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Abstract

The cell painting microscopy imaging protocol has re-
cently gained traction in the biology community as it al-
lows, through the addition of fluorescent dyes, to acquire
images that highlight intra-cellular components that are not
visible through traditional whole-cell microscopy. While
previous works have successfully applied cell painting to
mammalian cells, we devise a staining protocol applicable
to a filamentous fungus model. Following a principled vi-
sual inspection and annotation protocol of phenotypes by
domain-experts, we devise an efficient, robust, and concep-
tually simple image analysis strategy based on the Deep Co-
sine Metric Learning paradigm that allows to estimate phe-
notypical similarities across different imaging modalities.
We experimentally demonstrate the benefits of our pipeline
in the tasks of estimating dose-response curves over a wide
range of subtle phenotypical variations. Last, we showcase
how our learned metrics can group image samples accord-
ing to different modes of action and biological targets in an
interpretable manner.

1. Introduction

Pathogenic fungi are known to be the dominant cause

of plant diseases and incur paramount economical damages

to commodity crops [10]. Hence, crop protection strate-

gies aim to discover relevant fungicides to prevent these, by

leveraging findings pertaining to various scientific domains

such as biology, chemistry, and genetics, to name a few [8].

In this context, a past contribution combined microscopy

imaging with computer vision and machine learning tech-

niques, and showed that compound treatments can induce

distinctive phenotypical changes to a filamentous fungi,

which in turn are crucial information that allow to raise a

well-informed hypothesis on the possible biological targets

of a compound [18].

In parallel, an emerging multiplex microscopy imag-

ing technique called cell painting has recently gained

traction[3]. At its core, cell painting consists in adding, as

part of a plate assay, fluorescent dyes known to bind to spe-

cific extra and intra-cellular compartments, while appropri-

ate filters are setup in a microscope to separate the fluores-

cent emissions at different wavelengths. As a result, one

obtains for each filter an additional image-channel. Setting

up a painting protocol requires the careful optimization of

many parameters: to name a few, the selection of labelling

reagents able to penetrate the fungal wall, the type of dyes,

their combinations and concentrations, and the selection of

agents used to wash plates [6].

In the present work, we apply the cell painting proto-

col to the filamentous fungus model Botrytis cinerea [1],

a widespread plant pathogen, through an adequate staining

protocol, which, to the best of our knowledge, has not been

done in the past. We further devise an appropriate com-

puter vision and machine learning strategy to investigate

specific intra-cellular morphological impacts of compound

treatments. In particular, we contribute a simple yet effec-

tive solution based on Deep Cosine Metric Learning that

allows to (1) infer measures of biological activity of com-

pound treatments by means of dose-response curves, as well

as (2) gain insights into the biological targets of a treatment

through cluster analysis. Importantly, we put an emphasis

on producing results that are easy to interpret by domain-

experts. In particular, we learn a set of metrics-spaces that

correspond to biologically meaningful categories, each fo-

cusing on one intra-cellular component (lipid droplets, cell

wall, ...) or whole-cell morphology (type of germination).

The present work is organized as follows. In the related

works section, we give an overview of past contributions re-

lated to computer vision and machine learning methodolo-

gies that target compound treatment characterization using

cell painting image data. In the methods section, we briefly

describe our imaging protocol, and develop our machine

learning solution. We then lead in-silico experiments where

we compare the proposed method with baseline methods for

dose-response curve estimation and cluster analysis.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Related Works

Imaging has been used extensively across many scien-

tific disciplines, and in particular in biology, as a mean to

identify relevant phenotypes of organisms [13]. A popular

approach consists in extracting a morphological profile on

each imaged cell, i.e. a set of pre-defined visual features

assumed to be informative for downstream tasks[29].

A popular choice in this context is Cell-Profiler, a feature

extraction framework that allows to extract visual features

specifically targeted to cellular microscopy images of mam-

malian cells [3] Previous works have leveraged this frame-

work in the frame of cell painting plate assays to extract

1500 features per imaged cell [21, 17], and effectively use

these to identify genetic perturbations and predict modes of

action (MoA)[14]. Despite being a potent approach in the

latter context, this pipeline assumes that the object of in-

terest, i.e. cells, form well defined blobs. This assumption

is largely inadequate in the context of filamentous fungi,

where the object of interest is much more complex and im-

portantly, not compact.

