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Abstract

This paper investigates the problem of class-incremental
object detection for agricultural applications where a model
needs to learn new plant species and diseases incremen-
tally without forgetting the previously learned ones. We
adapt two public datasets to include new categories over
time, simulating a more realistic and dynamic scenario. We
then compare three class-incremental learning methods that
leverage different forms of knowledge distillation to miti-
gate catastrophic forgetting. Our experiments show that
all three methods suffer from catastrophic forgetting, but
the Dynamic Y-KD approach, which additionally uses a dy-
namic architecture that grows new branches to learn new
tasks, outperforms ILOD and Faster-ILOD in most settings
both on new and old classes.

These results highlight the challenges and opportunities
of continual object detection for agricultural applications.
In particular, we hypothesize that the large intra-class and
small inter-class variability that is typical of plant images
exacerbate the difficulty of learning new categories without
interfering with previous knowledge. We publicly release
our code to encourage future work. 1

1. Introduction
Agriculture is a fundamental sector of the global econ-

omy, and its importance will only increase as the world’s

population is expected to reach 9.7 billion by 2050 [10].

With a projected 70% increase in demand for food produc-

tion, precision agriculture practices are gaining increasing

attention to improve productivity by acting at a more re-

fined scale [45]. The advent of precision agriculture tools

and new technologies has enabled the gathering and anal-

ysis of large quantities of data with higher spatio-temporal

resolution. Among these advances, computer vision has an

important role in remote and proximal sensing by providing

1https://github.com/DynYKD/
Continual-Plant-Detection

tools to process complex images [8, 32].

Remote sensing methods, which include the analysis of

data collected from drones, planes and satellites, have many

applications for plant health and growth monitoring [39],

yield size and quality estimation [50], decision support sys-

tems for irrigation or soil management [16], large-scale

phenotyping [25], and others. Similarly, proximal sensing

methods with personal cameras or cameras mounted on ve-

hicles can be used for insect and pest detection [30], robotic-

assisted weed removal or spraying [55], and more.

For many of these applications, object detection plays a

crucial role in identifying the location of target instances

in images, such as individual plants, weeds or insects.

To solve this task, deep learning approaches have gained

widespread popularity, especially Convolution Neural Net-

works (CNN), due to their superior performance and ability

to extract relevant features directly from image data [27].

However, deep learning approaches generally assume

that the training dataset is static, such that training can be

performed in one step before deployment. This scenario

faces limitations in dynamic environments [22] typical of

agriculture (see Fig. 1). For instance, in the context of crop

health monitoring, new diseases or new weed species can

emerge on farms by means of contaminated crop seeds [36]

or invasive weed species [44], inducing a necessity to up-

date existing models to recognize new categories. However,

incrementing deep learning models with such new classes is

still a challenging task as these models are prone to catas-

trophic forgetting [34]. They tend to erase previous knowl-

edge while learning new classes.

While this problem is actively studied for image clas-

sification [9], class-incremental object detection is far less

explored [35]. Furthermore, previous work has mostly been

done on benchmark datasets such as COCO [28] or Pascal-

VOC [13]. Very few work addressed the challenges of class-

incremental learning in agriculture [3, 37, 24]. For instance,

the large intra-class and small inter-class variability that is

characteristic of agricultural imagery (e.g. see Fig. 2 and

Fig. 3) might increase catastrophic forgetting as new knowl-

edge interferes with previously learned features. Moreover,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Motivating example of continual learning in agricultural contexts. Initially at T1, a detection model is trained to identify a

particular species of plant and is subsequently deployed in the field for this purpose. Later at T2, two new weed species emerge in the field.

The user intends for the model to accurately detect these additional species as well. To achieve this, the model is incremented exclusively

with training examples of these newly emerged weeds and redeployed to detect all three plant varieties.

as the annotation of data often requires specialists, the high

cost of data acquisition can result in fewer training exam-

ples [4]. Consequently, incremental methods should exhibit

high plasticity to efficiently learn from few data. On the

other hand, increased plasticity generally conflicts with sta-

bility, such that forgetting can be exacerbated.

