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Abstract

We present a new data set for 3d wheat seed reconstruc-
tion, propose a challenge, and provide baseline methods.
Individual plant seed properties influence early develop-
ment of plants and are thus of interest in plant phenotyping
experiments. Seed shape can be measured reliably from im-
ages using volume carving, as done in robotic setups such
as phenoSeeder. However, about 36 images are needed to
obtain a suitably accurate 3d model [33], where image ac-
quisition takes ≈ 20 s. For large-scale experiments with
thousands of seeds higher throughput is required limiting
image acquisition time. We present a deep-learning model
that reconstructs an approximate 3d point cloud from fewer
images, even only a single view. It has a significantly lower
error than linear regression, which has been actively used
so far in similar tasks. Using three images reduces imaging
time by a factor of 10×, where relative errors of volume
length, width, and height are all around 2%. Inference
time from the neural network is negligibly short compared
with imaging time which enables this method for real-time
measurements and sorting.

1. Introduction

Plant phenotyping investigates how expressed plant prop-

erties depend on their genotype and environmental condi-

tions, as needed for breeding for novel traits in challenging

climate and environmental conditions [11]. Different plant

organs are usually of interest like roots [29, 48, 1], leaves

[25, 2, 24, 12], flowers [50], fruits [26, 9, 10], or seeds [7]

(see, e.g., [39, 36] for recent overviews on computer vision

challenges and solutions in plant phenotyping).

Seed phenotyping allows quantifying seed properties and,

e.g., relate them to germination properties or early plant de-

velopment [6, 28, 35], or perform quality assessment and

classification [49, 21]. In scientific or breeding experiments

sorting seeds by properties, e.g., their size, can reduce or

explain observed biological variation. Different seed phe-

notyping techniques are well-established. An acoustic vol-

umeter [40, 41] has been developed for seeds. It directly

measures seed volume excluding micro-pores, without shape

reconstruction. When interested in shape, other methods are

more suitable. Flatbed scanners have often been selected

for seed 2d phenotyping [27, 47, 15]. While being techni-

cally simple and robust, they do not give full access to the

3d geometrical parameters of a seed, and different 3d seed

phenotyping methods are available. Legume seeds were bulk

phenotyped in 3d with a hand-held 3d laser scanner [16], be-

ing suitable for seeds in the several millimeters to centimeter

range and reported to be imprecise for asymmetrical seeds.

An automated seed phenotyping system called phenoSeeder

[17] addresses also small seeds in the sub-millimeter range.

It uses a single camera, a rotating robot arm, and volume

carving (VC) [33] to reconstruct 3d voxel models of indi-

vidual seeds [17]. They are used for volume estimation

and, together with single seed mass measurements, allow for

estimating mass density per seed.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Example imaging data, ground truth VC point clouds and our method’s predictions. Rows: Seeds with small,

medium, and large volume. Columns: A: top view from ’2d station’; B-D: three views out of 36 from ’3d station’; E: point

clouds of prediction; F: resampled VC point clouds used as ground truth (gt); G: meshes of prediction, H: meshes of gt.

VC is a shape-from-silhouette method [23, 32, 20, 4, 33]

being robust under strongly varying seed surface proper-

ties resulting in, e.g., specular reflections, low contrast, etc.

VC has also been applied for plant shoot 3d reconstruction

[34, 13]. As this method does not use prior information on

admissible shapes, reconstruction quality critically depends

on a sufficiently high number of images of the object to be

reconstructed. A quantitative analysis of spheres reveals that

using 3 views results in approx. +10% systematic volume

error, dropping to approx. 0.1% for 35 or 36 images, de-

pending on the camera configuration [33]. In phenoSeeder

typically 36 images per seed are acquired at 2 images per

second due to conceptual constraints on the robotic imag-

ing system, consuming 18 s overall. This acquisition time

limits throughput in large-scale experiments with thousands

of seeds. Here, we aim at increasing throughput by reduc-

ing the number of images needed and thus acquisition time,

while keeping reconstruction error reasonably small.

