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Abstract

Phenotypic assessment of plants for herbicide discovery
is a complex visual task and involves the comparison of a
non-treated plant to those treated with herbicides to assign
a phytotoxicity score. It is often subjective and difficult to
quantify by human observers. Employing novel computer
vision approaches using neural networks in order to be non-
subjective and truly quantitative offers advantages for data
quality, leading to improved decision making.
In this paper we present a deep learning approach for com-
parative plant assessment using Siamese neural networks,
an architecture that takes pairs of images as inputs, and
we overcome the hurdles of data collection by proposing
a novel pseudo-labelling approach for combining different
pairs of input images. We demonstrate a high level of ac-
curacy with this method, comparable to human scoring,
and present a series of experiments grading Amaranthus
retroflexus weeds using our trained model.

1. Introduction

Biological assessment by human observation can

have subjective and non-quantitative outcomes which

makes downstream decisions to determine relative and

comparative scoring difficult, and statistical analysis

more challenging. Computer vision approaches have the

potential to be non-subjective and truly quantitative, so

offer many advantages for this task. Convolutional Neural

Networks have proven themselves effective at a range of

phenotypic analyses, and have advantages over human

scorers due to their efficiency and consistency making them

highly applicable to our chosen problem.

Biological assessment needs comparative yardsticks to

cope with intra test variability; in experiments, these are

primarily represented by the negative control (’untreated’)

treatments. In this case study, the biological subjects

were glasshouse-grown plants whose features, called

the phenotype, vary due to the season, husbandry and

seed batch. Plants are assessed after being treated with

herbicides. Thus, to assess a test, the treatment is compared

to the in-test control, and a relative score assigned. Thus,

in practical terms, a comparison is generated evaluating

the relative difference in appearance of two plants. This

is a challenging task for human observers, which requires

regular calibration between scorers to try and avoid intra

assessor variation and drift over time. A computer vision

approach to evaluating this relative difference in appearance
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could be much more stable and consistent across time.

In this paper, we conceptualize the problem as one of

similarity scoring, as it is the relative affect on phenotypes

of the treatment and control that is key to determining the

toxicity of a given herbicide. To this end, we propose to

use a Siamese neural network to analyse pairs of images

representing a given treatment and an in-test control, and

regress a single score for the two images.

Overall our main contributions are as follows:

1. We present a novel computer vision approach to the

problem of comparative plant grading based on a

similarity-scoring approach.

2. We enhance performance of our model using a pair-

wise pseudo-labelling approach, allowing us to signif-

icantly increase the overall number of training samples

without collecting more data.

3. We demonstrate near human-level performance when

testing our approach on an unseen test dataset.

2. Background
To our knowledge this paper presents the first use of deep

learning to solve the problem of comparative plant grading.

In this section we provide a background on Plant Grading

methods, as well as a literature review of comparative deep

learning methods and data augmentation for computer vi-

sion problems.

2.1. Plant Grading

Biological assessment is a fundamental step in bioassay

screening, and the outputs drive progression decisions in

a screening platform. Thus the quality of the assessment

needs to be consistent both temporally and within a test.

To rank treatments, it is preferable to assign a single overar-

ching score to a treatment which is made of many different

observations. For plants, observations could typically in-

corporate the size, shape and colour.

Biological materials are well known to be highly variable

from test to test due to differences in biotic and abiotic

growing conditions such as seed batch and seasonality, re-

spectively. To compensate for this variability, an untreated

control treatment is used as a comparative baseline by hu-

man assessors, who must hold an image in their mind of the

control whilst evaluating the treatments.

Lastly, human assessors are not truly quantitative, and when

scoring on a 0-100 percent scale will often use a banded

scoring system with increments of 10 percent, thus having

11 different scores including zero. Furthermore, these semi-

quantitative scores are not ideal for a statistical analysis. A

more objective, and truly quantitative approach would be

beneficial, and is the motivation for the rest of the work in

this paper.

Figure 1. Figure showing 3 different montages created for human

evaluation, each montage shows treatment (top row) and control

(bottom row) plants from a particular test. Here we can observe

the effects of different treatments on plant health. In our exam-

ples each subsequent montage shows treatment plants with poorer

health.

