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Abstract

We propose a Bayesian approach for semantic segmen-
tation of crops and weeds. Farmers often manage weeds
by applying herbicides to the entire field, which has nega-
tive environmental and financial impacts. Site-specific weed
management (SSWM) considers the variability in the field
and localizes the treatment. The prerequisite for automated
SSWM is accurate detection of weeds. Moreover, to inte-
grate a method into a real-world setting, the model should
be able to make informed decisions to avoid potential mis-
takes and consequent losses. Existing methods are deter-
ministic and they cannot go beyond assigning a class label
to the unseen input based on the data they were trained with.
The main idea of our approach is to quantify prediction
uncertainty, while making class predictions. Our method
achieves competitive performance in an established dataset
for weed segmentation. Moreover, through accurate uncer-
tainty quantification, our method is able to detect cases and
areas which it is the most uncertain about. This information
is beneficial, if not necessary, while making decisions with
real-world implications to avoid unwanted consequences.
In this work, we show that an end-to-end trainable Bayesian
segmentation network can be successfully deployed for the
weed segmentation task. In the future it could be integrated
into real weeding systems to contribute to better informed
decisions and more reliable automated systems.

1. Introduction

Weeds are undesirable plants that tend to overgrow and

hinder the growth of desired crops. They are major stressors

and cause crop yield loss. Given the ever-growing global

demand for food [13], coupled with challenges posed by cli-

mate change and environmental degradation [48], any cause
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Figure 1: Probabilistic segmentation of weeds and crops.
Given an input image, our model outputs uncertainty es-

timates along with semantic segmentation masks. This is

useful when, for instance, crop leaves (1) are misclassi-

fied as weed (2) by the model. With uncertainty scores,

downstream algorithms do not have to rely only on the pre-

dicted segmentation masks, but would also consider the (in

this case high (3)) prediction uncertainty, and avoid making

false decisions (such as spraying the crop).

of yield loss should be managed and minimized.

Farmers employ various methods to control weed growth

in croplands [50]. Chemical or mechanical weeding are

common approaches, but come with negative environmental

consequences. Excessive herbicide usage can lead to pollu-
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tion and emergence of herbicide-resistant weeds [35, 33].

Mechanical weeding can inhibit weed regrowth over time

[12]. Hence for both methods, if weeding strategies are

not implemented efficiently, the financial and environmen-

tal burden becomes substantial [21]. Therefore, site-specific

weed management (SSWM) is crucial for sustainable agri-

cultural production to meet the increasing demand [1, 16].

SSWM considers the variability within the field, employ-

ing tailored weed control methods based on factors such as

weed species composition, density, and environmental con-

ditions [16]. Through SSWM, farmers can enhance weed

management while minimizing environmental costs.

The biggest building block of SSWM is undoubtedly ac-

curately identifying weed locations. This is a complicated

task due to factors like overlapping leaves, occlusion, and

similarities between weeds and crops [16]. Dynamic light

and weather conditions add further complexity. State-of-

the-art segmentation methods are needed to overcome these

challenges, and they have already gained prominence in

SSWM, offering improved weed detection and classifica-

tion accuracies [62, 34].

Moreover, given the large size of real life agricultural

croplands, it is very difficult for farmers to manually real-

ize SSWM. Automated systems are needed for the efficient

management of large-scale fields [4]. And as with any other

automated system, to be deployed in a real world applica-

tion, the segmentation model should not only achieve good

overall prediction scores, but ideally it should also know

when the prediction is not a confident one. Our probabilis-

tic method combines both of those elements: It predicts

accurate segmentation masks and quantifies prediction un-

certainty. Therefore it can be easily integrated into exist-

ing systems to make informed and accurate decisions, to be

used for downstream tasks like automated weeding.

Our contributions can be summarized as follows.

• It is the first end-to-end trainable Bayesian method for

weed detection.

• We report uncertainty scores alongside accurate seg-

mentation masks which would improve reliability of

corresponding systems.

• Our approach achieves competitive scores in an estab-

lished dataset for weed segmentation.

