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Abstract

The increasing global population and the growing fre-
quency of droughts shows the necessity to enhance global
food production and meet future food demands. However,
achieving long-term food security and effectively mitigating
the impact of climate change require a critical emphasis on
sustainable systems to increase food production. Hence, au-
tomatic estimation of crop production can enable breeders
and farmers to make data-driven decisions to optimise re-
sources and maximise efficiency and sustainability. In this
work, we have tackled this estimation task by applying deep
learning methods to images taken from a digital RGB cam-
era. Moreover, we have improved the results of those mod-
els by feeding the models with not only images but also crop
features, such as the amount of fertilisers or the amount of
water. The proposed data fusion approach can be applied
to convolutional- and transformer-based models obtaining
good results in both cases. As a result of our work, we have
produced a model that estimates crop production of wheat
and spelt with an MAE of 0.666, and is a first step towards
optimising resources and food production.

Environmental CO2 has been increasing exponentially

over the last years, and it is expected to reach 700 ppm

by 2070 [25]. Consequently, global temperatures are in-

creasing, which in turn causes what is known as climate

change [25]. Global warming will lead to greater water

evaporation and increased aridity throughout the world, in-

creasing extreme drought events in various regions of the

planet. Drought is one of the most detrimental and limit-

ing abiotic stresses for crops, causing decreases in photo-

synthesis, vegetative growth, number of flowers, and pollen

germination [5,13]. Therefore, decreases in crop yields will

be expected [1]. In addition, since the 1950s, the world

population has been growing and is expected to reach 10.88

billion inhabitants by the end of the century [8]. The in-

crease in global demographics along with the increase in

drought episodes shows a clear need to increase world food

production in order to meet future food demand. However,

to mitigate the impact of climate change and ensure long-

term food security, it is crucial that increase in food pro-

duction is achieved through sustainable systems. Currently,

most agricultural production is based on the conventional

production method, which relies on inorganic nitrogen (N )

based fertilizers to improve crop yields [23]. However, a

large amount of the added N is lost to the environment, in-

creasing the emission of greenhouse gases [7]. Thus, in the

last decades the number of organic farming systems has in-

creased, as it is believed to have the potential to mitigate the

impact on climate change [19].

In this context, the high-throughput plant phenotyping

(HTPP) has gained significant attention, since enables plant

breeders, farmers, and researchers to acquire a vast amount

of data on crop physiological status in an automated and ef-

ficient manner [6]. Furthermore, the availability of commer-

cial RGB cameras with rigorous factory colour calibration

has made it possible to easily acquire various vegetation in-

dices through RGB image processing [20]. This low-cost

procedure makes HTPP accessible to a wide range of users.

Correlating vegetation indices with yield production would

allow the identification and selection of high-yielding and

stress-tolerant crop varieties [3, 32]. Therefore, developing

methods to predict crop production and yield across vari-

ous farming systems and growth conditions in a low-cost

automatised manner could enable breeders, farmers, and re-

searchers to make data-driven decisions and optimise re-

source allocation for maximum efficiency and sustainabil-

ity, revolutionising agriculture.

Methods to estimate crop production can be split into
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two groups: machine learning methods based on differ-

ent physiological and ecological factors; and computer vi-

sion methods. In the former solution, crop production

can be correlated with a range of vegetation or growth

traits [2], and it can be also estimated from ecological fac-

tors such as water availability, temperature or other natural

resources [10, 36]. In the computer vision approach, the

last years have been dominated by deep learning models

capable of predicting yield for cotton [30], soybean [24]

or rice [34] among others [31]. In this paper, we aim to

combine both approaches by means of data fusion methods.

Data fusion, which integrates data from multiple modalities

using Machine Learning and Deep Learning techniques, has

been of growing interest in its application to precision agri-

culture, since it provides reliable, precise and valuable in-

formation [4]. In particular, the contributions of this work

are:

• We develop several models for estimating crop yield

for wheat and spelt.

• We analyse the impact of fusing different crop features

with computer vision models to predict crop yield us-

ing different approaches.

• We release our code in a public repository to facilitate

the application of our methods to other projects1.

1. Materials and methods

In this section, we present both the dataset and computa-

tional materials and methods employed in this work.