2.2. Siamese Networks

Siamese neural networks were first proposed in 1993

by Bromley et al [1] as a method of solving the problem

of signature verification. The Siamese framework intro-

duced the concept of a pair of feature extractors for the

comparison of two input images. Feature extractors with

shared weights were trained to generate embeddings for

input pairs. Embeddings generated by this pair of networks

can then be compared by a distance function (or in later

examples a feed forward network [6]) enforcing a latent

space representation that groups similar or matching pairs

of inputs similar to the intuition behind triplet losses [2].

This comparison of the embeddings can then be used

to classify a match or mismatch between the two input

images, or in more complex cases such as our own to

regress a difference score between the two images.

In the past decade, advances in deep learning have

allowed Siamese neural networks to solve a much wider

range of problems, including human re-identification [12],

COVID-19 diagnosis [10], and text based comparisons as

seen in Neculoiu et al [7]. Many of these cases, such as

the siamese network for face verification in Facebook’s

DeepFace [11], use an alignment stage, or assume a spacial
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alignment of input images that makes it easier to the

network to make a direct comparison between inputs. Due

to the variety of angles our images are taken at however, we

are unable to assume that images can be spatially aligned

in this way, making our task more challenging.

In a similar use-case to our own, Li et al [5] uses Siamese

networks to compare disease severity in medical imaging

scans, comparing healthy scans against symptomatic scans

and predicting scores representing progression and change.

Here, we propose to use the twin-networks in a Siamese

architecture to extract relevant features from the test and

control image pairs, to help derive the comparative score.

2.3. Data Augmentation & Pseudo Labelling

The most common approach to increasing the size of

training datasets in the field of Computer Vision is Data

Augmentation [8], using image transforms to effectively

extend the existing dataset to improve training variety.

It is common in plant phenotyping problems to see data

augmentation applied because of the diverse variety of

plant species each of which can appear different based

on varied environmental factors. Common forms of

augmentation such as image cropping, rotations and

flips, which, for example, are standard practice, such as

those seen in Pound et al [9], to increase variety in a

relatively homogeneous dataset. Kuznichov et al [3] uses a

system of collages of different plant components to gener-

ate images of new plants composited from a smaller real set.

Another common method used for the expansion of lim-

ited datasets is pseudo-labelling, often considered a form of

semi-supervised training. In Lee et al [4] this approach is

introduced, using a limited dataset to train a network, and

then labelling a larger unseen dataset using the network’s

predictions. For comparative problems such as our own,

pseudo labels can be created by combining pairs of training

samples to create a large number of inputs. Zheng et al [13]

use a Siamese network for sequence analysis, noting that the

large number of possible pairs N(N-1)/2, could be too large

with high values of N, and focuses their work on selecting

an unbiased selection of the possible combinations.

3. Materials and Methods

In this section we describe our entire pipeline for creat-

ing our training dataset as well as describing our Siamese

neural network in detail. We also describe the experiments

we used to test our approach, results of which are found in

section 4. The section begins with an overview of the bi-

ological approach, followed by details of the deep learning

proposed.

3.1. Bioassays

The chemical substances to be tested as herbicides on

plants were dissolved in dimethyl sulfoxide for storage.

Sub-samples to be tested were dried down and formulated

into spray solution of acetone, water and Tween 20 for ap-

plication. The compounds were tested for pre- and post-

emergence activity against the weed species tested, with

the compounds applied at 1000g/ha. The plants were then

placed in the glasshouse for 12 days. The weed tested was

Amaranthus retroflexus. Assessments were made of percent

phytotoxicity and converted to a banded score between 0

and 100, where complete control of the target is 100 and 0

is no control.