Neural networks have been proven to be practical for

image-based 3d reconstruction in different representations

and network types, e.g., voxel representations generated by

deep convolutional neural networks (dCNN) [5] or trans-

formers [44], triangular meshes by graph neural networks

[45]. As deep learning-based methods can learn the space

of admissible shapes, the same reconstruction quality as

VC may be achieved using fewer images. In addition, once

trained, reconstruction time needed by a dCNN model is

considerably shorter than for VC at a sufficiently high res-

olution. It makes dCNN models to be a reasonable choice

for large-scale plant seed phenotyping in 3d. As the seeds

addressed here are simple, mostly convex objects, they lie

in a relatively low-dimensional shape space and therefore

should be reconstructable with an acceptably low error.

Deep CNNs have already been effectively applied in seed

2d-phenotyping for various tasks: classification [21, 22],

instance segmentation [42], seed instance detection [46],

prediction of the number of seeds [43]. However, to the best

of our knowledge, deep learning-based methods have not yet

been applied to 3d plant seed reconstruction. In particular,

we use a white-box approach to estimate seed parameters like

volume, width, height, and length. This means the 3d seed

shape is reconstructed first and is thus available for human

visual inspection if desired. The parameters of interest are

derived in a subsequent step. This is in contrast to ’black-

box’ approaches, where parameters of interest are regressed

directly from the input images. The validity of such black-

box estimates is not easily verifiable, a well-known drawback

of such deep learning solutions.

Our contribution
Dataset: We provide the train/val/test split of a new dataset

with 2964 seeds as described in Section 2.2. It contains per

seed: 1 color image, 36 gray-scale images from a turntable

setup, 1 high-res 3d point cloud (≈50k points) and 36 resam-

pled point clouds (2k points each) of the seed’s surface.

Challenge: We propose a challenge to derive a method with

minimum relative seed volume error and/or minimal seed

shape deviation using 1 or 3 input images (see Section 2.5).

Evaluation is done on the test set with withheld ground truth.

New baseline method: We developed, investigated, and

deployed a modified VGG11 [38] and ResNet-152 [14] for

3d reconstruction of plant seeds. It takes a few images as

input and predicts a 3d point cloud of the seed’s surface, and

is functional even with only a single view per seed. Different

image configurations have been tested and several geometri-

cal metrics tracked. The model reaches an accuracy of shape

and volume estimation being high enough for many plant

phenotyping applications. It can be used in phenoSeeder or

similar setups, to reduce measurement time by a factor of 10

or more compared to imaging requirements for VC, at the

cost of statistical error increased to ≈ 2%.

2. Materials and methods
2.1. Raw Data

The raw dataset consists of 3357 wheat seeds, acquired

on phenoSeeder (see Figure 1 for examples). In this sys-
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Figure 2: Distribution of the seed volumes (A), lengths (B),

widths (C) and heights (D) across the dataset.

tem multiple seeds are presented on a glass plate, i.e., the

so-called ’2d imaging station’ or short ’2d station’, where

8Mpix rgb-color 2d images are captured to locate the next

seed to pick. They are cropped around the seed selected for

pickup and offer a top-view on the seed (Fig. 1A). The robot

picks the seed and moves it in the focal plane of a single

static monochromatic camera of the so-called ’3d station’.

36 gray-scale images (Fig. 1B) per seed are then captured

while the seed is rotated in the horizontal plane by 10◦ steps

in front of a featureless white background. These images

are used for 3d reconstruction with VC. In [33] the robot’s

tool-tip was reconstructed together with the seed intention-

ally, and separated in 3d to prevent additional seed material

removal. Point clouds derived by VC from all 36 images per

seed were used to prepare ground truth (gt) data. The origi-

nal voxel object was converted to a point cloud representing

its surface only. The surface typically consists of ≈ 50000

points with a resolution of ≈ 0.05mm between neighboring

points (Fig. 1D shows a subsampled version).

The 3d reconstruction result of VC was also used to es-

timate the ground truth volume Vgt of the seeds. In voxel

representation, the number of voxels equals full volume.

Distributions of seed volumes V , lengths L, widths W and

height H , their respective means, and standard deviations

in % are shown in Figure 2. Seed length L, width W and

height H were estimated as main axes of an ellipsoid fitted

to the predicted point cloud. The average single seed vol-

ume V̄ over the whole dataset was V̄ = 27.91mm3 with a

relative standard deviation of 25.54%, and an overall spread

from largest to smallest seed volume of about a factor of

4.5 . Additionally, per seed mass measurements are avail-

able, measured with a high-end laboratory scale.