Fortunately, more robust and flexible alternatives exist,

namely those relying on Deep Convolutional Neural Net-

works (CNN)[5]. In particular, models relying on CNNs

typically take as input the entire image and produce relevant

outputs (features, predictions, ...) through the optimization

of an objective function. Importantly, these models implic-

itly learn to detect objects of interest within an image, and

aggregate relevant features at different scales [28]. In the

context of cell painting imaging, [4] leverages a CNN to

extract features using morphological and phenotypical sim-

ilarities of lung tissues that correspond to the same treat-

ment, while as a downstream task, authors group variants

of the same gene while discarding its mutations. In [14],

authors provide a comparative benchmark of feature extrac-

tion methods applied to the prediction of chemical pertur-

bations from treated mammalian cells. In particular, their

experiments show that methods relying on Cell-Profiler fea-

tures can be surpassed on these tasks through deep net-

work models, while bypassing the cumbersome segmenta-

tion step.

3. Methods

We start this section by giving a brief description of

the cell painting protocol used throughout our experiments.

Next, we describe our exploration and annotation proce-

dure, by which a domain-expert selects among a wide range

of images a set of representative samples that show bio-

logically relevant phenotypes. We then describe our strat-

egy based on deep cosine metric learning, where we train a

model that learns a set of metric spaces, where each space

effectively clusters a given biologically relevant category of

phenotypes, while each cluster represents a distinct pheno-

type. Last, we emphasize how the cosine softmax train-

ing paradigm, by design, provides a distance measure ap-

plicable to dose-response estimation. We show in Fig. 1 an

overview of our pipeline.

3.1. Imaging protocol, exploration, and annotation
procedure

We implement a cell painting protocol for the filamen-

tous fungus Botrytis cinerea, and select 3 fluorescent dyes:

Nile Red, Calcofluor (CFW), and Wheat Germ Agglutinin

(WGA) to stain lipids [23], cell wall, and apical cell wall

[16], respectively. We give further technical details in Tab.

1. As microscope, we use a MicroXL (Molecular Devices)

with magnification 40x, which provides on each imaged lo-

cation a field of view of 350× 350μm.

In order to explore and capture a broad variety of pheno-

types on our filamentous fungus model, we expose it to 24
different compound treatments as well as negative control

conditions (DMSO) on 5 plate assays, each containing 96
wells, so as to obtain∼ 13800 images. The compounds and

their concentrations were selected by domain experts so as

to cover representative MoAs and targets described by the

Fungicide Resistance Action Committee (FRAC) [9]. Af-

ter visual inspection, we retain ∼ 8380 images across all

modalities. Next, we assign a label to each phenotype and

group them into categories to obtain 7, 6, 4, and 7 pheno-

types for category lipid, cell wall, apical cell wall, and mor-

phology, respectively1.

We show in Fig. 2 a subset of images from our training

dataset along with a code-name, and give textual descrip-

tions of corresponding phenotypes in Tab. 2.

3.2. Deep Cosine Metric Learning (DCML)

We now develop our proposed deep cosine metric learn-

ing method, which we name DCML, and emphasize its pec-

ularities and relevance for the practical problems tackled in

this work.

Let C = {ck|k = 0, . . . ,K−1} a set of K phenotypical

categories, and Yk = {ylk|l = 0, . . . , Lk − 1} a set of Lk
labels denoting distinct phenotypes that lie in category ck.

Next, let h = gψk
◦ fθ(I) ∈ R

D an embedding obtained by

successively passing image I in a feature-extraction func-

tion fθ, followed by gψk
, which further transforms the fea-

ture vector into a category-specific embedding that encodes

distances. Last, we look to obtain for each phenotypical cat-

egory ck a bounded distance function dk(hi,hj), that takes

values 0 when hi and hj correspond to two images that

show identical phenotypes, and 1 otherwise. The bound-

edness criteria, as will be shown in our experiments, is of

practical interest when inferring dose-response curves.

