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Abstract

The performance of a machine learning model is char-
acterized by its ability to accurately represent the input-
output relationship and its behavior on unseen data. A
prerequisite for high performance is that causal relation-
ships of features with the model outcome are correctly rep-
resented. This work analyses the causal relationships by
investigating the relevance of features in machine learning
models using conditional independence tests. For this, an
attribution method based on Pearl’s causality framework
is employed. Our presented approach analyzes two data-
driven models designed for the harvest-readiness predic-
tion of cauliflower plants: one base model and one model
where the decision process is adjusted based on local ex-
planations. Additionally, we propose a visualization tech-
nique inspired by Partial Dependence Plots to gain further
insights into the model behavior. The experiments presented
in this paper find that both models learn task-relevant fea-
tures during fine-tuning when compared to the ImageNet
pre-trained weights. However, both models differ in their
feature relevance, specifically in whether they utilize the im-
age recording date. The experiments further show that our
approach is able to reveal that the adjusted model is able
to reduce the trends for the observed biases. Furthermore,
the adjusted model maintains the desired behavior for the
semantically meaningful feature of cauliflower head diam-
eter, predicting higher harvest-readiness scores for higher
feature realizations, which is consistent with existing do-
main knowledge. The proposed investigation approach can
be applied to other domain-specific tasks to aid practition-
ers in evaluating model choices.

1. Introduction

Essential components of digital agriculture are reli-

able and well-generalizing machine learning models. The

performance heavily relies on the model’s behavior and

whether the model relates the input features to the output

targets in a causally correct way. One relevant application in

digital agriculture is the accurate estimation of plant growth

[19], harvest ripeness [2], the amount of harvest [6, 18], or

the date the crop is ready to be harvested [21]. Predicting

the optimal time to harvest not only maximizes crop yield

but also ensures the quality and nutritional value of the pro-

duce. To analyze the model behavior regarding the causal

relationships between specific features and the model out-

come, methods that estimate the relevance of input features

can be employed.

Well-known approaches are attribution methods, which

have had a recent boost in the field of explainable machine

learning [32]. Especially saliency mapping methods, which

determine which areas in images are important for the de-

cision of a machine learning model, are now widely used

in various application areas [4, 16, 17, 36, 39]. However,

since explainable machine learning methods present prop-

erties of a machine learning model such as the learned deci-

sion process between the input and the output in a human-

understandable way, they build on correlation rather than

causation.

This problem is also observed in the analysis done by

Karimi et al. [14]. They investigate the causal relationship

between model decision explanations (E) and model pre-

dictions (Y). More specifically, using Reichenbach’s com-

mon cause principle [29], they study the treatment effect on

E and Y using hyperparameters as interventions. In other

words, how do predictions and explanations vary when hy-
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perparameters change? They find that the hyperparame-

ters have a high direct impact on E without going through

Y, meaning other influences dominate. This observation is

more pronounced for models with higher performance, fur-

ther motivating the need to explain model decisions based

on causal principles instead of misleading correlations.

Following these observations, recent works started in-

vestigating models and generating explanations based on

causal principles [27, 30, 31]. We follow this approach

and investigate causal explanations for a typical applica-

tion from digital agriculture, namely harvest-readiness pre-

diction. To be specific, we utilize the GrowliFlower data

set [15] containing images of cauliflower plants in different

growing stages and two image classification models that can

estimate the corresponding harvest-readiness [16]. For our

model investigation based on causal principles, we use the

methodology by Reimers et al. [31]. Their method builds on

Pearl’s causality framework [26] and describes a structural

causal model that encompasses supervised learning. The

authors employ this structural model to investigate ques-

tions of whether trained classifiers use pre-defined semanti-

cally meaningful features to generate their predictions. To

answer such questions, they apply Reichenbach’s common

cause principle [29] as in [14] and test for the conditional

independence (CI) between features and predictions given

reference annotations.

Additionally to our investigation of cauliflower harvest-

readiness models, we extend the method of [31] by giving

intuition about the model behavior for different feature set-

tings once a feature is indicated as being used. We do this

by combining conditional dependence insights from [31]

together with ideas from partial dependence plots (PDPs)

[8, 10].

The main contributions of this paper are:

• Analysis of cauliflower harvest-readiness models

based on a causal feature attribution method.

• Investigating model behavior on the constrained test

distribution by combining ideas from partial depen-

dence plots (PDPs) [8, 10] with the conditioning on

reference annotations from [31].

• Verification and confirmation that the model adjust-

ments described in [16] reduce bias contained in the

capturing situations of the training data.