In this paper, we study class-incremental object detec-

tion on two agricultural datasets. To the best of our knowl-

edge, we are the first to tackle such problem explicitly on

agricultural imagery. We adapt two public datasets to simu-

late class-incremental learning scenarios: 1) the Strawberry

Disease Detection Dataset [2] which is composed of 2,500

images showing seven categories of diseases, and 2) the

Open Plant Phenotyping Database [21], a large dataset of

plant seedlings from 47 different species. We divide the

classes in distinct sets and the models have to learn them

successively. We publicly release the code that adapts both

datasets to class-incremental learning scenarios to encour-

age future research.

We compare three continual learning approaches that

rely on different forms of knowledge distillation (KD) [15],

a popular regularization strategy that uses the outputs of

the previous model to transfer its knowledge to the learn-

ing model. Forgetting is thereby reduced as it constrains

the new model from diverging significantly from its pre-

vious state. The first approach, ILOD [47], uses KD by

forcing the new model to give scores and boxes of previous

classes that are similar to the ones given by the previous

model. The second, Faster-ILOD [40], includes additional

KD losses to further guide the new model in preserving past

activations while learning new categories. Finally, Dynamic

Y-KD [38] is a hybrid approach that has been proposed re-

cently. It combines a new form of KD that improves the

learning of new categories with a dynamic architecture that

grows additional feature extractors for each new task. By

using class-specific feature extractors to recognize previous

categories, catastrophic forgetting has been shown to be sig-

nificantly reduced.

We perform extensive experiments on the Strawberry

Disease Detection Dataset and the Open Plant Phenotyping

Database, and we show that while ILOD and Faster-ILOD

performs comparatively, Dynamic Y-KD significantly out-

performs both of them on new classes while reducing for-

getting in most scenarios. However, Dynamic Y-KD incurs

higher memory and computational costs at inference, which

can be an issue if real-time inference is critical.

In summary, our contributions are as follows:

• We adapt two datasets of agricultural imagery to study

the task of class-incremental object detection. To our

knowledge, these are the first public datasets for con-

tinual learning of tasks related to agriculture. We pub-

licly release the code to generate the same splits for

reproducibility and to encourage future work.

• We compare three continual learning approaches of

object detection that exploit knowledge distillation and

a dynamic architecture. Notably, we show that the re-

cent Dynamic Y-KD generally outperforms ILOD and

Faster-ILOD at a cost of increased computation.

• We perform extensive experiments on various class-

incremental scenarios on both datasets. Our results re-

veal that continual learning is especially challenging

on agricultural data, most likely because of the high

intra-class and low inter-class variability.
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2. Related work
2.1. Object Detection in Agriculture

Object detection is a fundamental task for several appli-

cations in agriculture, including pest detection [12, 29, 53],

automatic weed spraying [14, 43, 1, 19], harvesting [56],

yield estimation [18, 49, 20], crop health and growth moni-

toring [48, 57, 7], and more.

Agricultural contexts exhibit specific challenges that

complicate the application of computer vision techniques.

For instance, real-time inference can be required for robotic

solutions [52, 41, 59]. The objects of interest (e.g. fruits)

can also be small and occluded [54], have irregular and

varying shapes [31] and can appear under different lighting

conditions [58]. Furthermore, acquiring and labelling data

to train deep learning models is especially costly in agricul-

ture as it can require field experts, for instance to annotate

specific diseases and weed species.

Several deep learning models have been proposed to

tackle these challenges. For instance, [54] compared three

models with regard to their ability to handle images with

large numbers of fruits and flowers of varying sizes. The

authors of [31] proposed an attention mechanism that pro-

cesses features from multiple resolutions and the use of

Atrous Spatial Pyramid Pooling to improve the detection

of occluded or small leaves. Regarding the high cost of data

annotation, an active learning strategy was proposed in [4]

to only label the most informative images.

However, differently from previous lines of work that

aimed to improve accuracy on challenging images, this pa-

per tackles the problem of continual learning on agricultural

images.