1For reproducibility, we make our dataset and code publicly available

at https://doi.org/10.5281/zenodo.8227399.
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Figure 1. Overview of our contributions. (A) We implement a cell painting imaging protocol adequate to a filamentous fungus so as to

capture microscopy images of different intra-cellular components not observable with traditional microscopy. (B) We acquire, for different

compounds and doses, images on 3 fluorescent image channels, each emphasizing a specific component, i.e. lipids, cell wall, and apical cell

wall. (C) A domain-expert explores images and provides qualitative labels on each modality, where labels correspond to phenotypes of an

intra-cellular component, or a global morphological configuration. All phenotypes are organized in biologically meaningful categories (D)

We optimize a supervised metric learning model that clusters phenotypes in each category independently. (E) We test different compounds

at increasing concentrations and estimate, for each category, a dose-response curve. (F) We identify biologically active samples from the

previous phase, and leverage the same model to perform a cluster analysis according to biological targets.

Dye Reference Excitation [nm] Emission [nm] Exposition [ms] Concentration [μg/ml]

Nile Red Sigma 19123 530 635 30 5

CFW Sigma 3543 380 475 50 6

WGA Invitrogen W11261 488 549 50 0.5

Table 1. Set of dyes used in our cell painting protocol.

Taking inspiration from [27], we solve the above metric-

learning problem through the cosine softmax classifier ap-

proach. For conciseness, we give here a brief overview of

the theoretical development, and refer interested readers to

the original work.

Without loss of generality, we omit index k for the re-

maining of this section. In a standard softmax classification

setting, one typically obtains probability scores for each

class by applying a linear transformation parameterized by

weights ω and offset b via

p(y = l|ω,h) =
exp(ωTl h+ bl)∑L−1
n=0 exp(ω

T
nh+ bn)

(1)

Interestingly, Eq. 1 corresponds to the posterior proba-

bility function of Gaussian densitiesN (μl,Σ), where ωl =
Σ−1μl, and bl = − 1

2μ
T
l Σ

−1μl [2].

Next, the parameterized encoder and linear layer are op-

timized by means of the cross-entropy loss:

L =

N−1∑

i=0

L−1∑

l=0

1yi=l · log [p(yi = l|hi)] (2)

As noted in [27], a softmax classifier optimizes for Eq. 2

in a discriminative fashion, i.e. it aims at bringing the pos-

terior p(y = l|h) as close as possible to the corresponding

indicator function. Importantly, it does so by pushing em-

beddings h away from the decision boundaries bl, but not
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Figure 2. Example cell painting images. Each row correspond to a phenotypical category, while columns correspond to phenotypes. Scale-

bar: 70μm.

necessarily closer to their class centroids.

To circumvent this limitation, the cosine softmax clas-

sifier framework explicitly optimizes for class-centroids

and embeddings in a joint manner. Concretely, the class-

centroids and embeddings are �2 -normalized, i.e. ω̃l =
ωl

||ωl||2 , ∀l, and h̃ = h
||h||2 . Finally, the cosine softmax clas-

sifier output probabilities are

p(y = l|h̃, ω̃) =
exp(κl · ω̃Tl h̃)∑L−1
n=0 exp(κl · ω̃Tn h̃)

(3)

where κl is a scaling parameter. Similar to the stan-

dard softmax classification setting, we perform optimiza-

tion using the cross-entropy loss (Eq. 2). Through a sim-

ple change of parameters and normalization, one can show

through Baye’s rule that we explicitly enforce that the class-

conditionals follow a von Mises distribution [19] centered

on class centroids, i.e.

p(h|y = l) =
exp(κl · ω̃lT h̃)

2πI0(κl)
(4)

with I0 the modified Bessel function of the first kind of

order 0. In words, the probability density in Eq. 4 peaks at

h̃ = ω̃l, while the scaling parameter κl governs the rate of

decay.

To summarize, through the cosine softmax classification

framework, we optimize for embeddings that are appropri-

ate for pairwise similarity measurements because embed-

dings form compact clusters around their class centroids,

while class centroids are pushed away from each other so

as to spread on the unit-sphere.

3.2.1 Calibration, Dose-Response Curve Estimation,
and Monotonicity Constraint

In the context of dose-response estimation, we wish to

infer, given a test and a negative-control population, an

interpretable measure of perturbation. By convention, a

response-level of 0 corresponds to a compound that induces

no perturbation, while a response-level of 1 corresponds to

a condition where the cell incurs maximal perturbation. We

now suggest a simple calibration step to convert cosine sim-
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Category Dye/Modality Phenotype

Code Description

Lipid Nile-Red

LDdroplets Sharp and granular lipid droplets

LDnone Homogeneous staining within spores and hyphae

LDlarge Large lipid droplets

LDhyph Homogeneous staining within spores, large blobs in hyphae

Cell wall
Calcofluor

(CFW)

CWsepta Sharp and granular staining at Septa and Apex

CWclust Diffuse and intense signal

CWswell Swelling patterns

Apical cell

wall

Wheat Germ

Agglutinin (WGA)

ACWapex Sharp staining at apex

ACWext Spatially extended stainings

Morphology Transmitted Light

FullGerm Full germination of mycelium

GermNone No germination

GermEntangled Entangled hyphae

GermAgglo Agglomerate of spores

Table 2. Description of a subset of annotated phenotypes for each category.