3.2. Data Capture

Images were captured of the plants with three 5MP in-

dustrial cameras at different viewing angles of 0, 45 and 90

degrees. Plants were rotated on a turntable at 6 increments

providing a total of 18 images per plant. The imaging box

was custom made and was light sealed, and plants illumi-

nated off axis with white LED lighting. Plants were graded

by 2 human assessors from sets of digital images rather than

observing the plants in situ. For pairs of plants, the human

scorers would observe sets of images of the same control

and treatment plant and give a score. Grading is a process

by which the treatments are compared to the in-test control

for herbicidal phytotoxicity as described in section 2.1. For

every treatment-control pair in the two sets of images ob-

served we create one training pair, allowing 49 samples to

be created from every human graded pair.

3.3. Dataset Creation

While data collected and manually annotated by

biologists is the current industry standard for highly

accurate plant assessment; the wide range of factors that

contribute to different plant phenotypes makes even a

moderately sized dataset like the one we have gathered

fairly limited. This becomes apparent when we consider

the extremely wide range of possible combinations of

treatment outcomes, and suggests that this challenge would

be vulnerable to overfitting.

While treatment plants represent a range of outcomes

caused by the different herbicides they have been treated

with, we observe that control plants in our dataset are

all relatively homogeneous, with virtually all examples

being in good health. In practice, we might expect even

control plants to have a wide range of appearances, caused

by different seed batches, seasonal effects, and other

environmental and growing factors. In these cases it is

important that the network is able to predict a relative

score of the difference in health between the two plants,

as such we create additional pairs of images to which we

assign pseudo labels we allows us to better replicate these
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possibilities.

Figure 2. Figure showing how new pairs are given pseudo labels.

Human annotated scores are combined to generate new pairs of

images with a wider variety of control images.

To create our additional dataset we begin with an as-

sumption, based on our observations, that as all control

treatments are in extremely good health and show no phy-

totoxic symptoms, we can therefore consider the human

labels to simply be an absolute score of the health of the

treated plant, rather than a relative score with respect to the

control. We then take our treatment images and group them

by their scores, values between 0 and 100 in increments of

5, based on the average score of the two human annotators.

We then are able to create new pairs of images by combin-

ing their individual scores, each image can then be paired

with other images and the difference between their scores

can then be used as a new pseudo label. As control plants

should always be healthier than the treatment plant in our

scenario, we ensure that for any new pair of images we only

select plants with higher scores to represent the treatment

plant compared to the score of the control plant. Because

images can be combined in a wide variety of pairs, despite

only having a few hundred training image we are now able

to generate potentially hundreds of thousands of new train-

ing samples. As described below, we create a number of

new dataset combinations for our experiments, including

different quantities of image pairs and controlling the spread

of values to reflect our limited test sample, and explore the

effect of these in the results.

3.4. Siamese Network

We employ a Siamese neural network to predict relative

scores between pairs of images.

Our network consists of a pair of ResNet-18 feature ex-

tractors with shared weights. To combine our feature em-

beddings we choose to use a concatenation layer, rather

than a dot product. This choice reflects the limited spatial

alignment between different samples, and should enable the

network to learn more complex relationships between input

pairs which is likely to be relevant due to the complexity of

plant grading.

The second half of the network is a series of fully con-

nected layers that predicts comparative scores for the pair

of input images via regression. Due to the banded nature

of the grading we also could consider a classification head

for our final layer, but opt instead to frame the problem as

regression owing to the continuous nature of the grades and

the higher precision used in grading at the top end of the

scale.

Figure 3. Figure showing our Siamese architecture. Pairs of

images are input to ResNet-18 feature extractors with shared

weights. These concatenated features are then passed through a

feed-forward regression network to predict a score.

4. Results
In this section we present a series of experiments de-

signed around testing the effectiveness of our model and the

impact of training with additional pseudo labels. Results are

then shown in tables 1 and 2.

4.1. Experiments

We train a number of models in order to evaluate our

neural network approach to plant grading. Our evaluation

is performed using an unseen test split of our original

dataset, including only unseen images and comparisons,

with ground truth values being the average score of both

human evaluators. For our experiments we aim to compare

performance between different versions of our network

with the error of an individual human annotator versus the

average. By doing so we aim to acknowledge that this

particular problem is especially prone to variance in human
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annotation, and evaluate our model in accordance with this

premise.

