
Rapid tomato DUS trait analysis using an optimized mobile-based coarse-to-fine
instance segmentation algorithm

Dan Jeric Arcega Rustia1,*, Guido Alexander Jansen1, Selwin Hageraats1, Joseph Peller1, Rick van de
Zedde1, Cécile Marchennay2, Wim Sangster2, and Gosia Blokker2

1Wageningen Plant Research, Wageningen University and Research, Wageningen, The Netherlands
2Naktuinbouw, Roelofarendsveen, The Netherlands

*dan.rustia@wur.nl

Abstract

As climate change continues to impact agriculture, there
is a growing demand for the discovery of new crop vari-
eties in order to address key goals such as accelerated pro-
duction, disease resistance, and overall improved quality.
One of the necessary procedures before a crop variety is
accepted for production is distinctness, uniformity, and sta-
bility (DUS) testing. However, the current practice of DUS
testing relies primarily on manual examination with limited
technological assistance. This work aims to provide a solu-
tion to this challenge by developing an algorithm for rapid
tomato DUS trait analysis using a mobile application. An
image dataset comprised of tray and individual tomato im-
ages was compiled using multiple mobile devices. A coarse-
to-fine instance segmentation algorithm was developed to
analyze the tray images by detecting individual tomato im-
ages and detecting tomato and peduncle scar contours. In
order to accommodate different mobile devices and achieve
finer measurements, a conditional upscaling approach was
applied on each individual tomato image, with the support
of super-resolution. Android ARCore was utilized to ob-
tain distances of each tomato from the mobile device cam-
era, enabling fast morphological measurements without us-
ing reference scales. The proposed algorithm has a preci-
sion of 0.99 in detecting each tomato from each tray image,
while having IoUseg values of 0.97 and 0.83 in segment-
ing tomato and peduncle scars, respectively. Manual vs.
automated trait analysis results also show that the mobile
application was able to measure traits with an error from
1.66% to 7.19%. From the best of our knowledge, this work
presents one of the first mobile phone applications for rapid
tomato DUS trait analysis.

1. Introduction

Currently, Europe alone boasts a staggering number of

more than 6,000 tomato varieties [2, 11]. Each tomato va-

riety has been selectively bred to adapt according to diverse

local preferences in terms of taste and morphology. De-

spite this, there is a persistent demand for discovering more

tomato varieties due to the adverse affects of climate change

that eventually led to varying plant disease and climactic

susceptibility [11]. But before a variety is accepted for pro-

duction, distinctness, uniformity, and stability (DUS) test-

ing has to be performed.

The objective of DUS testing is to determine trait varia-

tions within a species, ensure uniformity of traits within a

variety, and evaluate the consistency of phenotypic charac-

teristics. Traditionally, DUS tests are conducted manually

by examination officers [3, 9]. In the case of tomato DUS

testing alone, about 61 phenotypic traits need to be evalu-

ated, demanding significant time and effort. These pheno-

typic traits encompass attributes such as size, shape, color,

resistance to disease, and more. For individuals without

specialized training, quantifying size and shape DUS traits

entails the measurement of at least three tomatoes (repre-

senting three replicates) from each variety using a caliper.

However, for experienced DUS examiners, this process is

expedited by assigning categorical size and shape values

based on their existing knowledge and the variety database.

After trait collection, the variability within a variety is scru-

tinized to ascertain its uniqueness and consistency before

gaining acceptance as a new variety. This intricate pro-

cedure not only consumes significant time and effort, but

also introduces subjectivity when examiners employ dis-

tinct strategies and perspectives. Consequently, there is a

growing proposition to use automated methods for measur-

ing DUS traits.

Image processing is one of the first automated methods

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

634



for automated DUS testing. Image processing involves find-

ing hand-crafted image features based on edges, blobs, and

more, which are eventually used for classification and re-

gression applications. [1] collected okra stem, flower, and

seed using a DLSR camera for automatically measuring

morphological and color-based characteristics using image

processing methods. [4] used a flat-bed scanner to acquire

images of 20 peanut pod varieties while analyzing each im-

age using morphological analysis. Similarly, [7] acquired

Sinningia speciosa images using flatbed scanners and mea-

sured color and spot traits using image processing. Based

on the above-mentioned research works, it is evident that

most automated DUS testing methods utilizing image pro-

cessing are performed on images acquired under controlled

lighting conditions. To overcome this limitation and pro-

vide a more versatile and robust solution, the use of deep

learning is proposed.

Unlike image processing, deep learning involves auto-

mated extraction of image features by feeding an image

through a series of neural network layers. [17] used a

VGG16 neural network model for identifying varieties from

scanned peanut pods, achieving an accuracy of 0.97. Sim-

ilarly, [12] also used VGG16 for discriminating between

different chickpea seeds, with an accuracy of 0.94. [15]

employed a You Only Look Once (YOLO) neural network

model for detecting the number of leaves on rice. [10]

worked on distinguishing between different peach varieties

using deep learning for analyzing visual near-infrared (VIS-

NIR) spectral data. The recent works in deep learning show

that it is a viable solution for more reliable DUS testing.

Currently, there is a scarcity of efforts aimed at the devel-

opment of portable or mobile applications for image-based

DUS testing. This work aims to develop a novel and faster

automated method for measuring tomato DUS traits in va-

riety testing. The specific objectives are: (1) to develop a

lightweight and accurate algorithm for tomato traits analy-

sis; (2) to apply mobile augmented reality for more reliable

morphological measurements; (3) to develop a reliable mo-

bile application for DUS trait analysis; and (4) to assess the

ergonomic benefit of using an automated DUS trait analysis

method vs. manual traits analysis. This work shall prove

that mobile computing and deep learning can be a solution

to accelerate DUS trait testing.

