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Abstract

The composition and phenology of plant communities
are paramount indicators for environmental changes, es-
pecially climate change, and are, due to this, subject to
many ecological studies. While species composition and
phenology are usually monitored by ecologists directly in
the field, this process is slow, laborious, and prone to hu-
man error. In contrast, automated camera systems with in-
telligent image analysis methods can provide fast analyses
with a high temporal resolution and therefore are highly ad-
vantageous for ecological research. Nowadays, methods al-
ready exist that can analyze the plant community composi-
tion from images, and others that investigate the phenology
of plants. However, there are no automatic approaches that
analyze the plant community composition together with the
phenology of the same community, which is why we aim to
close this gap by combining an existing plant cover predic-
tion method based on convolutional neural networks with a
novel phenology prediction module. The module builds on
the species- and pixel-wise occurrence probabilities gener-
ated during the plant cover prediction process, and by that,
significantly improves the quality of phenology predictions
compared to isolated training of plant cover and phenology.
We evaluate our approach by comparing the time trends of
the observed and predicted phenology values on the Insec-
tArmageddon dataset comprising cover and phenology data
of eight herbaceous plant species. We find that our method
significantly outperforms two dataset-statistics-based pre-
diction baselines as well as a naive baseline that does not
integrate any information from the plant cover prediction
module.

1. Introduction
The plant community composition as well as plant

species phenology are essential indicators of environmental

change like land-use [15, 2, 4], insect abundance [20, 18],

and climate change [16, 17, 14]. Phenology has even been

identified as a ”fingerprint of climate change” [16]; most

species advance their flowering phenology in response to

increasing temperatures, though the intensity with which

plants respond is species-specific [7].

The plant community composition is usually monitored

by ecologists directly in the field by estimating the plant

cover, i.e., the percentage of area of ground covered by each

plant species. Based on this value, phenology is also moni-

tored by additionally estimating the ratios of plant individ-

uals of a certain species in a particular phenological state,

like flowering or leaf senescence. From these estimates, dif-

ferent aspects can be investigated, like the shift of the first

flowering day (FFD) of certain plant species or the flower-

ing duration, such that impacts of changes in the environ-

ment on plant phenology and species composition can be

analyzed.

However, the manual collection of these values is highly

laborious, time-consuming, and subjective, so they are sur-

veyed in rather long intervals of at least weekly, but some-

times even longer intervals (e.g., biweekly or monthly). To

enable a speedy and reliable collection of vegetation and

phenology data, automated systems are required, which can

collect images and analyze them with little human interac-

tion.

While the automatic analysis of vegetation images with

respect to the plant cover has already been done [9, 8, 12],

the phenology of the plants in the images is ignored in these

studies. Other works are concerned with the phenology of

plants in different aspects [1, 23, 19, 22], usually focusing

on single plant species, individual plants and monocultures.

However, none analyzed entire species-rich and therewith

complex plant communities simultaneously, especially not

for herbaceous species.

We bridge the gap between the analysis of the plant com-

munity composition and phenology by combining these two
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in our novel method introduced here. We base our ap-

proach on [9], which utilizes convolutional neural networks

(CNNs) and comprises two pre-training steps and a final

plant cover training phase. We extend the latter with con-

current phenology training. To enable the joint prediction

of plant cover and phenology at the same time, we intro-

duce a new phenology prediction module, which utilizes the

species-wise occurrence probabilities from the plant cover

prediction module as a base for the prediction of the phe-

nology of each plant species.

Here, we will focus on two phenological stages, which

are flowering and leaf senescence (i.e., the coloring of the

leaf). To enable detailed analyses of phenological changes

across the year including information on species abun-

dances and species-specific differences in phenology, we

will also estimate how many percent of the detected plant

species are currently in each phenological stage.

Our contributions are:

• We introduce the new task of automatic phenology pre-

diction for herbaceous plant communities on the exam-

ple of the InsectArmageddon [20] dataset, and discuss

its caveats.

• We show two simple calculation models, which extend

a plant cover prediction method to also predict phenol-

ogy in combination, and thus can lead to significant

improvements of the results on phenology prediction

in comparison to isolated plant cover and phenology

training.

