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In this supplementary material, we will discuss more de-
tail of the proposed method VAST. In Section. 1, the loss
function for the variational style enhancer will be explained.
In Section. 2, we will present the architecture of the image
renderer. In Section. 3, we will introduce how we conduct
the mean opinion score (MOS) test.

1. Variational Style Enhancer
One of the key contributions of our method is that we

propose the variational style enhancer, which enhances the
style space to be highly expressive and meaningful. Without
this enhancer, the style space learned by the style encoder
and hybrid decoder is flat. The variational style enhancer
is based on variational autoencoder [3, 5] and normalizing
flow [7]. The training of this enhancer can be considered
as the reconstruction of facial expressions, which is condi-
tional on the speech. If we remove the normalizing flow
module, the loss function thus becomes:

ln pθ(X | A) ≥ Eqϕ(z|X,A)[ln pθ(X | z,A)] (1)

−KL(qϕ(z | X,A)∥p(z|A)),

where X is the facial expression sequence, and A is the
corresponding phonetic posteriorgram (PPG) [6] sequence.
Since the latent variable z can be considered to be indepen-
dent with A, Eq. 1 is further defined as

ln pθ(X | A) ≥ Eqϕ(z|X,A)[ln pθ(X | z,A)] (2)

−KL(qϕ(z | X,A)∥p(z)).

Diagonal
Posterior

Enhanced
Posterior

Figure 1. Illustration of the variational style enhancer.

To achieve a more flexible posterior distribution other
than a simple diagonal Gaussian, we apply the householder-

transformation [7] based normalizing flow to enhance the
variational inference [4]. By applying a sequence of invert-
ible mappings H(k), k = 1, . . . ,K, over the initial vari-
able, we obtain a more valid and flexible probability dis-
tribution at the end of this sequence. As shown in Fig. 1,
z(k) = H(k)(z(k−1)) and the distribution of z(k) can be
transformed from the previous z(k−1):

p(z(k)) = p(z(k−1))|det ∂H
(k)−1

∂z(k)
| (3)

= p(z(k−1))|det ∂H(k)

∂z(k−1)
|−1, (4)

where det denotes the Jacobian determinant of the trans-
formation. The density of z(k) is obtained by successively
transforming z(0) through a sequence of transformations:

z(K) = H(K) ◦ . . . ◦H(2) ◦H(1)(z(0)), (5)

ln pK(z(K)) = ln p0(z
(0))−

K∑
k=1

ln |det ∂H(k)

∂z(k−1)
|. (6)

With the enhanced posterior distribution replacing the
vanilla diagonal posterior, Eq. 2 thus becomes

ln pθ(X | A) ≥ Eqϕ(z(0)|X,A)[ln pθ(X | z(K),A) (7)

+

K∑
k=1

ln |det ∂H(k)

∂z(k−1)
|]

−KL(qϕ(z
(0) | X,A)||p(z(K))),

where the first reconstruction term is formulated with z(K),
since we finally sample from the distribution of z(K). The
first term can also be Eqϕ(z(0)|X,A)[ln pθ(X | z(0),A)].

2. Renderer Structure
We adopt the conditional generative network (CGAN)

[2] as the basic framework for the renderer. The eroded
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Figure 2. Illustration of the renderer module. The background images and mesh images are concatenated. The images are fed as a sequence
of 16 frames for a training sample. The input can be of variable length in the inference stage.

background images Ibg and corresponding 3D face repre-
sentation mesh sequence [8] M are taken as the conditional
input. As shown in Fig. 2, the renderer is designed as an
encoder-decoder structure. The image encoder is composed
of three convolutional layers with stride 2. The encoded
bottleneck features contain compact information about face
shape, appearance, and image background. To enable the
renderer to be perceptual about the relation between speech
features and the mouth-region movements and enhance the
synthesis accuracy on the mouth shape, the speech features
PPG are injected into the bottleneck features. The PPG fea-
tures and image encoder features are sent into the audio-
image fusion module and output the final bottleneck fea-
tures. This fusion module is constructed with four convolu-
tional layers. To capture the time dependency among the se-
quence of audio and image features, a long short-term mem-
ory (LSTM) [1] module is utilized after the fusion module.
Finally, the decoder which is composed of two transposed
convolutional layers is employed to output the reconstructed
images Î .

3. MOS Guideline
In the authenticity evaluation, expressiveness evaluation

and ablation study, we extensively conduct the MOS tests
to verify the effectiveness of the proposed method. Three
main aspects are taken into account in these tests: speech-
lip sync, expressiveness & richness, and overall naturalness.
Fifteen judgers participate in these tests. We now list the
questions they are asked to evaluate these three aspects.

1. Speech-Lip Sync. How much do the lip movements
match the audio? Very good (5) for no wrong lip move-
ments and have nothing different from the ground-truth per-
son talking. Very poor (1) for the lip movements are totally
unreasonable and cannot read content from the lips at all.

2. Expressiveness & Richness. How vivid or exagger-
ated is the avatar presented? Very good (5) for rich and

contagious expression on the mouth region. Very poor (1)
for unreal and monotonous facial movements.

3. Overall Naturalness. How real and natural is the syn-
thesized video? Very good (5) for high-quality images and
natural avatar appearance. Very poor (1) for fake artifacts
or blurred images that can be easily observed.
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