2.2. Continual Learning

While the challenges above have been addressed in pre-

vious work, it is generally assumed that the environment

is static, such that object detector models can be trained in

one step and deployed afterward. Very few work considered

the challenges that arise due to the dynamic nature of agri-

cultural environments, such as the emergence of new ob-

ject categories. For instance, new pests, diseases or weed

species can emerge on farms by means of contaminated

crop seeds [36] or invasive weed species [44]. Effective

computer vision solutions should therefore be able to be in-

cremented with new data easily. However, deep learning

models are prone to catastrophic forgetting, making their

adaptation to new classes while preserving previous knowl-

edge especially challenging.

To mitigate catastrophic forgetting, continual learning

solutions generally employ rehearsal [46, 51, 33], regu-

larization losses [17, 26, 11, 38], or dynamic architec-

tures [38, 23]. Rehearsal consists of replaying past data

in training batches while learning new classes, thereby re-

ducing the drift towards new classes. Regularization-based

approaches constrain the weights of the learning model

to limit knowledge loss. Finally, dynamic architectures

keep specific weights for each set of classes and grow new

branches to accumulate new knowledge. For a recent and

detailed review on continual object detection, please refer

to [35].

Previous work on continual learning in the context of

agricultural applications explored the task of plant disease

classification [24, 3, 37], mainly using rehearsal strategies.

For instance, [24] uses a Generative adversarial network to

generate abstract representations of previous classes to store

them in memory and mixes them with new classes. In [3],

raw images of previous tasks are stored and used after incre-

mental learning to correct the bias towards new classes with

a linear layer. Finally, [37] employs rehearsal and ensures

that diversity of old data is preserved to limit forgetting.

To our knowledge, regularization strategies and dynamic

architectures have not been explored for continual learn-

ing to solve tasks related to agriculture. Furthermore, the

problem of class-incremental object detection has not been

studied on agricultural images in previous work. Therefore,

this paper contributes to continual learning in agriculture by

comparing three object detection approaches using knowl-

edge distillation and dynamic architectures.

3. Materials and Methods
In this section, we begin by formulating the problem of

continual object detection in the context of agricultural ap-

plications. Next, we describe the two agricultural datasets

that we used to experiment class-incremental plant and dis-

ease detection, and we summarize how we adapted them to

simulate incremental learning. We then introduce the three

methods that we compared, namely ILOD [47], Faster-

ILOD [40] and Dynamic Y-KD [38].

3.1. Continual Object Detection in Agriculture

Continual object detection aims to increment a

model fθt−1 that can detect objects of classes C0:t−1 to a

model fθt that can detect new classes Ct in addition to pre-

vious classes C0:t−1. At any step t, we are given a labelled

training dataset Dt composed of images Xt with annota-

tions Y t showing examples of current classes Ct. For ob-

ject detection, the annotations Y t are the bounding boxes

and classes of the items on each image. However, the es-

tablished continual learning setup [47, 6, 38] generally as-

sumes that at any given step, training data are available

for current classes exclusively, while previous and future

classes are either unlabeled or unavailable. We also adopt

this experimental setup in this work.

In the context of agricultural applications, such a con-

tinual learning scenario captures a situation where an ob-

ject detection model fθt−1 has been trained and deployed
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1) Angular leafspot 2) Anthracnose fruit 
     rot

3) Blossom blight 4) Gray mold 5) Leaf spot 6) Powdery mildew
      fruit

7) Powdery mildew
      leaf

Figure 2: Strawberry Disease Detection Dataset [2]. Examples of images and annotations for the seven categories of diseases.

to solve a given task, detecting objects (e.g. weeds, dis-

eases) from certain classes C0:t−1 in the field (see Fig. 1).

However, as the environment is dynamic, new categories Ct

might emerge at a time t, inducing the necessity to update

the detection model. After a dataset Dt of new classes Ct

has been acquired and labeled, the model fθt−1 is incre-

mented to fθt . This new model can then be redeployed on

the field, having acquired the ability to detect new classes

accurately in addition to previous ones. This scenario can

repeat for multiple steps if new categories emerge in the fu-

ture again.