• We show a simple way to combine the two calculation

models to leverage their advantages and improve pre-

diction results even further.

2. Related Work

Several approaches try to automatically analyze phenol-

ogy from images. Wang et al. [22] investigate the flowering

of trees, separating the flowering process into eight different

stages, which are viewed as a classification problem. Their

approach is more focused on flowering phenology and does

not perform species identification, as only a single species

is investigated. Our method, in contrast, investigates com-

munities of several herbaceous species and focuses on flow-

ering and senescence.

Yalcin [23] investigates the phenology of agricultural

plants, utilizing an AlexNet [11] to classify the images of

different crops into several phenological stages to automati-

cally assess the plants’ development. In their investigations,

they only analyze images of homogeneous communities of

agricultural plants and only perform a simple classification,

while we predict percentages for each stage and species in

our dataset.

Triki et al. [19] investigate dried individuals of herba-

ceous species from herbaria for reproductive organs, i.e.,

flower buds, fruits, and flowers. To this end, they employ a

modified Mask Scoring R-CNN [6] to segment the organs

based on fully-supervised segmentation labels. While they

also analyze herbaceous species, as in our work, they only

investigate single individuals in idealized conditions, while

we tackle complex images of large plant communities.

In terms of automatic analyses of plant communities,

there merely exist the approaches by Körschens et al.
[12, 8, 9], who only investigate the plant cover of the com-

munities, but not the phenology. Our work will be based on

these approaches and extend them for phenology prediction.

3. Approach
3.1. Plant Cover Prediction as Base Approach

Our base approach is the CNN-based segmentation pre-

training approach from [9]. With this method, a classifica-

tion network is first trained, which is then used to generate

segmentations. These segmentations are then used to train a

second network, utilized as initialization for the joint plant

cover and phenology training with dedicated annotations.

We combine the species’ phenology calculation in a

novel phenology prediction module with the already exist-

ing plant cover prediction module used in [8, 9]. In this

cover prediction module, pixel-wise occurrence probabili-

ties for each plant species are calculated, which are then ag-

gregated over the entire image to estimate the plant cover.

Since the phenology predictions are based on the plants

detected in the images, we utilize the predicted species-

wise occurrence probabilities and predict a phenology-stage

probability for each plant species in each location. Simi-

lar to the plant cover prediction module, we are then also

able to aggregate these probabilities over the entire image

to retrieve the final phenology values. These predicted val-

ues then represent percentages of the plant cover of each

species.

3.2. Joint Prediction vs. Species-Wise Prediction

With modeling phenology, or, more specifically, the phe-

nological stages within neural networks, we have two pos-

sibilities: a joint prediction of the phenological stage in-

dependent of species with weight sharing (“joint predic-

tion”) and individual predictions for each individual species

without weight sharing (“species-wise”). Both approaches

have certain advantages and disadvantages. As for species-

wise phenology prediction, the prediction is done for each

species individually, i.e., the network learns a different

model for each combination of phenological stage and

species. This results in a specialized network that can po-

tentially make high-accuracy predictions for some species.

With this approach, however, species with little training
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data are significantly disadvantaged since there is likely no

way for the model to learn a sophisticated and general phe-

nology model for these. This issue could potentially be re-

solved with the joint prediction approach, where only the

occurrence probabilities and a single probability for each

phenological stage are calculated. These probabilities can

then be combined, for example, by simple multiplication, to

obtain species- and phenology-wise probabilities. The gen-

eral idea behind this approach is that often particular fea-

tures are shared between the phenological stages and do not

differ strongly between the different plant species. For ex-

ample, for identifying the flowering stage, the model would

use blossoms, which can look very similar between several

plant species. For senescence, the model would likely focus

on the brown color of plant leaves, which is also a property

shared between the different species. If features are shared

like this, there is also a higher chance for species with low

amounts of training data to be predicted better since the data

from other species can also be used for training. However,

a too general model could also perform worse since plants

with large amounts of training data might not be predicted

as well as with individual phenology models.