2.2. Prepared Datasets

Images: We scaled, shifted and cropped the raw data

from the 3d station such that the position of the rotation

axis and tool center point are static in all views. This makes

dCNN training easier as it allows to use one fixed projection

matrix as a good approximation to the real settings. We

used image width × height being 373 × 200 pixels in our

experiments.

A ’side view’ was selected among the 36 images for every

seed from the 3d station, being the image with the maximum

visible foreground area derived from threshold segmentation.

The ’tip view’ of the same seed is the image captured at 90◦

after the side view. We used 2d images of the dataset in

different ways as input data in our experiments:

• all views: one of 36 views are randomly drawn at each

training iteration time as first view,

• robot views: the first view of the 36 views, irrespective

of the orientation of the seed,

• side views: the ’side view’ (see above) is used as first

view,

• tip views: the ’tip view’ is used as first view,

• 2d station views: only the view from the 2d station is

used.

In all but the last way (2d station views) multiple view con-

figurations can be used.

Ground truth point clouds: We fixed the 3d origin of

the ground truth VC point cloud to be at a constant position

at a small distance above the tool center point lying reliably

inside every seed. For wheat seeds we observe that they are

in very good approximation star-shaped objects, where the

origin lies inside the surface, and it is possible to connect

every point on the surface with a straight line without cross-

ing the surface elsewhere. This allows resampling of the

seed surface across all the samples using spherical harmon-

ics (SPH). To do so, we interpolated the ≈ 50000 discrete

seed surface points derived with VC by least-squares fitting

SPH using an open-source library [30, 31]. We found that a

maximum SPH degree of � = 20 was sufficient to represent

the gt surfaces in high enough detail (see Figure 3), which

means (20 − 1)2 = 441 SPH functions were used. This

continuous interpolation allows sampling the seed surface in

arbitrary directions from the seed origin. In our experiments,

if not stated differently, we used a set D of 2000 new, fixed

directions for the resampling. They were defined once and

for all seeds to be the same. However, they need to be rotated

according to the initial view of the 2d image used as input

for the NN, such that the 3d coordinate system of the seed

coincides with the 3d camera coordinate system of that view

(or of the first view if multiple views are used as input to

the NN, i.e., channel 0 of the input tensor). The directions
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Figure 3: Fitting error vs maximum degree of spherical

harmonic functions.

were designed to be evenly distributed over a sphere using

Fibonacci’s golden ratio [19].

Outlier detection: In a preprocessing step outliers were

filtered from the dataset, e.g., missing objects on the images

(dropped seed) or impaired gt point cloud (incomplete or

otherwise bad VC or SPH result). Local curvature thresh-

olding and check on watertightness were used to filter these

outliers. This results in ≈ 12% of outliers and covers all

observed error scenarios. After filtering 2964 of the initial

3357 seeds remained.

Train/val/test split: The dataset was split into

train/val/test: 70/15/15%. In the beginning, the dataset

was randomly shuffled and the first 15% of the data was

separated as a test set (K = 444 samples after filtering).

Then the rest was randomly shuffled four times, for each

time train/val sets were separated. Experiment results shown

below in Section 3 are for the test set.

Data provided: We provide the train/val part of the fil-

tered dataset with 2520 seeds. For the test split only 3 images

per seed are provided (’robot view’), ground truth is held

back. The dataset contains 2d station and 3d station im-

ages, stabilized and resampled crops, 1 full resolution and

36 resampled point clouds, i.e., 1 per 3d station view.

2.3. Losses and performance metrics for shapes

The neural network (NN) receives N 2d images as input

and regresses a 3d point cloud. Every point of the generated

point cloud is represented as a vector with fixed preset di-

rection but variable length, see Figure 4. Consequently, the

NN just needs to regress the lengths of the vectors. This is

a simplification wrt. general point cloud based surfaces that

is possible due to the approximate star-shapedness of wheat

seeds. This allows to use simple Lp-norm like loss functions

Lp =
1

M

(
M∑
i=1

|vi − vgt
i |p

)1/p

(1)

Fibonacci 
directions 
2000 x 2

least 
squares 
method
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CNN FC

