0.030 0.097 34.2 0.963 15.9 85.2 0.771 0.834 0.880
StyleVid.GAN * 10242 4.04 0.109 0.104 28.8 0.926 28.8 223.3 0.739 0.884 0.979

Ours* 10242 1.96 0.026 0.067 34.1 0.960 13.6 79.8 0.899 0.971 0.987
Ours (ReStyle) 10242 2.01 0.031 0.099 34.0 0.959 16.9 93.9 0.767 0.831 0.843

Ours – PTI 10242 2.71 0.048 0.127 32.0 0.956 23.2 125.7 0.726 0.819 0.833
Table 1. Quantitative comparison of video re-synthesis against baselines. Top consist of metrics evaluated against the dataset of 150

videos. Middle includes scores computed over 6 videos received upon requests to authors. Bottom consists of ablation results evaluating

the effect of using a different encoder and the generator fine-tuning stage. We yield SOTA results at 10242 on all metrics while using only

0.38% of latent space parameters of StyleGAN2.

Method res. LID↓ FID↓ FVD↓ FVDM↓ ρAU+GZ↑
FOMM 2562 0.153 77.0 396.8 103.0 0.501

LIA 2562 0.174 82.3 406.0 112.4 0.527

fs-vid2vid 5122 0.202 73.6 445.1 112.7 0.640

StyleHEAT 10242 0.181 81.0 437.5 109.8 0.667

Ours 10242 0.095 63.9 386.5 82.3 0.708
Table 2. Quantitative comparison of puppeteering against
baselines evaluated across 50 puppet-puppeteer pairs. Our ap-

proach achieves the best performance across all metrics.

coder, the significance of the head-pose encoding approach,

using real frames as reference in facial attribute optimiza-

tion, and the effect of PTI.

Using ReStyle encoder [5] replacing e4e generates com-

parable results (Tab. 1) implying that the proposed scheme

is functional irrespective of the encoder provided that the

inversion is within the editable domain of the latent space.

Further using real frames {It} as reference for the fa-

cial attribute encoding optimization (Sec. 3.4) instead of the

synthesized frames {St} resulted in visually sub-optimal re-

sults requiring us to abandon tighter pixel-level metrics as

LL2, which are essential in capturing fine facial details such

as wrinkles, gaze, etc. Hence, we opted to use {St} for the

optimization stage. We suspect this behavior to be caused

due to the natural noise present in real images to which the

StyleSpace optimization might be sensitive to.

Even though StyleFlow is capable of directly generating

a head-pose adjusted latent, provided {Yt, Pt}, the quanti-

fied estimates of head-pose (using OpenFace) for a video

stream are not sufficiently accurate to render using Style-

Flow, resulting in inaccurate poses and significant jitter.

Our synthesis-based optimization approach based on losses

in image-space generates more accurate head-pose images

consistent with reference frames (Tab. 3 and supplementary

video).

It could be observed that the re-synthesis results with-

out PTI (Ours-PTI in Tab. 1) yet outperform all baselines

in almost all scores. The performance improvement seen

with PTI is due to the tendency of real-world subjects to be

Method Vid.1 Vid.2 Vid.3 Vid.4 Vid.5

StyleFlow 46.7 41.3 33.7 17.0 38.5

Ours 16.0 19.9 16.3 11.5 21.9
Table 3. Quantitative comparison of our approach vs. straight-
forward head-pose adjustment using StyleFlow. The mean

head-pose loss (lower ↓ the better) of a few videos are tabulated.

out of the domain of StyleGAN and the inherent loss of the

encoder used during the GAN inversion stage.

4.3. Limitations

Despite the promising results, the proposed approach

has a few limitations. As the pipeline is based on the

StyleGAN2 architecture, it inherits the limitations from

StyleGAN2 and its inversion methods (e.g., fixed resolu-

tion, alignment requirements, etc.). Further, the encoding

pipeline is sensitive to occlusions resulting in visual arti-

facts in the synthesized images. Additionally, certain sce-

narios with extreme facial deformations and profile views

could yet be challenging, which stems from the low repre-

sentation of the FFHQ dataset used in training StyleGAN2.

5. Conclusion
We extend the StyleGAN2’s photo-realism and disentan-

glement of its StyleSpace spatio-temporally, to propose a

novel end-to-end pipeline for latent-based expressive face

video encoding, which enables high-fidelity (10242) video

re-enactment using a single W+ latent and 35 parameters

per frame. Our algorithm achieves state-of-the-art perfor-

mance while using a fraction (0.38%) of parameters com-

pared to StyleGAN2 latent-based approaches. To the best of

our knowledge we are the first to (1) automate latent space

editing (that was previously used to merely generate plau-

sible facial edits) to capture extremely fine, rich, and com-

plex facial deformations, and (2) to propose an extremely

compact latent-based face video encoding scheme based on

StyleGAN2 enabling re-enactment. The negative societal

impact is discussed in Sec. G in the supplementary.
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