Figure 3. Cosine similarity distributions of similar and dissimi-

lar image-pairs taken from a validation set on each category. The

black and green vertical lines are the maximum peak and the mean,

respectively.

ilarity scores to interpretable response-levels.

From our validation set, we estimate parameters αk, each

corresponding to the expected cosine of dissimilar pairs for

category k. While an intuitive approach would be to select

these as the arithmetic mean of cosine similarities of dissim-

ilar pairs, we observed that the empirical distributions often

exhibit a skew, and rather chose the value that maximizes

the latter (see Fig. 3).

Next, we define our bounded category-specific distance

function as

dk(h̃i, h̃j) = 1− max{αk, h̃ih̃Tj } − αk

1− αk
(5)

We letH andH0 two sets of embeddings that correspond

to the test condition and the negative-control condition

image-sets, respectively. Finally, we obtain the response-

level rk according to category k by averaging distances on

all pairs of embeddings inH×H0, i.e.

rk(H,H0) =

∑
h̃∈H

∑
h̃0∈H0

dk(h̃, h̃0)

|H| · |H0| (6)

Figure 4. Example dose-response curve where isotonic regression

is applied.

Following guidelines provided by domain-experts, we

further add a post-processing step that explicitly enforces

an increasing monotonicity constraint on the dose-response

curve. Recall that by design, our metric learning approach
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learns to separate each pair of phenotypes with an equal dis-

tance. This proves to be problematic in a dose-response esti-

mation context as in practice, our fungus can manifest more

than two phenotypes along the dose gradient, thereby lead-

ing to oscillations. To circumvent this artefact, we leverage

the Isotonic Regression technique using the Pool Adjacent

Violators algorithm [7], which performs a least-squares fit

while imposing a monotonicity constraint. We show an ex-

ample curve that violates the latter constraint and its cor-

rected version in Fig. 4.

3.2.2 Network architecture and Implementation

For the feature extraction function fθ, we leverage the

popular ResNet50 architecture [11] for all image modal-

ities. Next, each category-specific module gψk
is of the

form (BatchNorm, Dense(D, 256), ReLU, Dense(256, 256),

ReLU, Dense(256, 128)), where BatchNorm is a batch nor-

malization layer [12], ReLU is a rectifier linear unit activa-

tion function, and Dense(M,N) is a dense layer of input and

output size M and N, respectively.

A specificity of cell painting image data is that intensity

distributions show important discrepancies across different

conditions, i.e. some conditions induce very strong fluores-

cence responses, while others, conversely, induce very weak

responses. This scenario has shown to be problematic in the

training phase, by bringing strong biases to samples of high

intensities and thereby generating noisy gradients. We cir-

cumvent this issue by applying Adaptive Histogram Equal-

ization [20] on each image to bring intensity distributions to

the same range before feeding the image in the feature ex-

traction backbone. Next, as the latter step discards biolog-

ically relevant information, we compute intensity statistics

on each original image and use these further down in our

pipeline. In particular, we concatenate global image statis-

tics at the bottleneck level. As statistics, we use the 10-th

and 90-th percentiles, the minimum and maximum inten-

sity, and the standard deviation on all pixel values. Last, the

scaling parameters κl are learned jointly using the output of

fθ through a dense layer.

3.2.3 Training Procedure

We train the feature extraction backbone, the category-

specific dense modules, the phenotypic-specific centroids,

and the scaling parameters in an end-to-end fashion through

stochastic gradient descent using the Adam optimizer [15].

At each iteration, we build a batch of 16 images from

our training set, and perform mean-aggregation of cross-

entropy losses on each category modules. To account for

imbalance in the number of images per phenotype, we sam-

ple a batch using weighted random sampling, i.e. scarcer

phenotypes are sampled more often. As data augmentation,

we select horizontal and vertical mirroring, as well as rota-

tions in {90, 180, 270} degrees.