3.3. Phenology Prediction Models

We investigate different calculation model variations to

be able to compare how the structure of the phenology pre-

diction module affects the results.

3.3.1 Baselines

We include three simple baselines in our comparison: a con-

stant prediction, a time-dependent constant prediction, and

a naive prediction.

Constant Prediction Baseline. This baseline simply pre-

dicts the mean flowering and senescence percentages for ev-

ery species in the dataset for every image.

Temporal Mean Constant Prediction Baseline. This

baseline predicts the mean flowering and senescence per-

centages for every species depending on the week the re-

spective image was taken. Hence, it is similar to the con-

stant prediction baseline and does not use any image infor-

mation. It should be noted that the temporal aspect is not

taken into account by our phenology prediction approaches,

which only predict the phenology values based on images.

Therefore, this baseline uses different information than our

image-based prediction models, resulting in an unfair com-

parison. However, due to the lack of simple alternative

baselines, we use this one as a point of comparison.

Naive Phenology Prediction. This baseline model uses

the segmentation-pre-trained CNN and predicts the phenol-

ogy from images. It is trained with the phenology anno-

tations in the dataset but, in contrast to the more complex

calculation models (section 3.3.2), uses no information de-

termined by the plant cover prediction module. I.e., this

model predicts a value

Phenologyp,s(x, y) (1)

for each phenological stage s and each plant species p at

each location x, y, completely independent of the already

predicted species-wise occurrence probabilities. As in the

following models, the final phenology percentage is ob-

tained by averaging the location-wise probabilities over all

predicted species-wise occurrence probabilities in the entire

image.

It should be noted that since this model does not utilize

any occurrence probabilities calculated during plant cover

prediction, it also needs to learn to distinguish the different

plant species from the sparse phenology training data.

3.3.2 Combined Approaches

Species-wise Prediction. As mentioned above, with a

species-wise model, we predict a phenology probability for

each stage and species, and with the inclusion of the oc-

currence probabilities Pp,· from the plant cover prediction

module, we calculate

Phenologycorrected
p,s (x, y) = Pp,·(x, y) · Phenologyp,s(x, y) .

(2)

Joint Prediction. For the joint prediction, only a single

value is calculated for each phenological stage, which is

then combined with the species-wise occurrence probabili-

ties to compute the species- and stage-wise phenology prob-

abilities:

Phenologycorrected
p,s (x, y) = Pp,·(x, y) · Phenology·,s(x, y)

(3)

Improved Joint Prediction. To try to combine the advan-

tages of the two methods above, we also investigate an im-

provement of the joint prediction module. To improve this

module, we add an adaptation block, which comprises two

simple 1×1 convolutional layers and predicts an additional

weight Wp,s(x, y) for each combination of plant and stage.

This weight value is then added to the input features of

the stage-wise phenology probabilities Phenology·,s(x, y).
This way, the network can utilize the combined advantages

of the weight and information sharing aspect of the joint

prediction module for the different stages but can also learn

more specific features for each plant species, similar to the

species-wise one.
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Table 1: The number of images containing phenology data

of any non-zero percentage for the respective plant species.

Species Images contain-
ing Flowering

Images contain-
ing Senescence

A. millefolium 0 107

C. jacea 25 201

L. corniculatus 173 174

M. lupulina 174 247

P. lanceolata 133 205

S. autumnalis 158 116

T. pratense 303 413

Total 682 682

4. Experiments

4.1. Dataset

This work uses the InsectArmageddon dataset intro-

duced in [20] and [12]. The dataset contains plant cover

data of 8 herbaceous plant species in 682 images labeled by

a single ecologist. In addition to the plant cover, we utilize

phenology estimates not used in previous works, which is

available for seven plants from the dataset. They were also

estimated by the same ecologist and represent the percent-

age of the identified plant individuals that are currently in

a particular phenological stage, i.e., flowering or senescent.
Example images with plants from both phenological stages

are shown in Figure 1. It should be noted that the phenolog-

ical stages are not mutually exclusive. That is, a plant can

be flowering and senescent at the same time.