S
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C

P
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Point cloud
3 x 60 000

Resampled 
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3 x 2000

GT 
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0°
120°

240°

0°, 
10°,    
..350°

36 x 1000 x 1800

volume 
carving

Supervised 
training

Figure 4: Setup: The dCNN receives several input images

and returns a point cloud with known pairwise correspon-

dences to the ground truth. Spherical harmonics are used to

resample the VC ground truth point cloud with a fixed set of

directions in 3d camera coordinates of the first input view.

where M = 2000 is the number of points in the point cloud,

vi predicted and vgt
i ground truth (gt) vectors. We use the

L1 loss function for training, i.e., mean absolute difference

of vi and vgt
i . In experiments we also report reconstruc-

tion accuracy in terms of mean Euclidean distance L2 and

maximum per point difference (MPD, i.e., M · L∞).

When surface point density varies significantly in differ-

ent regions of the seed surface, point-based methods may

lead to over- or under-representation of seed regions in the

loss. Therefore, we also investigate a loss LT based on

surface triangulations T gt and T of the ground truth and

predicted point clouds, respectively. With LT we aim to cap-

ture the difference between volumes VT (T
gt
j ) and VT (Tj) of

tetrahedra spanned by the origin and corresponding triangles

T gt
j and Tj . In order to handle all special and degenerate

cases robustly we make two modifications to the simplistic

and insufficient L̃T =
∑

j |VT (T
gt
j )− VT (Tj)|

LT =
∑
j

VT (T
↑
j )− cjVT (T

↓
j ) (2)

where j enumerates all triangles, T ↑
j is the outer and T ↓

j the

inner triangle derived like this: We use that corresponding

points vi and vgt
i lie on the same ray and define v↑

i = vi

if |vi| > |vgt
i |, else v↑

i = vgt
i . Similarly, v↓

i = vi if

|vi| ≤ |vgt
i |, else v↓

i = vgt
i . Let Tj be such that i ∈ Tj

consistently enumerate the corner points of T gt
j and Tj , re-

spectively. T ↑
j is then given by v↑

i∈Tj
and T ↓

j by v↓
i∈Tj

. Fur-

ther, cj = 1 if vectors vgt
i and vi are parallel for all i ∈ Tj ,

else cj = −1.

Chamfer distance [45, 8] and 3d-Intersection over Union

(3d-IoU) [5] are frequently used as losses in 3d reconstruc-

tion tasks. Due to the resampling of the seed’s surfaces,

surface point pairs needed for Chamfer distance are known

in advance, and it boils down to our simple L2 loss.

564



2.4. Seed parameters and model calibration

Seed properties like length L, width W , height H , and

volume V are the parameters of interest in biological ap-

plications. Therefore we investigate their mean absolute

percentage errors, i.e., EL, EW , EH , and EV , respectively

Ey =
1

K

K∑
i=1

|ygt,i − ypred,i|
ygt,i

(3)

with y ∈ {V,L,W,H} and K being the number of seeds in

the test split.

Seed volume was calculated from triangular meshes as a

sum over all tetrahedra with the common fixed origin. As

the set D of directions used for resampling of each seed

surface is fixed, the triangulation of all seed surfaces is also

fixed, i.e., meshes were derived using deformation of the

unit sphere mesh with the same set D of directions.

Model calibration: Being a white-box approach to esti-

mate seed parameters like volume, width, height and length,

the proposed method is not necessarily bias free. In fact,

using L1 loss (1), we observe, e.g., a systematic underesti-

mation of volume. We therefore calibrate the volume Vpred

calculated from the shape prediction towards ground truth

volume Vgt. This means, we fit a linear function f(Vpred) to

the scatter plot of Vgt versus Vpred and convert predictions as

V = f(Vpred). We do this for all derived models and also for

L, W , and H .

For black-box models trained with a loss minimizing,

e.g., volume directly, i.e., Vpred − Vgt in some norm, such

calibration is not really needed (cmp. Figure 9).

2.5. Challenge

The proposed challenge is to minimize EV (3) and/or LT

(2) given either a single or three 3d station images. Training

can be but does not have to be fully supervised using the

gt point clouds. Using additional data is allowed, with the

exception of the (unavailable) test split data. Automated

evaluation on the blind test set is available online1.