2. Feature Analysis Methodology
In this work, we present an investigation approach to an-

alyze and explain the model behavior of models classify-

ing the harvest-readiness of cauliflower plants. To broadly

investigate whether meaningful and informative semantic

features are used, we employ the method proposed in [31].

This method builds on the framework of causality by Pearl

[26]. To be specific, it frames supervised learning as a struc-

tural causal model (SCM) before employing conditional in-

dependence (CI) testing to detect whether a trained classi-

fier with model predictions Ŷ uses semantically meaningful

features X . An existing connection means that the trained

model utilizes information contained in X .

We, follow [31] and condition on the reference anno-

tations Y to alleviate confounding factors. Confounding

factors are a critical issue since they could lead to falsely

detecting a connection between X and Ŷ through the la-

tent process that generates the task-specific data. Hence,

the question of whether the connection from X to Ŷ exists

can be answered by testing for the null hypothesis (H0)

H0 : X ⊥⊥ Ŷ |Y (1)

using a CI test.

If H0 is discarded, then the investigated model utilizes

information contained in the semantically meaningful fea-

ture X . In the following, we detail the selected CI tests

for our analysis. Furthermore, we describe how we ex-

tend the approach described above to gain insight into not

only whether a feature is used but also how model behavior

changes for different feature realizations.

2.1. Conditional Independence Test Selection

The performance of the feature attribution method de-

veloped by Reimers et al. [31] hinges on one crucial de-

cision: the selection of suitable CI tests. Many such tests

exist [22] based on varying characterizations of CI. Previ-

ous work suggests employing multiple different CI testing

methods based on varied but equivalent characterizations of

CI [27, 30]. We specifically follow [27] and select a test

based on mutual information estimation together with two

tests estimating different kernel-based measures.

However, theoretic work by Shah and Peters [37] shows

that there are no CI tests that reliably work for arbitrary joint

distributions, which can result in false positives. Addition-

ally, we cannot make valid assertions for how our variables

of interest X , Ŷ , and Y are jointly distributed. Hence, we

rely on a selection of nonparametric tests.

CMIknn: The first CI test we select is Conditional

Mutual Information by k-nearest neighbor estimators

(CMIknn) [34] utilizing the fact that two variables X and

Y are conditionally independent given a third set of condi-

tioning variables Z if and only if the CMI is zero.

CMIknn introduces two separate hyperparameters: kCMI,

defining the CMI estimator, and kperm, determining the

neighborhood size for the local permutation scheme neces-

sary to keep dependencies between X or Y and Z. We fol-

low [27] and [34] and set kperm to five, and use ten percent

of the available data to estimate CMI, i.e., kCMI = 0.1 · n.
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cHSIC: The Hilbert-Schmidt Independence Criterion

(HSIC) [12] and its conditional version (cHSIC) [9] are

kernel-based tests that measure the dependence between

variables. The cHSIC test is performed as a shuffle signifi-

cance test between features X , predictions Ŷ , and reference

annotations Y . With N = 1000 repetitions, we estimate the

null distribution H0 and derive a corresponding p-value. If

the p-value is significantly small (we use p < 0.01), the null

hypothesis H0 is discarded, and conditional dependence is

assumed.

To enable the detection of non-linear relationships, the

observations are mapped into an infinite-dimensional re-

producing kernel Hilbert space (RKHS) using the kernel

trick [24]. The test statistics for HSIC and cHSIC are the

Hilbert Schmidt norms of the cross-covariance and the con-

ditional cross-covariance operator, respectively. These test

statistics depend on the selected kernels. We follow pre-

vious work [9, 27] and use Gaussian radial basis function

(RBF) kernels. The optimal kernel widths σ can differ be-

tween our variables X , Ŷ , and Y . Hence, we use the heuris-

tic by Gretton et al. [11] to heuristically determine fitting

kernel widths.

RCoT: The cHSIC test has known issues, such as the un-

known null distribution of the test statistic and computation-

ally expensive approximations. To address the first issue,

Zhang et al. [40] proposed the Kernel Conditional Indepen-

dence Test (KCIT) as an alternative. KCIT is based on the

CI characterization by Daudin [7] and tests whether corre-

lations between residual functions in an RKHS vanish.

Furthermore, Strobl et al. [38] proposed the Random-

ized Conditional Correlation Test (RCoT), which approx-

imates KCIT in a computationally efficient way using ran-

dom Fourier features [28]. Despite its name, it is a CI test

and recommended over the related RCIT variant [38].