1.1. Dataset

In this work, we have developed models to automati-

cally estimate yield production from photographs of two

species: Triticum aestivum var. Florence Aurora (wheat)

and Triticum spelta var. Franckenkorn (spelt).

Photographs were captured using a digital RGB camera

(EVIL Canon EOS M200) mounted to a monopod (Hama

Monopod Star 78 Mono), see Figure 1 for samples of the

captured photographs. To ensure a consistent distance to

capture the photos, a fishing line measuring approximately

1 metre was added to the monopod. The fishing line was

secured with a fishing weight at the other end to maintain

tautness and a fixed distance during photography. Zenithal

photos were taken by positioning the end of the fishing line

at the highest point of the crops, ensuring a constant dis-

tance of 1 meter. A total of 829 photos were captured, 558

images were used for training different models, 62 images

for validation, and the rest for evaluating the models.

1The code of the project is available at https://github.com/
joheras/yield-prediction/

Figure 1. Samples of the captured photographs: (a) wheat and (b)

spelt.

Feature Values Obtained by Correlation

species {wheat, spelt} manual -

water treatment {d,ww} manual -

management {conventional, ecological} manual -

avg water (L m2) [2752.8, 3096.2] manual 0.257

Nitrogen (kg) [0, 0.168] manual 0.974

Phosphorus (kg) [0, 0.072] manual 0.974

Potassium (kg) [0, 0.072] manual 0.974

GA [0, 1] CerealScanner 0.314

GGA [0, 1] CerealScanner 0.398

CSI [4, 93] CerealScanner -0.143

NGRDI [0, 0.135] CerealScanner -0.004

TGI [776.6, 4993.7] CerealScanner -0.712

Final yield (kg) [0.8579, 11.35] manual -

Table 1. Features employed in the study and their correlation with

final yield.

Once we had the photos, we automatically calculated

several features using the CerealScanner plugin in Fiji2.

These features include Green Area (GA), Greener Green

Area (GGA), Crop Senescence Index (CSI), Normalised

Green-Red Difference Index (NGRDI), and Triangular

Greenness Index (TGI). GA and GGA estimate the photo-

synthetic surface area of the canopy, while CSI indicates

the degree of canopy senescence [11]. NGRDI is corre-

lated with aboveground biomass, and TGI allows estima-

tion of chlorophyll concentration in the canopy [17,18]. All

these features are correlated with plant health and photosyn-

thetic activity and can be correlated with biomass and yield.

In addition, for each photo the following features from the

crops were annotated: water treatment, management, aver-

age water, Nitrogen, Phosphorus and Potassium, and aver-

age height. A table with all the features considered in this

study, their values, and the correlation with the final yield

in kg is provided in Table 1.

1.2. Computational methods

We have conducted a study of six deep learning ar-

chitectures for estimating yield production. The architec-

tures studied included three convolutional neural networks

(namely, EfficientNet v2 medium [29], ResNet-50 [14] and

ConvNext base [22]), and three transformer-based architec-

tures (in particular, Swin v2 base [21], Vit base patch 16 [9]

and VOLO d2 [35]) — the selection of deep learning ar-

chitectures was based on their outstanding performance on

2https://integrativecropecophysiology.com/
software-development/cerealscanner/
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Figure 2. Base approach to train the models that estimate yield

production.

other tasks [15], but the data fusion approach proposed in

this paper can be applied with any deep learning architec-

ture. All the networks used in our experiments were im-

plemented in Pytorch [26], and have been trained thanks to

the functionality of the FastAI [16] and Timm [33] libraries

using a GPU Nvidia RTX 2080 Ti.

In order to establish a baseline for our models, we have

used the transfer-learning method presented in [16] for

training both the convolutional and transformer-based ar-

chitectures. The training method is a two-stage procedure

that starts from a model pretrained in the ImageNet chal-

lenge, and can be summarised as follows, see Figure 2. In

the first stage, we replaced the head of the model (that is,

the layers that give us the classification of the images), with

a new head adapted to estimate crop production in our par-

ticular dataset. Then, we trained these new layers (the rest

of the layers stayed frozen) with our data for two epochs.