3.2. Datasets

We adapt two public datasets to simulate incremental

learning scenarios following the established experimental

setups of class-incremental learning [47]. An incremental

learning scenario is defined by b − n, where b represents

the number of base categories learned initially, and n is the

number of new classes added in subsequent steps until all

classes from the dataset are learned.

As an example on the Strawberry Disease Detection

Dataset [2], a scenario denoted by 3-2 designates that the

models are trained on categories 1-3 in a first step, then they

are incremented exclusively on classes 4-5, and finally they

are trained exclusively on classes 6-7 to reach the total of 7
categories of diseases. At the end, model performances are

evaluated on the test set composed of all classes 1-7.

Following the experimental setup established to adapt

benchmark datasets such as Pascal-VOC, the classes are

simply sorted in alphabetical order. The images from each

dataset are split into train and test sets. However, at each in-

cremental step t, we only have access to the training set Dt.

Strawberry Disease Detection Dataset (SDDD). The

SDDD [2] is composed of 2,500 images showing seven

types of strawberry diseases. Figure 2 illustrates an example

of each class. Notice that diseases can be observed either

on leaves, flowers or fruits. All images have been acquired

with mobile phones and have been resized to a resolution

of 419 × 419. This dataset is relatively small for the task,

which is a common challenge of public datasets of agricul-

tural imagery [32]. For this reason, the authors of SDDD [2]

explored various data augmentation techniques and found

that some operations could slightly improve the results over

a baseline. For simplicity, in this paper we did not apply

such technique but future work should explore the contribu-

tion of data augmentation in incremental learning settings.

Open Plant Phenotyping Database (OPPD). The

OPPD [21] regroups 7,590 images of 47 plant species.

Each image captures a grow box viewed from the top in

which several plants of the same species grow, making

a total of 315,041 plant entities. The images have been

acquired throughout the whole life cycle of the plants,

such that intra-class variability is high while the inter-class

variability can be quite small, especially in early stages of

development (see Fig. 3).

3.3. Methods

In this work, we compare three approaches to tackle con-

tinual object detection. We begin by summarizing the Faster

R-CNN model [42] since all three approaches build on this

architecture. Then, we explain ILOD [47] and Faster-ILOD

[40], two methods that exclusively rely on knowledge dis-

tillation (KD) [15] to prevent catastrophic forgetting. We

summarize the recent Dynamic Y-KD network [38] that

uses an hybrid approach between KD and a dynamic archi-

tecture.

3.3.1 Faster R-CNN

In the context of continual learning, Faster R-CNN [42]

is made of a backbone FB
θt , a region proposal net-

work (RPN) FRPN
θt and a box head Fbox

θt . Specifically,

input images Xt are fed to the backbone to give feature

maps X̂t. These features maps are then processed by the

RPN which proposes several regions of interests (RoIs)

with corresponding objectness scores. The box head subse-

quently classifies each RoI and the coordinates of bounding

boxes are regressed.

The supervised loss used to train Faster R-CNN is the

sum of classification and regression losses on the RPN and

the box head. Following the formulation of [5], we define

the loss of Faster R-CNN as follows:

Lfaster = LRPN
cls + LRPN

reg + Lbox
cls + Lbox

reg , (1)
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Figure 3: Open Plant Phenotyping Database [21]. Three examples of two classes and their annotations are shown to highlight the large

intra-class variability and small inter-class variability that are frequent in agricultural imagery.

where Lcls are binary cross-entropy losses for classification

applied on the RPN and the box head, and Lreg are regres-

sion losses of bounding boxes. For more details we refer

the reader to [42].

While this training can be sufficient to learn a single de-

tection task with a closed set of classes, catastrophic for-

getting arises when facing incremental learning scenarios.

For this reason, class-incremental learning techniques have

been proposed to complement Faster R-CNN and address

its limitations when new sets of classes are introduced.