• We report results for semantic segmentation of crops

and weeds for the first time on the novel PhenoBench

[53] dataset (apart from the baseline methods).

By using a probabilistic segmentation approach, we not

only obtain more accurate segmentation masks but also

acquire uncertainty scores that can be utilized to make

informed decisions. We experimentally show that the

Bayesian deep learning approach can be used for accurate

semantic segmentation of weeds and crops, with the addi-

tional benefit of informed confidence on areas of high un-

certainty. We hope that our approach would be a step for-

ward to integrating semantic segmentation models into real-

life robotic systems for automated weed detection, to be de-

ployed by agricultural experts and farmers.

2. Related Work

2.1. Computer Vision for Weed Phenotyping

The advancements of robotics and computer vision algo-

rithms have triggered efforts for automated quantification

and removal of weeds [61, 45, 55, 4]. The existing works

for weed monitoring can be roughly grouped into two cate-

gories: Object-based and pixel-based methods.

Early work on object-based weed recognition rely

mostly on classical machine learning techniques [27, 39].

The authors classify weeds using unmanned aerial vehicle

(UAV) images. They first detect vegetation in the field by

normalized difference vegetation index (NDVI), then use

several statistical and spatial features for classification with

random forests [3]. The evaluation is done in per-plant

basis and the method relies on the assumption that crops

would be arranged in rows in the field. [40] train a support

vector machine (SVM) based image classifier to recognize

four different weed species with a bag of visual words [46]

framework. [26] again use a SVM classifier to assign im-

age patches to one of the four classes (background, weed,

and two crop classes) based on texture and morphological

features. Those methods rely on manual feature extraction,

thresholding, and often consist of multi-stage pipelines. We

propose an end-to-end trainable approach without any pre-

defined parameters or long pipelines.

More recent approaches deploy deep neural network ar-

chitectures for different tasks of weed monitoring. [10]

focus on real-time mapping of weeds and classify image

patches into six classes (crop, soil, and four weed species).

However, since the main focus is on the real-time recogni-

tion and mapping, requiring fast and memory-efficient com-

putations, the predictions are not fine-grained and one im-

age patch is assigned to the predicted class of the plant in

the patch center. [30] do blob-wise classification following

a preprocessing step for vegetation detection. Hafiane et al.
[42] deploy Vision Transformers (ViT) for image classifica-

tion of weed and crops, outperforming state-of-the-art mod-

els when used with small scale datasets. While these meth-

ods have good performances for their respective tasks, im-

age classification and object detection fail to address some

of the main challenges of automated weed monitoring such

as occlusion or overlapping leaves. Moreover, those works

test their methods using small-scale self-collected datasets,

limiting the comparability of their approaches.

Semantic segmentation enables the differentiation of
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overlapping organs (i.e. leaves) of crops and weeds and

therefore is a more suitable task for effective weed moni-

toring. In the recent years, various methods utilizing ex-

isting semantic segmentation architectures have been pro-

posed for pixel-wise weed segmentation. [20] modify the

Mask-RCNN [18] architecture by adding a CBAM (convo-

lutional block attention module) [54] for weed detection in

sugarbeet field, and [28] use a fully convolutional SegNet

[2] to segment Sagittaria trifolia (a common weed species)

in rice fields. Wang et al. [49] use Deeplabv3+ [8] and

show that segmentation performance can be improved by

using near-infrared (NIR) images, especially under difficult

lighting conditions. Milioto et al. [31] introduce a CNN-

based method that allows semantic segmentation of weeds

and crops in real-time (20 Hz). They propose an encoder-

decoder architecture and use a 14-channel input compris-

ing different vegetation indices and color space values. [58]

use both RGB and NIR images and extend a simple fully

CNN by adding extra blocks such as UFA (universal func-

tion approximation) or attention blocks. Recently, [56] im-

proved semantic segmentation performance using a multi-

scale convolutional attention network (MSFCA-Net), and a

hybrid dice-focal loss. While these methods have impres-

sive results on semantic segmentation of weeds and crops,

they do not report scores on how confident their predic-

tions are, thus the extent those algorithms can be integrated

into real-world systems and deployed in real-life scenarios

is limited. Our probabilistic method provides uncertainty

estimates in addition to segmentation predictions.