In the second stage, we unfreezed the whole model and re-

trained all the layers of the model with our dataset for 30

epochs. In order to find a suitable learning rate for both the

first and second stage, we used cyclical learning rates for

optimisation [28]. Moreover, we employed data augmenta-

tion [27] (using vertical and horizontal flips, rotations from

-180o to 180o, zooms and lighting transformations) to pre-

vent overfitting. All convolutional models were trained with

images of size 512× 512, and transformers with images of

size 384×384. Finally, we analysed the impact of Min-Max

normalisation and standardisation for yield estimation [12].

Moreover, we have applied two data fusion techniques,

one at the input level, and another at the output stage. In

both approaches, we start with a model pretrained in the

ImageNet challenge. As in the baseline, in the multi-input

fusion approach, we replaced the head of the model with a

new head adapted to estimate crop production in our partic-

ular dataset; the difference is that the new head not only

receives its input from the the ImageNet model but also

from the crop features, see Figure 3. In the case of the

multi-output fusion approach, we replaced the head of the

model with several heads to predict not only crop produc-

tion but also other crop features, see Figure 4. In both ap-

proaches, we used three sets of crop features: the features

obtained with CerealScanner, the crop treatment features,

and all the features — since the crop features have different

scales, we studied both min-max normalisation and stan-

Figure 3. Multi-input approach to estimate yield production

Figure 4. Multi-output approach to estimate yield production

dardisation. For training, we followed the same two-stage

regime explained previously (we trained the added layers

for two epochs, unfreezed the model, and retrained all the

layers for 30 epochs), applied cyclical learning rates for op-

timisation and data augmentation, and used images of the

same resolutions explained previously.

For evaluation, we used two popular error-based metrics,

root mean squared error (RMSE) and mean absolute error

(MAE), to study the performance of each method in the test

set.

2. Results and Discussion
The performance of the baseline models is presented in

Table 2. In that table, we also include the impact of applying

Min-Max normalisation and standardisation. From those

results, we can draw several conclusions. First, both con-

volutional and transformer-based models achieved a MAE

close to 1 Kg without applying any normalisation; being

VOLO the architecture that obtained the best result (MAE

of 0.936). Moreover, the application of both Min-Max nor-

malisation and standardisation improved the results of all

models except for the Swin architecture, but standardisation

allowed us to obtain better results in general. Finally, the

VOLO architecture applying the standardisation step pro-

duced the best model with a MAE of 0.866.

We focus now on the results obtained by combining im-

ages and crop features using both the multi-input and multi-
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No norm Min-Max STD norm

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
ConvNext 0.999 1.284 0.912 1.113 0.900 1.093

EfficientNet 1.067 1.248 1.128 1.505 1.038 1.282

Resnet 1.695 1.839 1.126 1.341 1.205 1.405

Swin 1.092 1.252 1.107 1.379 1.096 1.339

Vit 1.111 1.375 0.952 1.156 0.977 1.187

VOLO 0.936 1.171 0.922 1.139 0.866 1.066
Table 2. Results for the baseline approach. In bold the best results.

output data fusion approach, see Table 3. From those re-

sults, we can notice that the multi-input approach serves to

improve the performance of all the models. However, it is

necessary to either apply Min-Max normalisation or stan-

dardise the features; otherwise, the results are worse than

those obtained only using the image for training. The pre-

processing step is necessary because otherwise the features

have different scales, and this affects the performance of

the network. In general, Min-Max normalisation provides

better results (mean MAE of 0.793) than the standardisa-

tion step (mean MAE of 0.823). If we consider transform-

ers and convolutional networks separately, the transformer

models worked better with the standardisation step (mean

MAE of 0.791) and the convolutional models with Min-

Max normalisation (mean MAE of 0.7483). The last con-

clusion worth highlighting from the multi-input approach

is that the ResNet-50 model achieved the best result (MAE

of 0.667), this shows that this classical convolutional archi-

tecture might still produce better results than new architec-

tures.

In contrast with the results achieved by the multi-input

approach, the multi-output data fusion method obtained

considerable worse results than those obtained by the base-

line or multi-input models. The best multi-output model

was a ConvNext model with Min-Max normalisation (MAE

of 2.892). The explanation for these results could lie in the

number of epochs (30) in which the models were trained.

These models have more features due to the multiple heads,

and, therefore, training them might require more resources

(data and time) or the usage of different configurations for

each one of the heads (for instance, the learning rate).