2.6. Simple baseline methods

Mean volume: The average single seed volume V̄ over

the whole dataset was V̄ = 27.91mm3 with a relative stan-

dard deviation of 25.54%, as shown in Figure 2A. Conse-

quently, a trivial seed volume estimator delivering V̄ inde-

pendent from the input has a mean absolute percentage error

of EV̄ = 21.2%, being the lowest quality baseline to beat.

Volume from projected area: In [17] a well-established

method for seed volume estimation from 2d images has been

used as baseline, that VC clearly surpasses. They used 2d

imaging station images to regress a volume value V2D from

the projected seed area A, i.e., the number of foreground

1https://helmholtz-data-challenges.de

pixels in the seed mask segmented from the background

by simple thresholding. Volumes were predicted from the

projected area according to

V2D = c ·A3/2 (4)

where the ’shape parameter’ c was fit to the data and depends

on seed species.

Direct regression of volume: Black-box approaches can

be used as alternative to our white-box method with the same

input view variants. We use ResNet-152 [14] as base model,

but with the last layer appended with nn.Linear(5, 1) without

activation function. We train it with standard L2 loss on the

ground truth volume Vgt, learning rate 3 · 10−5.

2.7. Model architecture and training procedure

We use a simple VGG11 [38] with batch normalization as

well as a ResNet-152 [14] as backbone models. The last fully

connected layer was modified to have M output neurons, to

fit the shape gt vector, as shown in Figure 6 for the VGG11.

Preliminary tests (not shown) minimizing L1 metrics at fixed

set of hyperparameters revealed that this small model has

sufficient descriptive power for the task. However, better

models may exist.

Multiple view handling: In the case of multiple input

images per seed, views were aggregated in the color channel

of the input tensor. The first of the images was assigned to

a certain view. When allowing multiple input images per

seed, the images were always given in a fixed configuration.

This means, the images were taken at fixed angles φ(N, i)
relative to the first image, where N is the number of images

used per seed and i stands for the ith image. The angles are

given by

φ(N, i) = 10 · (round (18 i (1 +
1

N
)) mod 36) (5)

for N ∈ {1, ..., 36}, and for i ∈ {0, 1, .., N}, where

round(·) returns the nearest integer. This means that for

odd N , angles were distributed equidistantly. For even num-

bers semicircle was divided into equal sectors, and every

second angle was flipped over 180◦, see Figure 5. The idea

behind the ’flipped over’ configuration is that for even N
views are pairwise aligned on opposite sides of the seed and

thus add only limited geometrical information. ’Flip over’

configurations also cover the whole seed surface, but offer

more diverse information.

Hyperparameters, software, and timing: Batch size 25

was used for all training runs and learning rate 3 · 10−5.

Architectures with various numbers of input views, i.e.

N ∈ [1, 3, 4, 5, 6, 9, 12], were tested.

The training was done on a server with four Nvidia A100

GPUs2. Data-parallel training with Horovod [37] for Py-

Torch3 was used to distribute data over GPUs.
2https://www.nvidia.com/en-us/data-center/a100
3https://pytorch.org/ version 1.12.1, py3.9 cuda11.6 cudnn8 0

565



Figure 5: Selection of views for 3d reconstruction. Object is

in the center in virtual setup and cameras are on the circle.
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Figure 6: Architecture of VGG11 [38] with the modified

first and last layer. N input color channels for multiple view

configurations. The last layer outputs M = 2000 values,

corresponding to the number of points in point cloud.

Inference of a point cloud from the trained model was

done on a single Nvidia A100 GPU. In batch-wise calcu-

lation including data input and output, a single seed point

cloud was derived in 49± 1 ms per seed on average.

3. Results
From a biological point of view, seed volume is the geo-

metric parameter of highest interest in typical plant experi-

ments, as it is the best proxy for seed mass; and seed mass

correlates to the amount of nutrients initially available to

a seedling. Length, width, and height are less relevant but

can also be used for plant phenotyping. In our experiments

below, we therefore investigate model performance focus-

ing on relative volume error and report other measures for

completeness.

3.1. Selecting suitable view configurations

In order to find the best performing view configuration,

we use the model and training procedure described in Sec-

tion 2.7 and loss L1. We trained all the different view con-

figurations also described there, using the ’all views’ dataset

configuration (see Section 2.2). We repeated the training

four times with different random seeds to evaluate training

variation.