2.2. Bayesian Deep Learning

Most deep neural networks (DNNs), which achieve

state-of-the-art performance in a variety of computer vision

tasks, are deterministic [8, 51, 2, 32]. Typically, they deliver

point predictions for quantities of interest, which can lead to

overconfident false predictions. This hinders their usage in

in many real life applications where reliability, trust and un-

certainty around predictions play crucial roles.

Bayesian network architectures assume probability dis-

tributions on the model weights, and the aim is to approx-

imate the posterior distribution given the training data. As

a result, apart from the final predictions, they can also pre-

dict uncertainty estimates. There are multiple approaches to

realize Bayesian deep learning in practice, such as Markov

chain Monte Carlo (MCMC) methods [52] and deep ensem-

bles [25]. In this work we use variational inference, where

the often untractable true posterior is approximated through

a tractable variational approximation. The latter is chosen

such that the Kullback-Leibler (KL) divergence between the

two is minimized [36].

Bayesian DNNs gained interest also in the context of var-

ious computer vision tasks, such as segmentation [36, 22]

and detection [17], in a variety of application areas like

medical image analysis [24, 44] and autonomous driv-

ing [29]. Moreover, Bayesian DNNs are shown to perform

better compared to their deterministic counterparts [22, 36].

In this work, we also verify this through our experiments.

2.3. Uncertainty Quantification for Semantic Seg-
mentation

Two main uncertainties that are commonly used with

Bayesian computer vision models are epistemic and

aleatoric uncertainties. Epistemic uncertainty is sometimes

also referred to as the model uncertainty. It serves as a mea-

sure of how well the model knows about the given input, and

hence this uncertainty can be reduced by introducing more

training samples. Aleatoric uncertainty on the other hand

is referred to as the noise inherent uncertainty. It could be

caused by any environmental noise factor (e.g. illumination)

or camera noise.

A common practice to quantify confidence (or uncer-

tainty) in deterministic models is to use softmax scores.

Not only this would give a false sense of security about

the model confidence (as an uncertain output can have a

high softmax value [15]), but uncertainty metrics based on

softmax cannot capture epistemic uncertainty [37]. In this

work, we quantify both uncertainties using entropy based

measures.

There is very limited research in probabilistic methods

for agricultural phenotyping. In the context of weed de-

tection, Rainville et al. [11] use a naive Bayes classifier

combined with a Gaussian mixture model to do binary clas-

sification on images (crop or weed). However, those prob-

abilistic blocks are at the end of a long feature extraction

pipeline that relies on several heuristic parameters. Further-

more, they do not report uncertainty or confidence scores

despite being offered by the method in principle. To the

best of our knowledge, this paper is the first work proposing

uncertainty quantification in the context of weed detection.

3. A Bayesian Segmentian Approach
In this section, we first describe the Bayesian segmen-

tation network used. Then we explain how the posterior

predictive distribution is approximated using variational in-

ference. Lastly, we describe the employed uncertainty met-

rics for semantic segmentation of crops and weeds. The

entire model pipeline of our probabilistic approach with un-

certainty estimates is illustrated in Figure 2.

3.1. Bayesian DNNs for Semantic Segmentation

Given an input image of size M × N with F feature

dimensions (F = 3 if only RGB channels are used, and

F = 4 if the NIR channel is also added), a semantic seg-

mentation network outputs pixel-level class predictions for

C classes (C = 3 when only the background (soil), crop,

and weed classes are considered). In this work, we deploy
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Figure 2: Overview of the Bayesian segmentation approach. Given an input RGB image (optionally also with NIR

channel), the model predicts segmentation masks for weeds, crops, and soil (background). The segmentation backbone

contains dropout layers with a dropout probability of pd. Those layers are kept on during test time and the model outputs

different predictions after K stochastic forward passes. Mean prediction masks and pixel-wise uncertainty estimates are

calculated based on these predictions.

DeepLabv3 [7], an established network for semantic seg-

mentation.