Again we use the heuristic by Gretton et al. [11] to de-

termine the hyperparameters for the necessary RBF kernels.

We generally employ the settings used in [27] but crucially

follow the suggestion in [38] and use a slower shuffle sig-

nificance test instead of estimating the null distribution di-

rectly with the Lindsay-Pilla-Basak method [23]. This is

recommended for sample sizes less than 500, as is the case

in our analysis.

2.2. Approximating Feature Influence

To investigate the influence of specific features on the

model decisions, we utilize insights from partial depen-

dence plots (PDPs) [8, 10], i.e., visualizing observed vari-

ables with respect to changing feature values. Specifically,

we visualize the model behavior for the feature realizations

contained in our test set. We do this by plotting the model

output against the observed feature values. Furthermore, we

follow the key insight from [31] and separate these visual-

izations according to the reference classes, i.e., condition on

Y , to reduce confounding.

For categorical features, we then estimate Gaussian dis-

tributions and plot the means and standard deviation per cat-

egory to gain insights into the general trend of the model

behavior as well as corresponding uncertainties. For con-

tinuous features, we calculate the standard deviation of the

feature values in our test data to estimate the distribution pa-

rameters in a sliding window approach resulting in similar

plots.

The generated visualizations, extend the result for a spe-

cific feature beyond the binary decision of whether the fea-

ture is used or not used and enable investigating how the

model behavior changes for specific feature realizations. In

contrast, the testing methodology from [31] relies on the

temporal order of variables in the SCM to circumvent the

necessity for interventions to generate explanations. Hence,

[31] does not produce counterfactual explanations that tell

us how the model’s predictions change when the feature

value X changes.

However, the intuitions we gain from our visualizations,

are limited. While we can generally get an idea of how the

model behaves for a change in feature values as they appear

in our test set, this is not a causal counterfactual explanation

in the sense of Pearl’s [26] do-calculus. Nevertheless, they

provide an additional way to analyze model behavior under

the constraints posed by a given test set.

3. Cauliflower Harvest-readiness Classification

3.1. Models

We analyze two, previously proposed, models, that de-

termine the harvest-readiness of cauliflower from drone im-

ages [16]. Additionally, we compare our results to a pre-

trained model without task-specific finetuning. The under-

lying architecture is a binary ResNet18 classifier [13] that

predicts Ready and Not Ready for harvest (72.41% ac-

curacy). For further details about the hyperparameters, we

refer to [16]. The authors expand their classification frame-

work by calculating saliency maps of the input images,

which they cluster using Spectral Clustering (SC) [25] to

derive a reliability score for the predictions based on the

cluster assignments. They use these scores to improve the

predictions of their model by swapping class assignments

of unreliable predictions (improves to 88.14% accuracy).

The selected models are as follows: First, the base

ResNet18 model MBase fine-tuned on cauliflower data with-

out prediction adjustments; second, the adjusted model

MAdjusted derived from MBase using the combination of

saliency mapping and SC [16], and finally, MImageNet, i.e., a

ResNet18 with ImageNet [35] pre-trained weights. We se-

lect the last model to ensure that features detected for MBase

and MAdjusted are learned during the fine-tuning step on the
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Figure 1: Examples of cauliflower plants in the

GrowliFlowerR dataset [15]. Note the varying amount of

weeds contained in the images.

cauliflower data.

3.2. Cauliflower Data

To train our models, we use images and in-situ measure-

ments, called reference data, contained in the GrowliFlow-

erR dataset [15]. This dataset is composed of image time-

series displaying cauliflower plants over their entire growth.

From the given reference data, we additionally use the

recording date, the plant position, the plant diameter, and

the head diameter.

We select images of the time-points 2021/08/23,

2021/08/25, 2021/08/30, 2021/09/03 about which infor-

mation of the harvest-readiness within the next three days

is known. Example images are shown in Fig. 1. We split

the data into a training, validation, and test set. Standard

augmentations like rotation and flipping are applied to the

training set, resulting in 6244 images used for training, 196

images used for validation, and 194 images used for testing.

All images contain different amounts of weeds.

In the following, we detail the features that we deem in-

teresting for analyzing the behavior of the harvest-readiness

models. To structure it, we categorize the features into

coarse groups: Capturing circumstances, plant location, and

actual semantic content, i.e., cauliflower properties and the

amount of visible weed.