Relative errors EV , EL, EW and EH (see (3)) versus

the number N of input images are shown in Figure 7. We

observe in Figure 7A, that the relative volume error EV

ranges between � 5.5% when using a single view and ≈
2.8% when using more than 9 views. For 3 to 6 views

the error is around 3% to 3.5%. Variation between training

Figure 7: Dependency of the relative error E on the number

of input images N (solid line) and comparison with acqui-

sition time (dashed line). ”rs” means different training runs

with different random seeds.

runs with different random seeds is between ±0.25 and ±0.1
percent points. Similar but less pronounced behavior can be

observed for length, width, and height in Figures 7B-D.

In addition to the errors, the figures also show the time

needed to capture the images. Non-surprisingly, it increases

linearly with the number of images captured, where some

overhead is needed for moving the seed to the 3d imaging

station. Considering our goal of speeding up imaging for

trading some accuracy wrt. VC on 36 images, the best op-

tions seem to be: (1) using a single view, as it is the fastest

option and still offers low enough error to be acceptable in

high-throughput experiments with good number statistics;

(2) using 3 views, as using 4 to 6 views takes more time

but does not increase accuracy considerably. In scenarios,

where the increased accuracy by using more views would be

relevant, using full VC may be advisable.

In order to investigate the per point accuracy of the pre-

dicted point clouds, we calculate L1 and L2 metrics in mm,

as well as mean maximum per point distance (MPD) in mm,

and LT in mm3 for models trained on L1 (see Figure 8). We

see that the error values generally go down with increasing

views N , with considerable variance at N = 4 and N = 5.

Mean L1 values for 3 views are ≈ 40μm, i.e., the average

distance of a predicted grid point to its ground truth coun-

terpart. The MPD for the same configuration shows that the

mean maximum outlying grid point is at ≈ 500μm. Con-

sequently the main error comes from relatively few far off

points while the others are very close to the ground truth.

We believe that this is due to the high point density close

to the tool tip / origin, and that the LT loss mitigates this

drawback.
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Figure 8: Metrics values L1, L2, MPD, and LT vs. num-

ber N of input images. Black line: mean among different

training runs; rs0 to rs3 indicate different random seeds.

3.2. Volume estimation comparison

We compare volume estimation results on the ’robot view’

of the different variants of our method with usually employed

baselines described in Section 2.6, i.e.:

• volume from projected area, using the ’2d station view’

(method M1) or the ’side view’ (M2, see Section 2.2)

• direct ’black-box’ regression of volume from 1 view

(M3) or 3 views (M4) using ResNet-152,

• our ’white-box’ method with VGG11, 1 view (M5) or

3 views (M6) trained with L1 loss,

• our ’white-box’ method with ResNet-152, 1 view (M7)

or 3 views (M8) trained with L1 loss from (1).

• our ’white-box’ method with ResNet-152, 1 view (M9)

or 3 views (M10) trained with LT loss from (2).

The overall volume variation in our set in terms of relative

error (3) is EV̄ = 21.2 %, giving a reference on what to

consider as a ’small’ or ’large’ error.

Figure 9 shows scatter plots of predicted volume before

bias correction versus ground truth volume for the differ-

ent methods. From the red dashed fit line we see that bias

correction is less needed for methods M1 to M4 deriving

volume directly, but is beneficial for our two-step white-box

methods M5 to M10. Without this calibration M5 to M10

underestimate volume. As expected, methods with 3 input

images perform more reliably than their single view counter-

parts. LT based methods work better than L1. ResNet-152

outperforms VGG11 for 3 views, while there is no benefit

for 1 view. Single view direct regression is almost as good

as the best single view white-box method M9, however with

Figure 9: Volume from volume carving (Vgt) compared with

predicted volume of methods M1 to M10 (see Section 3.2).

MAPE0 and MAPE - relative error, and RMSE0 and RMSE

- root mean squared error before and after correction, respec-

tively. 2d histograms with K points, color bar shows number

of samples per bin.

3 views all white-box methods beat direct regression. In

Table 1 we see that quantitatively M10 performs clearly best

with EV = 2.36% only.