3.3.2 ILOD

ILOD [47] is among the first deep learning methods pro-

posed to tackle continual learning for object detection. It

employs KD, a popular regularization-based strategy to re-

duce catastrophic forgetting. To perform incremental learn-

ing, ILOD keeps a frozen copy of the whole network from

the previous step, acting as a teacher network to a student

network. Training images of new classes are then given to

both the new and previous models. In addition to the su-

pervised loss, the new model is trained with an L2 loss that

compares the difference between classification logits ŷ and

box coordinates r given by the previous model, as follows:

Lbox
dist =

1

N |C0:t|
∑[

(ŷt − ŷt−1)2 + (rt − rt−1)2
]
, (2)

where N is the number RoIs sampled for KD. Thereby,

this loss encourages the new model to keep similar outputs

for previous classes, preventing the weights from diverging

from their previous states.

The total loss of ILOD is then as follows:

LILOD = Lfaster + λ1Lbox
dist, (3)

where λ1 is a hyperparameter applied on the KD loss to

balance the trade-off between learning and forgetting.

3.3.3 Faster-ILOD

Faster-ILOD [40] adopts a similar approach to continual

object detection than ILOD, using KD as the approach to

limit forgetting. However, rather than only distilling knowl-

edge from the last layer, namely the class logits and box

coordinates, the authors add a KD loss between the feature

maps of the teacher and student networks, and another for

the RPN. This time, an L1 loss is used for distillation of

feature maps activations as follows:

Lfeat
dist =

1

HWD

{∑
i ||X̂t−1

i − X̂t
i ||1, if X̂t−1

i > X̂t
i

0, otherwise

(4)

where H , W and D are the height, width and depth of the

feature maps, respectively. Notice that KD is only applied

if the activation of the previous model is larger than the one

of the current model. The motivation is to only distill acti-

vations that are important for previous classes.

For the RPN distillation, a similar idea of only distill-

ing the outputs that are most likely to be important for old

classes is adopted. Specifically, the distillation between the

RPN of the teacher and student networks is as follows:

LRPN
dist =

1

N

N∑
i

1[sti≥st−1
i ]||sti − st−1

i ||+

1[sti≥st−1
i +τ]||ωt

i − ωt−1
i ||, (5)

where si is the objectness score of the RoI i, ωi is its coor-

dinates, and τ is an hyperparameter that defines a margin.

The total loss of Faster-ILOD is then as follows:

LFILOD = LILOD + λ2Lfeat
dist + λ3LRPN

dist . (6)
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3.3.4 Dynamic Y-KD Network

The Dynamic Y-KD network [38] is a recent approach that

adopts a hybrid strategy, mixing a novel self-distillation

method with a parameter isolation approach that uses pre-

vious backbones to predict past classes while growing new

branches to accommodate new tasks.

While most previous work using KD keeps a copy of the

complete network, Dynamic Y-KD reduces the teacher net-

work to the detection head. During incremental learning,

the backbone is thus shared between the teacher and stu-

dent network such that the teacher network head receives

the same feature maps as the student.

Formally, a backbone B that is fixed at all time is con-

nected to the student feature extractor F t
θ to produce feature

maps X̂t as follows:

X̂t = F t(B(Xt)). (7)

The same feature maps are then given to the teacher detec-

tion head Ht−1 whose weights are frozen, as well as to the

trainable student head Ht as follows:

Ŷ t−1 = Ht−1(X̂t)

Ŷ t = Ht(X̂t). (8)

KD is then applied with Ŷ t−1 and Ŷ t according to Eq. 2

and Eq. 5. The difference resides in the usage of shared

feature maps to produce both outputs. With this modifica-

tion to the general architecture of KD, the teacher network

is made more plastic as its feature extractor is also trained

with new data. The student model benefits from this plas-

ticity since only the head is constrained to preserve similar

outputs. While the architecture used for KD is different, the

total loss of Dynamic Y-KD is similar as Faster-ILOD, ex-

cept for the feature maps distillation since these are shared

between the teacher and student networks. The loss for Dy-

namic Y-KD is as follows:

LDynYKD = Lfaster + λ1Lbox
dist + λ3LRPN

dist . (9)

While more plasticity induces more forgetting, the abil-

ity to extract discriminative features of previous classes

is preserved by reusing the feature extractors of previous

steps. At deployment, Dynamic Y-KD uses all backbones

that have been trained in previous steps and a merging

mechanism combines the predictions made from the feature

maps of each backbones. Interestingly, the results in [38]

showed empirically that KD allows the head to still be com-

patible with previous features, although it has been exclu-

sively trained for thousands of iterations on new classes.