We train for 150 epochs with 200 iterations each. Due

to memory constraint, we resize the input images from

2160×2160 to 512×512. The learning rate is initialized to

10e−4 and reduced to 10e−5 after 100 epochs. For valida-

tion, we retain 30% of images for each phenotype and com-

pute on each category the balanced accuracy score using Eq.

3 after every epoch, and select the model that maximizes the

average score on all categories.

4. Experiments
4.1. Baselines

4.1.1 Fungi-Profiler: Hand-crafted Feature Extractor

Following the state-of-the-art in profiling of cell painting

image data, we implement a feature extraction pipeline in-

spired by Cell-Profiler [25]. While the latter is designed for

images of mammalian cells, where cells are well-defined

and compact regions, we showed on Fig. 2 that filamentous

fungi are quite different in nature, as the object of inter-

est is generally non-compact following mycelium germina-

tion. This therefore prohibits the use of Cell-Profiler since

it relies on a segmentation step that isolates individual cells

prior to computing features.

We rather implement our own handcrafted feature ex-

traction pipeline and name it Fungi-Profiler. As segmenta-

tion step, we perform a serie of edge-detection and morpho-

logical operations to isolate both spores and mycelium from

the background. Next, we compute ∼ 210 features on each

image. These are selected to encode, among others, general

morphological properties, texture patterns at varying spatial

scale, pixel intensity distributions, as well as cross-channel

correlation information.

Finally, we implement a metric learning model similar

to DCML, by replacing the deep feature extraction back-

bone with Fungi-Profiler features, and name it FPCML.

The training procedure, calibration, and hyper-parameter

selection are identical to DCML.

4.1.2 Growth-Inhibition: Dose-response using Fungal
Growth

Inspired by [24], we implement a simple baseline for dose-

response estimation that relies on fungal growth. In this

approach, we assume that a biologically active compound

inhibits the fungal growth, i.e. decreases the fungal mass

as compared to a negative control condition, where spores

germinate normally so as to form a mycelium.

Thus, we use our training set to compute m0 and m1, the

average fungal masses that correspond to full growth (phe-

notype FullGerm) and no growth (phenotype GermNone),

respectively, by using the same segmentation procedure
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used in Fungi-Profiler. We then optimize a linear interpola-

tion model to map m0 to 0, and m1 to 1.

4.2. Test Dataset

We acquire cell painting image data on filamentous fungi

Botrytis cinerea using 19 compound-treatments spanning

15 different biological targets, all pertaining to modes of ac-

tions described by the FRAC [9] through 2 plates (96 wells,

8 rows, 12 columns). Each compound is tested at 6 con-

centration values: 0.41 to 100μM in a dose-response range

(dilution step 1/4), and images are acquired after a 24 hrs

incubation time. To each plate, we further add a half row (6
wells) of negative-controls. We configure our microscope

to capture 6 sites per well, i.e. non-overlapping regions.

4.3. Dose-response Curve Estimation

We now assess the performance of our metric learn-

ing methods in the context of dose-response curve estima-

tion. Groundtruth impact-levels were assessed by a do-

main expert following visual inspection of image data. For

practical reasons, we constrain values within the finite set

[0, 0.25, 0.50, 0.75, 1], where 0 means no impact, and 1
means that the observed phenotype is similar to an anno-

tated phenotype.

We use as performance metric the Mean Absolute Er-

ror (MAE) over the whole range of tested concentrations,

and report that our best performing method, DCML, gives,

averaged on all tested compounds, an MAE of 0.22, 0.24,

0.12, and 0.11 on apical cell wall, cell wall, lipid, and mor-

phology, respectively. Next, we report substantial improve-

ments w.r.t. FPCML on all categories, with a 19%, 35%,

14%, and 7% improvement on apical cell wall, cell wall,

lipid, and morphology, respectively. Also, looking at the

standard deviation of the MAE over all compounds, we note

that method DCML provides much more robust estimates

compared to baseline methods.

Concerning the growth-inhibition baseline, we note that

it performs much worse than other methods overall, with

an average MAE of 0.19, and in particular for conditions

where the morphological impact is largely independent on

the fungal mass, e.g. GermAgglo.

Finally, we show in Fig. 5, a subset of dose-response

curves on all categories with associated groundtruths on all

phenotypical categories.