3.2.1 Capturing Circumstances

To analyze the influence of some capturing circumstances,

we first select the recording date of the images as a fea-

ture. Additionally, we try to encapsulate some information

about the exposure and, therefore, the weather during the

capturing process. For this, we additionally analyze the av-
erage image brightness by transforming the image into a

grayscale representation using [3]. We then calculate the

average brightness as the mean of all pixel intensity values.

Fig. 5 in Appendix A.1 shows that the recording date and

the average brightness features are related. The observed

marginal distributions for each recording date clearly dif-

fer in their respective means. In other words, both of these

features are not independent and share some information.

To further investigate this observation, we determine the

mutual information (MI) between the recording date and

the average image brightness. We select the estimator de-

scribed in [33] as it was specifically developed to approx-

imate the MI between two variables, where one is dis-

crete (recording date), and one is continuous (average im-
age brightness). We set k = 3 following the suggestions

in [20, 33]. Using this setup, we estimate the MI to be

≈ 0.763.

A likely explanation is that the weather is a confound-

ing factor for both features. Images that were taken during

sunny weather (see Fig. 3, last row) result in a higher av-
erage brightness. Additionally, the recording date encodes

some information about the weather during the recording

process. Nevertheless, both features also encode disjoint

information. The recording date implicitly encapsulates in-

formation about the growth status of the plants, while the

average brightness encodes more weather information.

3.2.2 Plant Position

The plant position is given by three variables: the plot num-
ber as well as the specific row and column within the plot

(Fig. 2). The plots are distributed along the whole field,

meaning that plants in different plots may show different

stages of development.

(a) (b)

Figure 2: Overview of (a) the distribution of reference plots

in the field from the GrowliFlowerR dataset and (b) the

plant positions, which are indicated by their row (A-E) and

column (1-20). The source of the figures is [15].

3.2.3 Semantic Image Content

One set of features that is especially interesting for domain

experts is semantic image content, e.g., properties of the

individual plants. Here, we first describe the cauliflower

properties annotated in the dataset we used. Afterward, we

detail how we approximate the amount of weed in the im-

ages without relying on reference annotations.

Cauliflower Properties. Essential features that describe

the development status of a plant are the plant diameter and

head diameter. The plant diameter is easy to determine in

the field and in images at earlier stages of development. As

575



soon as neighboring plants start to overlap, the determina-

tion of the diameter from images is more complex because

the boundaries of different plants have to be defined first.

Depending on the cauliflower cultivar, the plants are more

or less self-covering. Hence, the head is not visible from the

outside, and its own leaves cover it to protect it from abiotic

and biotic stresses like sunlight or animals. The size of the

cauliflower head is the indicator of whether a cauliflower

plant is ready for harvest. However, the plant diameter is

not correlated, i.e., it is impossible to derive the head size

from only the size of the plant.

Weeds Ratio. A visible difference in our data is the

amount of weed growing next to the cauliflower plants. We

are interested in whether the selected cauliflower models

change their decisions based on the amount of visible weed.

Toward this goal, we use simple linear iterative clustering

(SLIC) [1] and a merge algorithm to segment the images in

an unsupervised fashion. Hence, quantifying the relation-

ship between cauliflower plants and weeds in our images.

We detail this approach in Appendix A.2. Fig. 3 displays

some examples of the superpixel categorization for three

images containing varying amounts of weed. The final ex-

tracted feature is the ratio between the amounts of weed and

ground pixels divided by the number of cauliflower pixels.

We term this feature weeds ratio and observe mostly values

between zero and one, i.e., most pixels contain cauliflower.

However, note that our unsupervised approach makes

mistakes, e.g., the first row in Fig. 3. This observed behav-

ior has to do with the illumination and smaller fluctuations

in color. These mistakes decrease the signal-to-noise ra-

tio of the actual semantic feature and our measured feature

values. Nevertheless, a visual examination of our test and

validation images reveals that our approach generally works

well, disregarding these smaller errors. Further, other fea-

tures, especially metadata features, are also proxy features

for some latent properties meaning they contain a similar

amount of noise.

4. Feature Analysis Results
Table 1 summarizes the results for our three selected

models for all eight features of interest described in Sec. 3.2.

The first observation is that MImageNet uses none of our cho-

sen features. This behavior is expected given the different

problem domains. Hence, this result confirms that the de-

tection of features for the other two models is learned during

the tuning step.

No model uses any features encoding the plant location,

which is desirable. Given the close proximity of the plants

in one cauliflower field, a difference in prediction procedure

would likely indicate a bias in our data or training process.

For the content-related features, we observe that both the

MBase and the MAdjusted learn to utilize the head diameter.