The main drawback of this method is that the model grows

in parameters and computational costs for each new set of

classes learned incrementally.

4. Experimental Setup
4.1. Evaluation Metrics

We compare the implemented methods using the mean

average precision (mAP) at an intersection over union (IoU)

threshold of 0.5, denoted mAP@0.5, or averaged over

10 thresholds spanning from 0.5 to 0.95 – termed as

mAP@(0.5, 0.95). All results are measured after the final

task of class-incremental learning. Following previous eval-

uation conventions in class-incremental learning [5, 38], we

evaluate:

• Stability with mAP averaged over base classes

(e.g. classes 1-42 in the 42-5 scenario of OPPD);

• Plasticity with mAP averaged over new classes

(e.g. classes 43-47 in the 42-5 scenario of OPPD);

• Global performance with mAP averaged over all
classes;

• Stability-Plasticity balance with mAP averaged over

intermediate classes in multi-steps incremental learn-

ing scenarios (e.g. classes 2-6 in a 1-1 scenario that

has a total of 7 classes).

Finally, we also introduce the mAP ratio with a

joint training approach to discuss the degree to which

class-incremental methods differ from the non-incremental

upper-bound, namely joint training.

4.2. Implementation details

The experiments are conducted with the framework de-

veloped in [38]. We use Faster R-CNN with a ResNet-50

backbone initialized from ImageNet for all approaches. In

addition to ILOD, Faster-ILOD and Dynamic Y-KD, we

compare a naive fine-tuning approach as a baseline that does

not use any mechanism to mitigate forgetting, and joint

training which learns all classes simultaneously. The lat-

ter approach can be seen as an upper-bound that helps to

evaluate the ability of continual learning models to tackle

class-incremental challenges. In the following we describe

the hyperparameters used by all methods for each dataset.

SDDD. For this dataset, we train each model for 10,000 it-

erations with SGD with a learning rate of 0.005 on the first

set of classes. The learning rate is decayed by a factor of

0.1 at steps 8,000 and 9,500. For the next steps, the models

are trained with a learning rate of 0.0001 for 2,500 itera-

tions per class added. The batch size is set to 4 in all setups.

We use the same split established in [2], which divides the

2,500 images into sets: 1,450 for training, 307 for valida-

tion, and 743 for testing. However, due to the small number

of images per class, we merge the training and validation

splits together to form a larger training set.
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6-1 5-2 4-3 3-4
Method 1-6 7 1-7 1-5 6-7 1-7 1-4 5-7 1-7 1-3 4-7 1-7

Fine-tuning 17.4 35.8 20.0 10.2 35.2 17.3 6.9 33.3 18.2 12.7 20.3 17.0

ILOD [47] 39.7 29.6 38.3 20.0 27.5 22.2 22.4 22.2 22.3 22.9 15.9 18.9

Faster ILOD [40] 39.9 28.9 38.4 20.7 26.6 22.4 21.7 22.3 21.9 23.9 16.0 19.4

Dynamic Y-KD [38] 40.1 31.8 38.9 22.0 32.8 25.1 25.2 26.9 25.9 21.5 20.4 20.9
Joint Training 45.4 60.4 47.5 46.8 49.3 47.5 47.0 48.2 47.5 47.5 47.5 47.5

Table 1: mAP@(0.5, 0.95)% results of single-step incremental instance segmentation on the Strawberry Disease Detection Dataset.