In Figure 2, the distribution of the plant cover percent-

ages and the phenology percentages is shown. Notably,

since the phenology only represents a fraction of the num-

ber of plant individuals identified in the images, the amount

of training data for phenology prediction is significantly

smaller than for cover prediction. In Figure 2, we can see

that Trifolium pratense has an average cover value of 35%

over the entire dataset, i.e., approximately 35% of all pixels

in the whole dataset contain Trifolium pratense. However,

only about 10% in total are flowering parts, and less than 5%

are senescent, resulting in a significant difference in train-

ing data for this plant species. This difference is even more

extreme in the other plant species.

Moreover, since high outlier values possibly skew the

average phenology percentages, we also take a look at the

number of images containing any kind of plant cover per-

centage other than 0 for a certain plant species, as shown

in Table 1. We can see that, for Trifolium pratense, only

about half of the images contain any data on flowering, of-

ten significantly below 100% that would match the entire

plant cover. For Achillea millefolium, there is not a single

image with flowering individuals, making this kind of pre-

diction entirely impossible for this species. We can also see

that the number of images containing phenology percentage

labels is generally higher for senescence. Under consider-

ation of these statistics, we would expect the prediction of

senescence to yield better results.

4.2. Metrics

We evaluate the plant cover and concurrent phenology

predictions using different metrics.

Plant Cover. For the prediction of plant cover, we uti-

lize the so-called DCA-Procrustes-Correlation (DPC). This

metric involves performing a Detrended Correspondence

Analysis (DCA) [5] on the target and predicted outputs.

The resulting values are then compared using a Procrustes

test, yielding a correlation value. Higher correlation values

indicate greater similarity between the distributions, which

holds significance in ecological applications.

Phenology. We utilize the Pearson correlation coefficient

to evaluate the phenological results. We compare the corre-

lation of the predicted values for each species over all pre-

dicted data points and calculate the mean over all species

at the end. This results in two correlation values, one for

each phenological stage, reflecting the performance for the

different types of phenology prediction.

Since models with several metrics are hard to compare,

we also look at two compound metrics that should better

reflect the entire model’s performance. The first one is

Corrmean, i.e., the mean of the correlation values of both

phenological stages:

Corrmean = 0.5 Corrflowering + 0.5 Corrsenescence , (4)

with t and p being the true and predicted values.

The second one is the geometric mean of the three afore-

mentioned correlation metrics:

Compound = 3
√

DPC · Corrflowering · Corrsenescence . (5)

As it combines the plant cover prediction metric and both

phenology metrics, it should most accurately reflect the

model’s performance in general without focusing too much

on single aspects of the model. Corrmean, in contrast, merely

focuses on the model’s ability to predict the phenological

stages without taking its ability for plant cover prediction

into account.

Since the correlation of the constant baseline is not

defined, we also compare the mean squared error of the

predicted flowering values: MSEflowering and MSEsenescence.

These values demonstrate how big the difference between

the predicted and target percentages is, which is not re-

flected in the correlation values.
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Figure 1: Left: An example of an image from the dataset that contains several flowering plants. Right: An example of an

image from the dataset that contains a large number of senescent plants.

Figure 2: The distribution of plant cover, flowering and

senescence percentages over the dataset.

4.3. Setup

For our experiments, we use the same setup as in [10].

I.e., we utilize a ResNet50 [3] with a feature pyramid net-

work (FPN) [13]. We first pre-train the network on GBIF

[21] image data using the segmentation pre-training algo-

rithm [9], and also use the same hyperparameters as in [10].

We use an image resolution of 1536 × 768 and investi-

gate two different training setups. The first setup utilizes

the weekly labels contained in the dataset, resulting in 682

images with labels. The second setup we investigate uses

interpolated daily labels. Following the label interpolation

approach from [10], the weekly labels are interpolated down

to the daily level using linear interpolation. This is done for

the plant cover and phenology labels. With this method,

also the unlabeled intermediate daily images can be used

for plant cover and phenology training, resulting in a about

7 times the number of images available for training. To in-

vestigate the effect of the training duration on the quality

of the results, we analyze varying epoch numbers. For the

weekly labels, we train for 3, 10, 25 and 60 epochs. Since

the number of iterations per epoch is significantly higher for

the daily labels, in this setup we train only for 3, 10 and 25

epochs.