This result reaffirms that both models actually learn the im-

portant feature of the task at hand. The head diameter is the

latent feature also used by cauliflower farmers to determine

whether a cauliflower is Ready for harvest. It is worth not-

ing that although the head is not visible in the image (see

Sec. 3.2), the network generates a representation to infer

this important feature. Furthermore, both models disregard

the plant diameter, which is congruent with existing domain

knowledge. Additionally, we observe that both models do

not change their behavior depending on the number of visi-

ble weeds, i.e., the weeds ratio is not used.

Finally, the models differ in behavior for the two fea-

tures related to the capturing circumstances. While both

models use some information contained in the average im-
age brightness, only the base model additionally uses the

recording date. Given the relationship between these fea-

tures (see Appendix A.1), we hypothesize that this behavior

could be a result of the signal-to-noise ratio in the record-
ing date feature. The adjusted model does not significantly

change its predictions for different dates. We analyze this

further in the following Sec. 4.1, where we investigate how

the model behaviors differ for different realizations of the

indicated features in our test set. However, we first state our

expectations.

Expectations for Task-Relevant Features Our first ex-

pectation is later recording dates and higher average bright-
ness lead to higher predictions of harvest-readiness for

MBase while the trend is less significant for MAdjusted. We

hold this expectation because class Ready for harvest and

sunny weather are more likely for later dates but are, of

course, not causally related. Furthermore, we expect a well-

performing model to learn the relationship between the fea-

ture head diameter and the correct class. In other words,

given that both MBase and MAdjusted use this feature signif-

icantly, according to Table1, we expect an upward trend.

Finally, we expect that the predicted scores by MImageNet are

nearly constant for different feature realizations.

4.1. Influence of Task-Relevant Features

To further analyze the features indicated in Table 1, we

visualize the relationship between the model output and the

respective feature realizations for all images in our test set.

As described in Sec. 2.2, to reduce confounding, we follow

the approach described in [31] and condition on the refer-

ence annotations.

Fig. 4a visualizes the recording date against the model

outputs. We observe that predictions of MImageNet are, on av-

erage, almost constant for all recording dates. However, we

see a difference between the base and the adjusted model.

Both display an upwards trend, i.e., later recording dates in-

dicate higher output scores for images of both classes. Nev-

ertheless, looking at the standard deviations, we see that this
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Input Image Superpixels Combined Segments Labels
Cauliflower Plant

Weed

Cauliflower Plant

Weed

Cauliflower Plant

Ground or Brown Leaf

Weed

Figure 3: Examples of our unsupervised weeds segmentation into superpixels. The rows contain images with an increasing

amount of weed. Note that the last row contains a sample taken under bright sunshine, leading to increased exposure.

Table 1: Feature relevance of the selected cauliflower models.

Recording Average Position Head Plant Weeds

Model Date Brightness Plot Col Row Diameter Diameter Ratio

MBase � � � � � � � �
MAdjusted � � � � � � � �
MImageNet � � � � � � � �

trend is more pronounced for MBase. Further, Table 1 tells

us that the usage by MAdjusted is not significant.

However, Table 1 indicates utilization of the average
brightness for both MBase and MAdjusted, while the MImageNet

does not change behavior based on this feature. This obser-

vation is reflected in Fig. 4b. Note, there is only a slight up-

ward trend visible for images of the class Ready to harvest.

However, for the other class, we observe a clear change for

an average brightness above an intensity of ∼ 70. Here,

MBase and MAdjusted both predict higher harvest-readiness

scores. In other words, if the unseen images are, on av-

erage, brighter, the models predict ready-to-harvest with

a higher probability. We hypothesize that this could be a

bias in the training data, given the weather conditions dur-

ing the recording. This is supported by the slight upward

trend for the recording date discussed above and the re-

lationship between the recording date and average image

brightness discussed in Appendix A.1. Nevertheless, even

though MAdjusted utilizes information contained in the aver-

age brightness and changes behavior accordingly, our visu-

alization reveals that this change is less pronounced com-

pared to MBase. Hence, the adjustments made to the base

model reduce the biases encoded in the capturing circum-

stances.

Expert knowledge of cauliflower farmers indicates that

the head diameter encodes the information necessary to de-

cide whether cauliflower is ready for harvest. Table 1 al-

ready indicated that both MBase and MAdjusted learn this re-

lationship. Fig. 4c now visualizes the model behavior for

specific realizations of this feature. Both models behave

similarly. For images of the class Ready, Fig. 4c indicates

an increasing uncertainty for larger head diameters. This

observation could be a consequence of little data in this

class with smaller feature values. However, interesting is

the clear upward trend for images of the class Not Ready.