First, we perform a series of experiments with different

quantities of training images, evaluating the need to build

a sufficiently large training set to achieve human level per-

formance. We report our findings for these results in table

1.

(a) Scores of human annotators This baseline is estab-

lished by comparing the scores of an individual expert hu-

man annotator against the average score of both annotators

(which we use as our ground truth). This gives us a proxy-

MSE score, which in this case can really be thought of as

capturing variance between the annotators - similar scores

will result in a low human annotator MSE error, divergent

scores a larger MSE.

This experiment is meant to highlight inherent inconsis-

tency in using human annotators, and to act as a represen-

tative accuracy level that a neural network would need to

match or exceed for to be considered as a suitable replace-

ment for human annotators. We evaluate our human an-

notators across the entire dataset to reduce variance caused

by random test split sampling across such a small dataset.

The annotators, of course, do not need a train and test split,

as they had been asked to score all images using their ex-

pertise. So, we note that the annotators error is measured

across all images, whilst the networks are evaluated over

the dedicated test split.

(b) Neural Network Trained on Human Annotations
For experiment (b) we train our Siamese network on the

human annotations only. This dataset contains 4404 total

pairs of images.

(c-f) Neural Network Trained on Pseudo Labels and
human annotations For these experiments we trained

our Siamese network on datasets of pseudo labels created

using the method described in 3.3 combined with our

human annotated dataset from experiment (b). Experiments

are performed on datasets containing human annotations

combined with additional pseudo label datasets of sizes

500, 1000, 5000 and 10000.

Secondly we perform further evaluation on the per-

formance of our best performing model, considering

performance over the range of possible ground truth score

bands. This experiment aims to explore how the network

performs differently where the ground truth score lies

within different ranges of possible scores; as such, we

arbitrarily create 5 bands of 20 ground truth values each to

represent the entire spectrum of possible scores (0-100). We

perform these experiments to highlight the uneven distri-

bution of difficulty of scoring plants at various score ranges.

For all experiments we used both mean squared error

(MSE) and mean absolute error (MAE) for our evaluation.

4.2. Training

For our experiments all models were run on NVIDIA

A6000 GPUs with a batch size of 24. All networks were

trained for 200 epochs with our best performance selected

using a validation split of our main training dataset. Hy-

perparameters were selected empirically, with an Adam op-

timiser with a learning rate of 1e−4 being selected. Dur-

ing training additional augmentation was added to our input

images, including random flips, rotations and color jitter to

improve dataset variety and generalization.

Experiment
Accuracy

MAE MSE

(a) Human Annotators 6.70 103.48
(b) Siamese Real 15.74 547.12

(c) Siamese 500 Combined 31.37 1267.24

(d) Siamese 1000 Combined 16.35 593.99

(e) Siamese 5000 Combined 15.46 444.81

(f) Siamese 10000 Combined 11.10 268.59

Table 1. In this table we present results of experiments a-f, demon-

strating the performance of our Siamese network trained on differ-

ent training set combinations, and comparing against human anno-

tators. The first row presents an indication of the inter-annotator

error calculated using a psuedo-MSE score, comparing each anno-

tator to the mean.

GT Range
Human Annotators S. 10000 Combined

MAE MSE MAE MSE

0-19 4.29 57.14 9.93 197.30

20-39 10.00 155.56 9.18 120.80
40-59 11.33 180.00 19.54 752.31

60-79 6.96 130.43 16.81 408.26

80-100 4.44 57.78 4.08 52.48

Table 2. In this section we compare the scores of our best perform-

ing Siamese network against the performance of human annotators

against different subsets of the training data based on their ground

truth score.