3-2 3-1 1-1
Method 1-3 4-5 6-7 1-7 1-3 4-6 7 1-7 1 2-6 7 1-7

Fine-tuning 0.0 0.0 31.2 8.9 0.0 0.0 15.5 2.2 0.0 0.0 19.4 2.8

ILOD [47] 23.5 13.9 13.7 17.9 26.8 8.9 7.0 16.3 13.9 8.0 10.0 9.1

Faster ILOD [40] 22.8 13.4 14.3 17.7 25.3 8.9 6.9 15.7 16.5 2.7 6.4 5.2

Dynamic Y-KD [38] 23.3 17.3 21.3 21.0 27.0 12.2 19.6 19.6 13.0 7.1 14.9 9.1
Joint Training 47.5 45.7 49.3 47.5 47.5 43.3 60.4 47.5 44.7 45.5 60.4 47.5

Table 2: mAP@(0.5, 0.95)% results of multi-step incremental instance segmentation on the Strawberry Disease Detection Dataset.

OPPD. We train each model for 50,000 iterations with

SGD with a learning rate of 0.005 on the first set of classes.

For the next steps, the models are incremented for 10,000 it-

erations with a learning rate of 0.001. The batch size is also

set to 4 in all setups. We divide the train and test splits by

sampling a disjoint set of grow boxes for each species with

their corresponding images. Similar to the previous dataset,

we adapt the OPPD to incremental scenarios by sorting the

plant species in alphabetical order and defining b − n sce-

narios.

5. Results
5.1. Strawberry Disease Detection Dataset

Single-step incremental learning. We show in Table 1 the

results for single-step incremental learning on the SDDD.

We can see that catastrophic forgetting is particularly se-

vere in 5-2, 4-3 and 3-4 as the mAP of all approaches on

old classes is less than half of the one obtained by joint

training. Similarly, learning new classes incrementally is

far from achieving the performance of joint training.

Nonetheless, we can see that Dynamic Y-KD outper-

forms ILOD and Faster ILOD in most settings both on pre-

vious and new classes. For instance, in 6-1, Dynamic Y-

KD obtains similar mAP on classes 1-6, with 40.1% com-

pared to 39.7% and 39.9% obtained by ILOD and Faster

ILOD, respectively. But on the seventh category (Powdery
mildew leaf ), Dynamic Y-KD outperforms ILOD and Faster

ILOD by +2.2% and +2.9%, respectively. In 5-2, 3-4 and

3-4, the gap of mAP on new classes is even greater. These

results confirm that the self-distillation employed by Dy-

namic Y-KD facilitates learning of new classes, while the

dynamic architecture generally improves performance on

old classes. On all classes (1-7), Dynamic Y-KD outper-

forms other methods in every scenario.

Multi-steps incremental learning. Multi-steps incremen-

tal learning represents a more ambitious goal of class-

incremental learning as it involves the ability to learn and

remember several tasks successively. The results for various

multi-steps incremental learning scenarios of the SDDD are

shown in in Table 2.

We can see that forgetting is exacerbated and learning

new classes is also complicated in these setups. In the

3-2 and 3-1 scenarios, all three continual learning meth-

ods perform similarly on the first set of classes. How-

ever, while ILOD and Faster ILOD also perform similarly

on new classes, Dynamic Y-KD significantly outperforms

them. For instance, in 3-2, Dynamic Y-KD obtains +3.4%
and +7.0% mAP on both sets of novel classes compared

to the second best approaches. In 3-1, Dynamic Y-KD out-

performs ILOD by +12.6% mAP on the last class while

suffering less from forgetting.

However, the results are very far from joint training, es-

pecially in the 1-1 scenario where the best performances

only reach 9.1%
47.5% = 19.2% of the global performance

of joint training. This highlights the difficulty of class-

incremental learning, especially on difficult tasks involv-

ing agricultural imagery. While current continual learning

methods can have reasonable performances in single-step

incremental learning, there is a lot of room for improvement

on long-term incremental learning.

5.1.1 Open Plant Phenotyping Database

We now report the mAP@0.5% of single-step incremental

learning scenarios on the OPPD in Table 3. We can ob-
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42-5 37-10 27-20
Method 1-42 43-47 1-47 1-37 38-47 1-47 1-27 28-47 1-47

Fine-tuning 5.6 22.8 7.5 2.5 22.4 6.8 3.6 19.8 10.6

ILOD [47] 19.5 20.9 19.6 17.3 20.0 17.9 16.7 15.1 16.0

Faster ILOD [40] 19.5 20.8 19.6 17.5 19.8 18.0 16.7 15.1 16.0

Dynamic Y-KD [38] 21.6 22.5 21.7 17.5 21.8 18.4 17.5 17.1 17.3
Joint Training 23.9 29.0 24.5 23.6 27.7 24.5 24.3 24.8 24.5

Table 3: mAP@0.5% results of single-step incremental instance segmentation on the Open Plant Phenotyping Database.

serve from the results that this dataset is very challenging.