In its original form, DeepLabv3 outputs deterministic

point estimates. We modify this architecture to obtain its

end-to-end trainable probabilistic variant. DeepLabv3 uses

dilated convolutions [60, 6] that utilize large receptive fields

over the input features. We pair it with ResNet-50 [19]

backbone for feature extraction, and extend the architecture

into its probabilistic variant by introducing dropout layers.

Ideally, a dropout layer should be added after every con-

volutional layer [22], but this would introduce too much

stochasticity and would make convergence very difficult.

Therefore we add a dropout layer after every set of resid-

ual blocks for the first three sets.

Instead of point estimates, Bayesian deep neural net-

works model weights as probability distributions. The re-

sulting posterior predictive distribution is given as:

p(y∗|x∗, Dn) =

∫
p(y∗|x∗, w)p(w|Dn) dw (1)

where x∗ and y∗ are the input and prediction during test

time respectively, w corresponds to set of learnable network

parameters, Dn is the training dataset that consists of n
pairs (xi, yi) of training data with inputs xi and outputs yi.
We use the posterior predictive means to obtain final point

segmentation masks for soil, crops and weeds, and uncer-

tainty measures are derived from variational inference as

described next.

3.2. Variational Inference

The computationally limiting part in Equation 1 is the

computationally intractable posterior distribution p(w|Dn).

This is because the dimension of w is typically large. How-

ever, the problem becomes tractable through variational in-

ference. Here, rather than trying to match the true posterior

exactly, the latter is approximated by a tractable but close

enough approximation q, called the variational approxima-

tion. To measure closeness between q and p(w|Dn), the

reverse KL divergence is usually used. It can be shown

that minimizing the KL divergence KL(q(w)||p(w|Dn))
is equivalent to maximizing the evidence lower bound

(ELBO) [38], which leads to a tractable optimization

through commonly used loss functions (e.g. cross entropy

loss) and stochastic optimizers [14].

In our case, q(w) is a Bernoulli distribution, where nodes

in the dropout layer are randomly kept on or off with the

given probability pd. We achieve this by adding dropout

layers through MC dropout. Adding these dropout layers

also serves as a measure of regularization which helps to

stabilize estimates [47]. Importantly, the dropout layers are

also kept on during test time. Through multiple forward

passes with dropout layers during inference, a predictive

probability distribution is obtained.

3.3. Uncertainty Quantification

As proposed by Mukhoti and Gal [36], we use predictive

entropy (PE, captures both aleatoric and epistemic uncer-

tainty) and mutual information (MI, captures epistemic un-

certainty) to quantify epistemic and aleatoric uncertainties

of our probabilistic semantic segmentation model.

Entropy of a discrete random variable X with probability

distribution p(x) is defined as:

H(x) = −
∑
x∈X

p(x) log(p(x)) (2)
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From this, PE for the semantic segmentation task with C
classes is defined as:

H[y∗|x∗, Dn] = −
∑
c∈C

(
1

K

K∑
k=1

p(y∗ = c|x∗, wk)

· log
(

1

K

K∑
k=1

p(y∗ = c|x∗, wk)

))
,

(3)

where C = {0, 1, . . . , C−1} with C possible classes, K
is the number of stochastic forward passes repeated during

test time, and x∗ and y∗ are the given input sample and pre-

diction variable during test time respectively. MI between

the posterior and predictive distribution is given as [36]:

I[y∗, w|x∗, Dn] = H[y∗|x∗, Dn]

+
1

K

∑
k

∑
c

p(y∗ = c|x∗, wk) log p(y
∗ = c|x∗, wk)

(4)

For an input image of size M×N , the aggregated tensor

containing softmax prediction probabilities for C classes

after K stochastic passes, is of size K × C × M × N .

Therefore, similar to obtaining segmentation masks (i.e.

each pixel is assigned to the class with the highest softmax

score), PE and MI are also calculated for every pixel. As a

result, M ×N uncertainty maps are obtained.