3.3. Influence of seed pose

Using our white-box approach with 1 and 3 views and

L1 loss, we investigate if starting imaging with a predefined
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Model N EV EL EW EH

M1, 2d station 1 6.82 4.66 4.84 5.1

M2, side view 1 7.31 – – –

M3, dir. regr., ResNet 1 4.92 – – –

M4, dir. regr., ResNet 3 4.47 – – –

M5, ours L1,VGG11 1 5.26 3.49 2.61 2.96

M6, ours L1,VGG11 3 3.52 2.36 2.09 2.1

M7, ours L1, ResNet 1 5.18 3.76 2.83 2.99

M8, ours L1, ResNet 3 2.69 2.59 2.38 2.04
M9, ours LT , ResNet 1 4.85 3.41 3.18 3.07

M10, ours LT , ResNet 3 2.36 1.94 2.47 2.14

Table 1: Relative errors [%] of predicted volume, length,

width, and height using methods M1 to M10 (see Sec. 3.2).

seed pose would be beneficial. Such pose can in principle be

derived from the 2d station view before picking up the seed.

In addition to the models trained on all views, we trained

models on side views only, and on tip views only. We trained

for the same number of iterations as with ’all views’

We expected, that training and testing on side views only

would yield best performance. Our intuition was that side

views show most seed area and, therefore, most information

for volume estimation. Further, keeping the input as constant

as possible should allow the model to adapt best.

Table 2 reveals, that this intuition is wrong in several

aspects. Training on ’all views’ (first column) clearly out-

performs training on ’side views’ or ’tip views’, independent

of the test scenario (rows). Thus, keeping the seed pose

fixed for training does not help. Further, we tested the model

trained on all views for single views (N=1) for prediction

with different seed poses, i.e., ’robot views’ (see Section 2.2),

side and tip views. Against our intuition, we do not see a sig-

nificant error difference when using tip views vs. side views.

While surprising at first glance, this result makes sense when

considering seed property statistics from Figure 2. A side

view shows length and height of a seed, but not its width,

while a tip view shows width and height, but not its length.

However, relative width variation of the investigated wheat

seed species is higher (87 %) than length variation (36 %).

Height is always visible in all views. Consequently tip views

contain even more information on volume than side views

and a significant error increase would not be plausible.

When using more than one view, i.e., N = 3 errors drop

significantly by approx. 2% for the ’all views’ training. For

’side view’ and ’tip view’ errors remain higher than when

using a single view, i.e. N = 1, but training on ’all views’.

4. Discussion and Conclusion
The proposed deep learning based method for 3d recon-

struction and phenotyping of individual plant seeds from

single and multiple images can substitute volume carving,

Training

N Test av sv tv
rv 5.47±0.16 17.17±0.49 16.53±1.35

1 sv 5.35±0.06 9.09±1.42 21.07±0.75

tv 5.51±0.23 12.25±0.53 8.61±0.37

rv 3.57±0.15 15.98±1.73 10.10±0.43

3 sv 3.46±0.16 8.34±1.63 13.26±0.57

tv 3.41±0.34 15.51±1.10 7.57±1.32

Table 2: Relative volume error [%] for different train and test

datasets. av – all, sv – side, tv – tip, rv – robot views (see

Section 2.2). Columns indicate training, rows test scenarios.

N is number of input views to the model.

currently used in robot setups like phenoSeeder [17]. It al-

lows to save acquisition time, as it can successfully operate

with fewer images per seed than VC (e.g., 3 instead of 36).

Especially in high-throughput experiments with thousands

or tens of thousands of seeds, processing time per seed needs

to be kept as low as possible. Trading acquisition time for

some accuracy of seed parameter estimation and thus expres-

siveness is therefore acceptable. Three input views per seed

are found to be a recommended trade-off between acquisi-

tion time (10× reduction) and reached accuracy of ≈ 2.36%

relative error. It can be used in turn-table setups with three

poses as in phenoSeeder or in affordable setups with three

cameras and simpler robotics and the same acquisition time

as needed for a single image.

Even with a single view per seed the model infers a valid

point cloud with lower error than readily available linear

regression from projected area. The presented new baseline

method therefore has potential for 3d reconstruction and

approximate estimation of parameters without turn-table

setup directly from a single 2d view, e.g., when seeds lie on

a surface like the 2d station views. However, here, our simple

loss requires the ground truth point cloud to be aligned with

the pose in the first image. This is not given for the 2d

station views. A more complicated loss function than the

one used here, e.g., Chamfer loss, may thus be needed to

train a well-performing model.
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