Indeed, the OPPD contains many classes, large amounts of

instances on each image, and the plants have large intra-

class and small inter-class variability (see Fig. 3). Similar to

the results on SDDD, ILOD and Faster-ILOD perform com-

paratively in all three setups, while Dynamic Y-KD obtains

better results. Interestingly, Dynamic Y-KD reaches similar

mAP@0.5% than fine-tuning, while still suffering less from

forgetting than other methods. Indeed, Dynamic Y-KD ob-

tains 22.5%, 21.8% and 17.1% compared to 22.8%, 22.4%
and 19.8% by fine-tuning on new classes in 42-5, 37-10 and

27-20 scenarios, respectively.

Overall, Dynamic Y-KD reaches 21.7
24.5 = 88.6% of the

joint training performance on all classes in 42-5. When

more classes are involved, Dynamic Y-KD only reaches
18.4
24.5 = 75.1% and 17.3

24.5 = 70.6% of the performance ob-

tained by joint training in 37-10 and 27-20, respectively.

5.2. Discussion

Together, the results of class-incremental learning meth-

ods compared to joint training highlight the difficulty of

such scenario on agricultural imagery. For instance, on the

Strawberry Disease Detection Dataset in the 5-2 scenario,

the best-performing method obtains 22.0% on classes 1-5
whereas joint training obtains 46.8% (see Tab. 1), indicat-

ing a strong effect of forgetting.

Future work should investigate the underlying reasons.

We hypothesize that the small inter-class variability is espe-

cially challenging for class-incremental learning. Notably,

as classes 4 (Gray mold) and 6 (Powdery mildew) are rel-

atively similar (see Fig. 2) in this dataset, features that are

learned to detect the 6th class might strongly interfere with

those that were used to detect the 4th class learned in a

previous step. Consequently, the incremental model might

learn to suppress previous knowledge to reduce interference

and thereby optimize the current task.

Future work should also investigate a combination of re-

hearsal techniques and other continual learning strategies.

For instance, the hybrid approach of Dynamic Y-KD com-

bined with a small memory bank of previous examples

might allow preserving more discriminative features of pre-

vious classes and reduce forgetting.

6. Conclusion
This work is among the first to tackle continual object

detection for tasks related to agriculture. To this aim, we

adapted two public datasets to simulate incremental learn-

ing scenarios in which classes are learned in two or more

distinct steps. In each step, the models only have access to

current classes for training.

To address the problem of catastrophic forgetting faced

by deep learning models, we compared ILOD, Faster-ILOD

and Dynamic Y-KD. All three approaches leverage different

forms of knowledge distillation to reduce knowledge loss

during incremental learning. Dynamic Y-KD reduces the

constraining factor of knowledge distillation by sharing the

same backbone between the teacher and student networks,

which proved to be more effective at learning new classes

on both datasets. Moreover, as Dynamic Y-KD uses a pa-

rameter isolation strategy in which previous and new back-

bones are used at inference, catastrophic forgetting is also

mitigated at a cost of increased computation.

The experiments conducted in this work showed that the

three continual learning methods effectively addressed the

issue of forgetting while learning new classes, yet their per-

formances are far from the joint training upper-bound. This

highlights the potential for further improvements in the field

of continual object detection, particularly in the context of

agricultural imagery.

We hypothesized that the inherent challenges posed by

the small intra-class and large inter-class variability char-

acteristic of plant images exacerbate the problem of catas-

trophic forgetting. Future work should explore rehearsal ap-

proaches to reduce forgetting, combined with hybrid strate-

gies such as Dynamic Y-KD to improve learning of new

classes.
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