4. Experiments
4.1. Dataset and Evaluation Metrics

Dataset. We test our method on the publicly available

Sugarbeets2016 [5] dataset. Sugarbeets2016 contains RGB

and NIR images that are obtained with a field robot in a

sugar beet field in Bonn, Germany, along with pixel-level

segmentation masks for three classes: background, crop,

and weed. The data is acquired through the growing sea-

son of spring 2016, therefore contains images from differ-

ent growth stages. Images have the size of 1296 × 966 pix-

els, corresponding to millimeter level resolution. Because

the dataset doesn’t have an official training-validation-test-

split, we choose a random subset of 3,858 images from the

dataset for our experiments, and do a random split of 75%-

15%-15% for training, validation, and test sets respectively.

Metrics. To evaluate segmentation performance, we use

the IoU (intersection-over-union between ground truth and

predicted pixels) metric, which is commonly used for se-

mantic segmentation tasks [9, 63, 8]. We report class IoU

scores for all three classes, as well as the mIoU (IoU aver-

aged over all classes). Secondly, we evaluate uncertainty of

predictions to quantify in which cases the model is confi-

dent and in which it is not. In addition, we are interested in

evaluating whether uncertainty measures around point pre-

dictions are calibrated and sharp and thus hold the potential

to be leveraged to make better informed decisions, rather

than only relying on the segmentation point prediction. To

do so, we report accuracy-uncertainty (AU) maps proposed

by Mukhoti et al. [36]. In this approach, predicted masks

and uncertainties (predictive entropy scores) are considered

together and grouped into the following four categories: (1)

Accurate and certain (ac), (2) Accurate and uncertain (au),

(3) Inaccurate and certain (ic) and (4) Inaccurate and uncer-

tain (ic). Ideally, a well calibrated model would score high

in ac and iu. Pixels that are correctly predicted are con-

sidered accurate, and pixels that have low uncertainty are

considered certain. Computing those metrics individually

for every pixel ignores the regional information, therefore

they are calculated considering all pixels within a window

of window size wq . The thresholds for deciding whether a

pixel is accurate or certain are ta and tc and these are ap-

plied to the average score of the window. Afterwards the

map is upsampled to the original image size, where every

pixel inside the patch is assigned the same value.

4.2. Implementation Details

We use ResNet50 [19] as the backbone for the

DeepLabv3 architecture, and modify the first convolutional

layer to fit to our 4-channel input. The dropout probability

is set to pd = 0.5. The Bayesian DeepLabv3 is trained us-

ing the ADAM optimizer [23] with a learning rate of 0.001,

β1 = 0.9 and β2 = 0.999. Standard data augmentation

(i.e. rotation, flipping, random jitter) is applied to reduce

overfitting. Due to the class imbalance between soil and

vegetation pixels, we used a weighted cross-entropy loss

with the weights 0.2, 0.8, 0.8 for background, crop and

weed respectively. During test time, we do 5 stochastic for-

ward passes (i.e. K = 5). We train the model for 160

epochs with batch size 4 with an Nvidia A40 GPU and an

Intel Xeon Ice Lake CPU with 32 GB memory, which takes

approximately 44 hours. Settings have been chosen based

on the validation dataset.

4.3. Comparison with the State of the Art

This section compares the segmentation performance of

our method denoted by Bayesian DeepLabv3 to three state-

of-the-art methods for semantic segmentation using the

Sugarbeets2016 dataset. These are CNN-UFAB [59], RSS

[31] and MSFCA-Net [57], and the results are taken from

[59], [31], and [57] respectively. Since Sugarbeets2016

doesn’t have an official test set, each method uses random

splits. MSFCA-Net [57] uses 2,677 randomly selected im-

ages, divided into 70%-20%-10% train-validation-test split.

[31] uses 10,036 images with a 70%-15%-15% split. Lastly,

[59] uses 9,070 images with a 80%-20% train-test split.