The next set of experiments were focused on the use of

features obtained from the images thanks to the CerealScan-

ner plugin, see Table 4. In both the multi-input and multi-

output approach, models trained combining images and Ce-

realScanner features got worse results than baseline models,

and models trained with a combination of images and crop

features. An explanation for those results might be the low

correlation of CerealScanner features and yield production,

whereas crop features have a higher correlation with yield

production, see Table 1. Hence, the combination with Ce-

realScanner features have a negative impact on the perfor-

mance of the models.

In the last set of experiments, we analysed the results ob-

tained by the models that combine images with all features

included in this work; see Table 5. We can observe the same

behaviour of the models trained only with crop features;

that is, the multi-input models obtained better results than

baseline models by applying a pre-processing step, whereas

multi-output models fail to estimate crop production. In

fact, the multi-input models trained with all the features af-

ter Min-Max normalisation obtained the best results in our

study (mean MAE of 0.774). This shows that in spite of

including some features that might hinder the performance

of the networks (as shown with the CerealScanner features),

the networks are able to take advantage of relevant informa-

tion provided as additional features. As the last conclusion,

we notice that there are not significant differences between

convolutional models (best mean MAE of 0.756) and trans-

formers (best mean MAE of 0.782); so, both kinds of archi-

tectures can serve to estimate crop production.

3. Conclusions and further work

In this paper, we have shown that it is feasible to estimate

yield production using both convolutional and transformer-

based models from photos taken using a digital RGB cam-

era. Moreover, the performance of those models can be

considerably improved by taking advantage of some extra

information from crops. However, such information must

be added carefully to the models. In particular, all extra fea-

tures feed to the model should be put in the same scale using

either Min-Max normalisation or standardisation. In addi-

tion, it is necessary to analyse the features that are related

to crop production (such as water treatment, or Nitrogen),

otherwise the performance of the networks might decay if

we only consider unrelated features. Finally, the architec-

ture of the networks should be modified to include those

features as input since trying to predict not only yield pro-

duction but also other features is not straightforward, and

might require additional resources.

There are several tasks that remain as further work. First,

we would like to study multi-output models more deeply to

produce better results. Moreover, we want to analyse the

impact of each additional feature provided to the model in

order to detect those that are more relevant for estimating

yield production. Finally, we are interested in using depth

information to improve the performance of the models.
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Government. Ángela Casado-Garcı́a has a FPI grant from

Community of La Rioja 2020.

528



Multi-input Multi-output

No norm Min-Max STD norm No norm Min-Max STD norm

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
ConvNext 1.753 1.986 0.823 0.938 0.760 0.914 5.885 7.131 2.892 3.619 4.124 5.286

EfficientNet 1.458 1.759 0.755 0.929 0.920 1.051 5.928 7.124 7.495 9.180 3.523 3.887

Resnet 1.549 1.693 0.667 0.804 0.882 1.009 6.005 7.203 7.172 8.263 3.178 3.676

Swin 1.541 1.916 0.926 1.013 0.859 0.988 5.821 7.194 4.806 5.827 3.821 4.375

Vit 1.492 1.782 0.770 0.913 0.724 0.896 5.532 6.849 3.667 4.685 3.721 4.062

VOLO 1.428 1.638 0.819 0.969 0.792 0.958 5.758 6.96 5.245 7.423 4.431 4.830

Table 3. Results for data fusion using crop features. In bold the best results.

Multi-input Multi-output

No norm Min-Max STD norm No norm Min-Max STD norm

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓
ConvNext 2.203 2.649 2.202 2.498 2.137 2.419 12.138 12.796 10.245 11.983 4.021 4.471

EfficientNet 2.572 3.135 2.038 2.541 1.631 2.092 5.533 6.488 6.080 8.476 4.073 4.597

Resnet 1.436 1.923 1.340 1.770 1.591 1.878 6.026 7.313 5.853 7.331 3.494 4.077

Swin 2.299 2.709 2.15 2.608 2.123 2.391 5.745 6.912 6.728 8.241 4.055 4.448

Vit 2.636 3.191 2.191 2.687 2.293 2.632 5.382 6.692 5.788 7.059 3.890 4.468

VOLO 2.428 2.855 1.783 2.107 1.828 2.167 6.003 7.148 5.628 6.615 4.514 4.895

Table 4. Results for data fusion using features extracted with CerealScanner. In bold the best results.
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