4.4. Interpretable Cluster Analysis for Target Iden-
tification

Cluster analysis is a popular approach by which domain-

experts look to test hypotheses regarding a new sample pop-

ulation by leveraging pairwise similarities with respect to

another. In this section, we demonstrate the relevance of

the proposed metric learning approach in this context. Re-

call that by design, our model learns metric-spaces specif-

Cell wall Lipid
Apical cell

wall
Morphology DCML FPCML

-0.05 -0.02

0.00 0.10

0.20 0.10

0.23 0.06

0.07 0.05

0.03 0.01

0.25 0.12

0.22 0.09

Table 3. Silhouette scores of clustering w.r.t. biological targets

for different combinations of phenotypical categories

ically tailored to cluster phenotypes across different cate-

gories in an independent manner. Furthermore, given two

populations of different compound and/or concentrations,

similarities can be computed by combining distances per-

taining to different phenotypical categories. Concretely, we

leverage calibrated distances obtained with Eq. 5 and ag-

gregate these using the mean operator to obtain a composite

similarity metric.

We first select among all conditions of our test dataset

(Sec. 4.2) those that are biologically active. Concretely, we

leverage our dose-response estimations and pick conditions

such that its response is above 0.75 according to at least one

category. Next, we give in Fig. 6 visualization maps ob-

tained through the t-SNE method [26] using pairwise dis-

tances obtained with Eq. 5. This analysis demonstrates

the added value of our framework, and in particular how

the phenotypes captured using the cell painting protocol are

useful to separate many biological targets and modes of ac-

tion, many of which are hardly separated using traditional

microscopy. Last, we perform an ablation study where we

quantify the clustering consistency on the same dataset us-

ing different combinations of categories. Concretely, we

label each image-stack using the corresponding biological

target or modes of action, and compute the mean silhouette

scores over all image-stacks [22]. We report results using

methods DCML and FPCML in Tab. 3.

Our best results are obtained using method DCML, fur-

ther emphasizing the superiority of CNNs over hand-crafted

features (FPCML). Also, we confirm the intuitions ob-

tained in the previous experiments by noting a drastic in-

crease in biological target clustering consistency when com-

bining traditional microscopy with cell painting. In particu-

lar, we improve the silhouette score from −0.05 (morphol-

ogy category only) to 0.25 (morphology, cell wall, and lipid

categories). Interestingly, we note a decrease of consistency

when combining both cell wall and apical cell wall cate-

gories, compared to using only one of them.

Finally, we note that among all available intra-cellular

501



Figure 5. Example Dose-response curves on all phenotypical categories. We show estimates obtained with the proposed DCML method

and the corresponding groundtruth values. Shaded regions correspond to the 95-th confidence interval on the mean.

Figure 6. T-SNE visualization with different combinations of phenotypical categories. (Left) Pairwise distances using “Morphology”

category. (Right) Pairwise distances obtained by mean-aggregation across all phenotypical categories. In the legend, colors indicate modes

of action or biological target (when applicable), while symbols indicate compounds. Compound DMSO denotes negative controls.

phenotypes, the lipid category is the most discriminative,

followed by cell wall.

5. Conclusions
We contributed a framework that leverages cell paint-

ing image data, along with a Deep Cosine Metric Learning

model to characterize the biological impact of compound

treatments on filamentous fungi. Through a principled data

exploration and annotation of phenotypes, we learned a set

of metrics that allow to measure phenotypical transforma-

tions.

The proposed framework showed promising results in

the task of estimating dose-response curves across a broad

variety of phenotypes, both at a whole-cell and intra-cellular

level. Furthermore, we showed that the learned metrics

can be used to produce separable and combinable distances,

thereby allowing domain experts to assess the importance of

each phenotypical category in a cluster analysis setting, and

gain precious insights into the biological impacts of com-

pounds under test.

We further emphasize that even though machine learn-

ing models often exhibit performance levels on-par with

humans, this frequently overshadows the problem of inter-

pretability, where the model outputs arise from complex un-

derlying operations that are hard, if not impossible, to un-

derstand, both for machine learning practitioner and domain

experts. We believe that the proposed framework, to some

extent, circumvents these limitations by providing distances

that are easy to interpret.

As future perspectives, we aim to extend the current pro-

tocol to include additional fluorescent dyes, which, coupled

with relevant phenotypical annotations, could potentially

improve the understanding of fungi to compound treatments

interactions.
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