The scores, as well as the input modalities used by each

method can be seen in Table 1. Our Bayesian DeepLabv3

approach achieves the highest IoU scores for background
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Method Input Mode IoUbg IoUweed IoUcrop mIoU

CNN-UFAB [59] RGB+NIR D 99.73 75.26 92.04 89.01

RSS [31] 14 channels D 99.48 59.17 83.72 80.80

MSFCA-Net [57] RGB D 99.79 73.32 95.62 89.58
Bayesian DeepLabv3 RGB+NIR P 99.93 69.31 95.89 88.37

Table 1: Segmentation scores (%) on the Sugarbeets2016
[5] test set. Input represents the modality of the input im-

ages (except RSS [31] since it uses 14 pre-processed chan-

nels). The network mode is either deterministic (D) or prob-

abilistic (P). Scores of existings methods are taken from

[59, 31, 57].

and crop classes. For weed segmentation, even though

not the highest performing one, our method still achieves

a competitive score with 5.95% difference with the best

method CNN-UFAB. Background is almost perfectly pre-

dicted by all methods, though ours scores 0.2% higher.

Moreover, similar to [59], we notice many misannotated

samples in the Sugarbeets2016 dataset, which naturally

leads to lower scores than the actual performance.

4.4. Qualitative Results
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Figure 3: Qualitative results of semantic segmentation of

crops (yellow), weeds (orange) and soil (blue) on the Sug-

arbeets2016 [5] test set. mIoU scores are on the left.

Qualitative results on are exemplified in Figure 3, which

depicts two high and three poor scoring examples. It can

be seen that the main bodies of both types of vegetation

(crops and weeds) are almost correctly segmented. The per-

formance is lower at the tips and thinner crop leaves. This

is expected, since these are where crops and weeds look the

most alike. Failure cases often happen in the occurrence

of occlusion or when leaves of crops and weeds touch each

other (which naturally appears as a connected object in a 2D

image). Images in this dataset are collected during rather

early growth stages of the plants, therefore leaf coverage is

low and plants are small. Weeds are significantly smaller

than crops. It can furthermore be observed that due to this

imbalance, even when a small area of weed is misclassified,

the overall prediction score significantly drops.

4.5. Uncertainty Quantification

Figure 4 shows predictive entropy and mutual informa-

tion, along with AU maps (each pixel is assigned to one

of the four cases: ac, au, ic, iu ) for images from Sugar-

beets2016 test set. Both, tc and ta are set to 0.5 (i.e. if more

than half of the pixels in the window are correctly predicted,

that patch is considered accurate), and wq is set to 3. AU

maps are computed based on predictive entropy.

We make the following observations: Uncertainty is high

at the edges of plants. This is clearly seen from the en-

tropy map and the strong presence of both au and ic around

the contours. This is because of the fact that PE is a mea-

sure of aleatoric uncertainty, and noise is expected at the

object edges [36, 41]. On the other hand, mutual informa-

tion is more concentrated inside the objects (i.e. inside the

leaves). This is because MI captures epistemic uncertainty,

and high epistemic uncertainty implies the model doesn’t

know much about that object. This applies to leaves of sugar

beet which are thinner and less curvy, therefore the model

is unsure about them. The relationship between prediction

performance and uncertainty is also observed: The predic-

tion score is higher for the AU maps with fewer au and ic
pixels. iu pixels hold potential to be used to improve predic-

tion scores, because those are the pixels the model predicts

wrong, but knows that it is uncertain about the prediction.

4.6. Sensitivity Analysis and Comparison with De-
terministic Models

To perform sensitivity analyses and validate our choice

of using RGB+NIR input configuration, we use both

DeepLabv3 and UNet [43] architectures. To make UNet

probabilistic, we insert dropout layers after each encoder

and decoder unit in the deepest half of the network, as

this is found to be the optimal configuration by [22]. We

train both architectures with the aforementioned dataset and

training configurations, except data augmentation to exem-

plify that data augmentation can further improve the scores.

We use three different input configurations (i.e. RGB, NIR,

or 4-channel RGB+NIR). Furthermore, we repeat the same

experiments for the deterministic variants of the respective

network architectures. The scores are reported in Table 2.