The plant cover training and phenology training are con-

ducted in parallel, sharing the same base network and using

a learning rate of 10−5 for the plant cover prediction module

and one of 10−4 for the phenology prediction module, and

the mean absolute error as loss for both modules. All ex-

periments are conducted in a 12-fold cross-validation with

three repetitions, as done in [10].

4.4. Experimental Results

4.4.1 Quantitative Results

In Figure 3, the experimental results for the three setups

are shown. In general, we can see that the joint model and

the naive model perform the worst for the phenology pre-

diction for all setups. In contrast, the species-wise and im-

proved joint model (“joint++”) perform significantly better.

The reason for the bad performance of the naive model is

likely insufficient training data. As mentioned before, since

the naive model does not utilize any information from the

plant cover prediction module, it also does not use any oc-

currence probabilities. Therefore, it not only needs to learn

to recognize the phenological stages of the plants but also to

recognize the species themselves. It has to learn this from

significantly less training data than the combined models,

which implicitly use the plant cover training data and the

phenology training data. From this, we can conclude that

having a model which can include knowledge from plant

cover data is vastly superior to naive models that do not do

this.

As mentioned, the joint model also performs poorly, in

most cases even worse than the naive model. The likely

explanation for this is the nature of how the plant cover

prediction module predicts the plant cover values. Since it

simply predicts the occurrence probabilities of each plant,
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Table 2: A numerical comparison of the top results of each approach. Corrflowering, Corrsenescence and Corrmean are the respective

phenology correlation values, DPC is the DCA-Procrustes correlation metric and Compound refers to the compound metric

that aggregates Corrflowering, Corrsenescence and DPC. MSEflowering and MSEsenescence are the mean squared errors of the predicted

phenology percentages and the reference estimates.

Method Corrflowering Corrsenescence Corrmean MSEflowering MSEsenescence DPC Compound
Constant - - - 0.009 0.042 - -

Temporal Mean 0.544 0.445 0.495 0.005 0.032 - -

Naive 0.184 0.239 0.211 0.011 0.044 0.777 0.324

Species-wise 0.528 0.452 0.490 0.003 0.030 0.776 0.570

Joint -0.072 -0.134 -0.103 0.012 0.050 0.764 0.194

Joint Improved 0.532 0.461 0.496 0.003 0.030 0.780 0.576

which are not mutually exclusive, several plants can have a

high occurrence probability in the same location. If we then

apply the joint prediction model, due to the simple mul-

tiplication, each plant with a high probability is assigned

the same phenology probability, which leads to a poten-

tially high flowering or senescence probability for several

plants at the same location at the same time. However, usu-

ally, there are only a few or even only a single plant in-

dividual flowering in a single location, resulting in strong

mispredictions for the joint model. Since the species-wise

model predicts a separate probability for each species and

phenological stage, it does not have this issue, resulting in a

much better performance. However, since the original idea

of sharing phenology information between different plant

species still holds value, we developed the aforementioned

improved joint calculation model, which combines the ad-

vantages of the joint and the species-wise model. Due to

this, the improved joint model (shown as joint++ in Fig-

ure 3) outperforms the species-wise model in all kinds of

phenology predictions. We also notice that the difference

in performance of the improved joint model is generally

slightly larger for senescence. The likely reason for this is

that, while the looks of flowers can significantly differ from

one plant species to the next, the features of senescent plants

are usually similar: brown leaves. Therefore, information

sharing between several species is more advantageous for

senescence prediction.

Moreover, in Figure 3, we can also see that training with

interpolated daily images is significantly better than train-

ing only with weekly images. We see an improvement of

about 0.13 for Corrflowering for the improved joint model and

about 0.03 for Corrsenescence. We can also see that the DPC

is generally better with this setup, achieving a correlation of

about 0.8, in contrast to about 0.73 with weekly annotations

only. In the compound metric, it is reflected that the model

in the daily setup is significantly better than the one in the

weekly one.