5. Discussion

In this section we analyse the results presented above,

and discuss the performance of our Siamese network, as

well as the importance of our dataset as it relates to human

performance.
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5.1. Analysis of Results

In table 1 we can see how the overall performance of

the network initially decreases as we add a small about of

our pseudo labelled data. We then see that the performance

improves as we increase the quantity of our pseudo labelled

data included in our training set, achieving the highest score

of 11.10 mean average error and 268.59 mean squared er-

ror. This result reveals two significant insights about our

approach to automated grading. First, we can see that our

pseudo labelling approach improves on the scores of train-

ing solely on the real annotations which score only 15.74

MAE and 547.12 MSE by comparison. We also see that our

network error score approaches human annotator level with

more pseudo labelled data, even though it doesn’t exceed

it. We hypothesise that this gap would likely become even

smaller if this approach was scaled up for use in an indus-

trial setting as a larger dataset would likely lead to greater

inter and intra assessor variation, while our Siamese net-

work would perform consistently at scale. The high con-

sistency of the healthy controls in this study would addi-

tionally likely help the annotators to limit their variation,

compared to a larger study where controls contained more

heterogeneity.

Then, in table 2 we can see more clearly how the er-

ror rate is lowest for values close to 0 and 100, and high-

est for values in the middle of this range. For both human

and Siamese networks, the scores are best in the 0-19 and

80-100 ranges, and worst for the 40-59 range. Most im-

portantly we see that our network struggles most with the

ranges 40-79 while actually outperforming the human as-

sessors in the ranges 20-39 and 80-100. As these worse per-

forming ranges are those with the lowest quantity of training

samples it is possible that with a less-homogeneous training

set with a greater range of variation we could see our net-

work narrow the gap with human performance further.

5.2. Future Work

In this section we highlight a selection of possible

avenues of further research that were not within the scope

of this paper.

Significance of Viewing Angles During this paper we

have used a dataset containing images of plants taken from

a range of angles. While human annotators had access to a

range of angles during their inference, our model saw only

a single pair of Treatment and Control image for any given

inference. Further investigation is needed to determine an

optimal approach to image capture for this problem; we

hypothesise that a multi-angle approach where the model

has access to multiple images of each plant will yield

improved results.

Generalizing to other Plant Species Amaranthus

retroflexus, the species of plant used in our experiments is

characterised by its even branching of large leaves, making

it relatively easy to capture a significant amount of detail

from just a few photographs. Further research looking into

other species with more complex structures should be con-

ducted to assess our approach’s ability to generalize onto a

range of species.

6. Conclusions
In this paper we have demonstrated near-human level

performance of comparative plant grading using a novel

deep learning approach. We have overcome many of the

limitations of human assessment, leveraging computer

vision to provide non-subjective analyses, addressing a

major bottleneck in the evaluation of new herbicides.

We have shown that automated grading of plants is

possible even in the case of extremely limited data. Our

results demonstrate that using our novel approach to

pairwise pseudo-labelling we can significantly increase the

size of our dataset, improving performance and allowing

our model to generalize better over a wide variety of test

cases.

Overall our approach has made a significant contribution

to the field of plant phenotyping, highlighting a significant

problem in the space that has previously found very little

favour or attention from the research community. We be-

lieve that with further research the need for human asses-

sors can be partnered with artificial intelligence, or in some

scenarios perhaps replaced in favour of Deep Learning ap-

proaches which offer a non-subjective and truly quantitative

biological assessment, freeing up valuable expert time for

use elsewhere. However, in this case, approaches with more

explainability would be welcome to increase confidence in

the predictions.

References
[1] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger, and Roopak Shah. Signature verification using

a” siamese” time delay neural network. Advances in neural
information processing systems, 6, 1993.

[2] Elad Hoffer and Nir Ailon. Deep metric learning using triplet

network. In Similarity-Based Pattern Recognition: Third
International Workshop, SIMBAD 2015, Copenhagen, Den-
mark, October 12-14, 2015. Proceedings 3, pages 84–92.

Springer, 2015.

[3] Dmitry Kuznichov, Alon Zvirin, Yaron Honen, and Ron

Kimmel. Data augmentation for leaf segmentation and

counting tasks in rosette plants. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 0–0, 2019.

[4] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-

cient semi-supervised learning method for deep neural net-

683



works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896. Atlanta, 2013.

[5] Matthew D Li, Ken Chang, Ben Bearce, Connie Y Chang,

Ambrose J Huang, J Peter Campbell, James M Brown,

Praveer Singh, Katharina V Hoebel, Deniz Erdoğmuş, et al.
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