RGB+NIR leads to best segmentation performance, while
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(e) Mutual

Information
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Figure 4: Uncertainty quantification and semantic segmentation on Sugarbeets2016 [5] test set. Semantic segmentation

classes are crops (yellow), weeds (orange) and soil (blue). The accuracy-uncertainty (AU) map shows ac (gray), au (black),

ic (red), and iu (green) pixels together. Best viewed on screen zoomed in due to thin plant structures and edge uncertainties.

Input Mode IoUweed IoUcrop mIoU

U
N

et

RGB D 41.44 92.90 78.08

P 43.02 92.77 78.57

RGB+NIR D 48.07 93.78 80.59

P 50.35 93.33 81.19

NIR D 31.56 90.35 73.91

P 32.84 90.47 74.38

D
L

v
3

RGB D 46.36 90.79 79.00

P 45.98 90.98 78.94

RGB+NIR D 62.12 94.95 85.66

P 62.73 95.00 85.89

NIR D 37.90 93.12 76.96

P 38.60 93.28 77.25

Table 2: Comparison of deterministic (D) and probabilistic

(P) variants of UNet [43] and DeepLabv3 [7] with different

input modalities on Sugarbeets2016 [5] validation set.

Input Ground truth Prediction

AU Map tc = 0.1 AU Map tc = 0.25
AU Map
tc = 0.5

Figure 5: Accuracy-uncertainty maps (ac (gray), au
(black), ic (red), and iu (green) ) for different certainty

thresholds tc. Best viewed on screen, zoomed in.

using only NIR results in significantly lower scores. The

probabilistic variants perform better than their deterministic
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(a) Input (b) Prediction (c) Entropy
(d) Mutual
Information

Figure 6: Semantic segmentation of crops (yellow), weeds (orange) and soil (blue), and uncertainty predictions on Phe-

noBench [53] test set.

Method Input IoUbg IoUweed IoUcrop mIoU

Bayesian DeepLabv3 RGB 99.33 63.37 94.60 85.77

Table 3: Results on PhenoBench [53] validation set.

counterparts, except the DeepLabv3-RGB configuration.

As for uncertainty quantification, AU maps for different

certainty thresholds are shown in Figure 5. As it would be

expected, as the threshold for ”being certain” is lowered, the

AU maps become fuller. The difference is most visible with

au, meaning that accurately segmented pixels tend to move

to the uncertain group with lower accuracy thresholds.

5. Application on PhenoBench Dataset

In this section, we apply our method to the PhenoBench

[53] dataset, which is a novel dataset for semantic interpre-

tation of crops and weeds. Compared to the ground vehi-

cle setup of Sugarbeets2016 [5], images for PhenoBench

are acquired with a UAV. It contains 2,872 RGB images of

sugar beet plants and weeds, with pixel-level annotations at

different levels of detail such as semantic or leaf instance

masks. PhenoBench has an official training-validation-test

split, but labels for the test set are not publicly available.

Hence, we report scores on the validation set. We train our

model on the PhenoBench training set with the same config-

uration as in Section 4.2. Prediction scores on validation set

and qualitative predictions with uncertainty estimates on the

test set can be seen from Table 3 and Figure 6 respectively.

6. Conclusion

We have presented, for the first time, an approach to use

Bayesian DNNs for semantic segmentation and uncertainty

quantification for weeds and crops. Specifically, we have

implemented the probabilistic variant of the DeepLabv3 [7]

architecture, and tested it on Sugarbeets2016 dataset [5].

The results demonstrate that the Bayesian model achieves

competetive segmentation performance, and in addition,

outputs uncertainty maps based on predictive entropy and

mutual information, that highlight areas where the model is

most uncertain about. We show that uncertainty quantifi-

cation can be used to shed light on the reliability of a pre-

diction, which makes our approach suitable to be integrated

into real-world automated weeding systems. Moreover, we

show the applicability of our method to different data ac-

quisition techniques (i.e. field robot and drone) by applying

it to the novel PhenoBench [53] dataset. In future work, we

plan to carry out extensive experiments on PhenoBench to

compare our approach to the recently released benchmark in

terms of semantic segmentation performance. Furhermore,

we hope to extend our approach to different architectures

and multi-temporal datasets, and eventually explore other

remote sensing data such as hyperspectral or 3D images.
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