In Table 2, we see the numerical metric values of the best

models selected based on our compound metric from each

category, as well as the results of the baselines. Overall, it is

visible that the joint improved model outperforms all other

models, most of them by a large margin. Only the temporal

mean baseline yields a slightly better value in Corrflowering

but is strongly outperformed in terms of MSEflowering and

MSEsenescence. While the species-wise model also performs

well, its performance is slightly worse than that of the im-

proved model. Interestingly, the joint improved model also

appears to utilize the phenology data for improving the plant

cover prediction since the DPC value of the plant cover pre-

diction is also slightly higher than the one of the other mod-

els. Lastly, the naive model is outperformed even by the

constant and temporal mean baseline. From this, we can,

again, conclude that predicting phenology without includ-

ing additional information, e.g., from the cover prediction

module, leads to drastically worse results.

4.4.2 Qualitative Results

In Figure 4, we can see two examples of the predictions

of phenology values on two sites of the InsectArmaged-

don dataset. For flowering in general, we can see that the

trend over time is captured quite well by our model. While

the amplitudes, e.g., the peak of flowering, often do not

match, the general upward and downward trends are clearly

reflected in the predictions. Moreover, the amplitudes’ tem-

poral location usually appears to match or lie only one week

apart from the reference estimates. The best-performing

species appears to be Trifolium pratense (Tri pra), which is

also the most dominant species in the dataset and, therefore,

has the most training data. Its prediction usually matches

the reference estimates best. In contrast, plants like Scor-
zoneroides autumnalis (Sco aut) are predicted the worst,

likely also due to small amounts of training data in the

dataset.

For senescence, there are often slight mispredictions by

the model in the earlier weeks; however, in the later weeks,

the time trend is usually captured quite well, similar to

the flowering stage. However, here we can also see that,

in some cases, the model predicts senescence significantly

earlier for several species. This effect might be caused
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(a) Weekly images and labels (b) Daily images and labels

Figure 3: The experimental results for the different metrics in different setups.
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(a) EcoUnit 10 (b) EcoUnit 23

Figure 4: Qualitative prediction results for flowering and senescence over the time for two sites of the InsectArmageddon

dataset.

by inconsistencies in the images of the InsectArmageddon

dataset, which show human intervention in some images,

affecting the looks of the ecosystem in the images.

Overall, the phenological trends are well-captured by our

model and can prove helpful in future ecological studies.

5. Conclusion
In this work, we have presented the novel task of auto-

matic phenology prediction for plant communities. In ad-

dition to simple prediction methods, we demonstrated that

we can combine this model with plant cover prediction to

significantly boost the results for phenology prediction. Es-

pecially since this kind of data is usually collected together

in the field by ecologists, data for both is usually available,

enabling this kind of combined approach. We have also

seen that weight sharing in the phenology prediction mod-

ule can improve results since it implicitly shares training

data between classes, from which especially plant species

benefit that are not abundant in the underlying vegetation

dataset and, thus, also have only little training data avail-

able. Since this dataset merely contained a small number of

plant species, this effect is likely stronger on datasets with

more and diverse plant species, which is subject to future

investigations.

The approach shown here can be of significant help to

ecologists since it can not only extract data on the plant

community composition from images but also on their phe-

nology, enabling high-quality analyses of environmental ef-

fects with high temporal resolution. Especially since eco-

logical studies with a high temporal resolution have been

rare to nonexistent until now, this approach can help acquire

significant novel insights in future ecological studies.

For future work, we aim to include more intuitive knowl-

edge into the network, for example, a color separation

via simple thresholding in the color space to separate the

green leaves from the flowers or the senescent plants, which

would counter the small amounts of training data by directly

integrating the knowledge. Moreover, the integration of the

temporal aspect of the dataset would likely also improve the

results since the phenological stages usually have a specific

time they occur. Therefore, a deeper analysis of the time

aspect is also part of our future work.
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