This result indicates that the model implicitly extracts infor-

mation related to the head diameter for unseen images and

predicts higher harvest-readiness scores for larger diame-

ters. A cauliflower harvest-readiness model that learns the

causal relationship between the inputs and desired outputs

should exhibit this behavior.

5. Conclusions

In this work, we analyze three models on a feature level

where two models are specialized to predict the harvest-

readiness of cauliflower plants. Toward this goal, we utilize

a feature attribution method [31] built on the foundation of

Pearl’s causality framework [26]. We extend this method
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(a) Model behavior for different recording dates.
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(b) Model behavior for realizations of average brightness.
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(c) Model behavior for different head diameters.

Figure 4: Model behaviors when presented with our test data. We plot the features indicated as being used in Table 1 against

the predicted harvest-readiness score. We follow [31] and split our visualization between the two classes, Ready to harvest

and Not Ready to harvest.
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over the binary indication of whether a feature is used by

visualizing and regressing the model outputs against fea-

ture realizations in our test set. This approach is inspired by

PDPs [8, 10] and lets us investigate the model behavior for

different feature values on the constrained test scenario.

We find that both analyzed cauliflower models learn

task-specific features during the fine-tuning process and im-

prove over a pre-trained ImageNet model on a feature level.

For the base model, three features are indicated as being

used: the recording date, the average image brightness, and

the head diameter. In contrast, the adjusted model only uti-

lizes the latter two to a significant level. Using our proposed

visualization, we investigated this difference and found that

the trends for both the recording date (to a nonsignificant

level) and the average image brightness are reduced for the

adjusted model. We conclude from this observation that the

adjustments made to the base model [16] reduce the cor-

responding bias observed in the base model. Furthermore,

the adjusted model keeps the observed behavior for the se-

mantically meaningful feature: head diameter, by predict-

ing, on average higher scores for higher feature realizations.

This behavior is consistent with existing domain knowl-

edge. Hence, our approach enables users to evaluate and

compare competing models in terms of causal feature usage

leading to increased robustness towards unseen data.
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A. Appendix

A.1. Recording Date and Average Brightness

In Sec. 3.2.1, we describe our features of interest.

Amongst these features are the recording date and the aver-

age image brightness. Fig. 5 shows that these two features

are not independent from one another.

A.2. Segmenting Cauliflower and Weeds

As briefly described in Sec. 3.2.3, we combine our de-

tected superpixels into four broader sets of image regions.

However, the first step is to separate the image into super-

pixels. For this, SLIC [1] uses linear clustering in a five-

dimensional space. This space consists of the three color

channels of the CIELAB color space combined with the x

and y pixel coordinates. To ensure color similarity and pixel

proximity with a distance measure that incorporates super-

pixel size. We use the Scikit-Learn [5] implementation and

set the approximate number of segments to 250. For other

Figure 5: Relationship between recording date and average

image illumination. We can clearly see the influence of the

date on the distribution of the average image brightness.

hyperparameter settings, we follow the standard parameter-

ization in [5]. Fig. 3 contains examples of the generated

superpixels for some of our test images.

The second step now is to use superpixel statistics to cat-

egorize them into larger groups. An initial visual inspec-

tion of our validation data revealed three key components

in our cauliflower images: the cauliflower plants, weeds,

and the ground. Additionally, given the uniformity of our

images, we observed that color information is enough for

a coarse segmentation. The key idea is the turquoise tint of

the cauliflower superpixels in comparison to the green color

of the weeds. Additionally, we sometimes observe brown

color for ground or brown leaves. Hence, we combine su-

perpixels according to their mean colors. We give detailed

instructions as pseudo-code in Algorithm 1. In Algorithm 1,

we set the hyperparameter λ to 0.11 for our test data.

Algorithm 1 An algorithm to combining superpixels.

Require: list of superpixels S, cauliflower tolerance λ
Ensure: cauli ← [], weed ← [], ground ← [], and,

other ← []
1: for s in S do
2: (r, g, b) ← mean(s) � Average color in segment

3: if |g − b| < λ then � similar green and blue

4: cauli ← cauli+ s
5: else if g > r and g > b then � Green dominant

channel for weed

6: weed ← weed+ s
7: else if r > b then � Red dominant over blue

8: ground ← ground+ s
9: else � Rejections

10: other ← other + s
11: end if
12: end for
13: return cauli, weed, ground, other
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