2. Methodology

2.1. Image acquisition and dataset preparation

An image dataset comprised of two subsets was collected

in this work: tray and individual tomato. In this work, 63

different varieties of tomato were included in the dataset.

The statistical information of the dataset is shown in Ta-

ble 1.

Tray images The tray images are used as input to the

coarse instance segmentation model which detects and es-

timates the size of each tomato. The tray images were ob-

tained using three devices: Intel RealSense D415, Samsung

Galaxy A52, and Google Pixel 3a, as shown in Figure 1.

The Intel RealSense D415 was used for acquiring images

in a closed environment. On the other hand, the Samsung

Galaxy A52 and Google Pixel 3a were used for acquiring

images in uncontrolled environments. In this context, un-

controlled environments refer to experimental greenhouses.

Images were taken using device-to-tray distances, such as

60 cm, 80 cm, and 100 cm, to improve each model’s scale

invariability.

(a) RealSense D415

(b) Samsung Galaxy A52

(c) Google Pixel 3a

Figure 1: Tray images acquired using various imaging de-

vices

635



Algorithm sub-routine Model Imaging device Image resolution Class Instances

Coarse segmentation (trays) YOLOv8-seg Intel RealSense D415 1280x720 Tomato 1150

Samsung Galaxy A52 640x480 Tomato 3861

Google Pixel 3a 1920x1080 Tomato 606

Fine segmentation (tomato) YOLOv8-seg Intel RealSense D415 320x320 Tomato 382

Peduncle scar 382

Samsung Galaxy A52 320x320 Tomato 1287

Peduncle scar 1287

Google Pixel 3a 320x320 Tomato 202

Peduncle scar 202

Table 1: Dataset statistical information

Tomato images The tomato images are used for training

the fine instance segmentation model which aims to finely

measure the size of each tomato and tomato peduncle scars.

Each tomato image was collected by cropping from each

tray image and resized into 320x320 pixels by conditional

upscaling, as discussed later in Section 2.2.

The tray images were annotated with a single class:

tomato, while the tomato images were annotated with two

classes: tomato and peduncle scar. All annotations were

performed using Darwin v7 annotation suite.

2.2. Coarse-to-fine tomato detection and segmenta-
tion algorithm

Each tray image was analyzed through a coarse-to-fine

detection and segmentation approach, as shown in Figure 2.

All algorithm routines were performed offline using the mo-

bile phones without internet connection, for potential use in

harsh and remote environments.

Coarse instance segmentation The purpose of coarse

instance segmentation is to detect and get the contours of

each tomato from the tray images. The deep learning model

used to perform this task is YOLOv8. By the time of this

writing, YOLOv8 is the latest version of the YOLO deep

learning model, developed by Ultralytics [14]. Similar to

its predecessor, YOLOv5, it is comprised of three compo-

nents: backbone, neck, and head. Its backbone also uses

cross-stage partial networks for image feature extraction but

with minor modifications in its convolutional layers, while

its neck combines the extracted features. Unlike YOLOv5,

YOLOv8 uses an anchor-free detector, which means that it

directly predicts bounding boxes and class probabilities for

each object without considering offsets from predefined an-

chor box sizes [13]. By adding a fully convolutional net-

work layer to the YOLOv8 head, YOLOv8 is also able

to perform segmentation by producing mask coefficients;

therefore called as YOLOv8-seg. Based on prior testing, it

was found that the coarse instance segmentation routine was

not sufficient for obtaining fine tomato contours and detect

peduncle scars, due to the low resolution of the mobile de-

vice images. As a solution, each individual tomato image

obtained through this step is used as input for conditional

upscaling.

Conditional upscaling In this work, conditional upscal-

ing refers to resizing an image to a larger resolution, using

different methods based on the image size, to prepare the

image for fine instance segmentation. As shown in Figure 2,

if the pixel length (L) or pixel width (W) of an input image

is smaller than a predefined threshold, a super-resolution

model is used to upscale the image. Otherwise, the image is

resized by cubic interpolation. The super-resolution model

used in this work is Real Enhanced Super-Resolution Gen-

erative Adversarial Networks (Real-ESRGAN) [16]. Real-

ESRGAN is a super-resolution model trained with pure

synthetic data for generic restoration applications. Unlike

other super-resolution models, it can be utilized even with-

out fine-tuning and the availability of paired low and high

resolution data, which are two major bottlenecks in super-

resolution applications. Meanwhile, the predefined thresh-

old was set to 64 since it was found to be the smallest res-

olution of the tomato images in which the peduncle scars

were still visible.

Fine instance segmentation Fine instance segmentation

aims to obtain finer contours of each tomato and detect pe-

duncle scars. Fine contours for trait analysis are necessary

since variations between different tomato contours should

be easily distinguished for reliable DUS testing. Similar

to coarse instance segmentation, YOLOv8-seg was used for

fine instance segmentation but with two classes: tomato and

peduncle scar. The tomato and peduncle scar contours ob-

tained from this step are then retranslated based on the orig-

inal image resolution for pixel to mm conversion in trait

analysis.

2.3. Tomato DUS trait analysis

To obtain a complete shape representation of each

tomato, each tray was prepared by placing tomatoes on

three rows according to three placement orientations: top,

side and bottom. The tomatoes in each row represent differ-

636



Figure 2: Coarse-to-fine tomato instance segmentation algorithm pipeline

ent sample replicates for obtaining statistically-backed mea-

surements. The top and bottom tomatoes represent the x and

y axes, while the side tomatoes represent the x and z axes, as

shown in Figure 3. The lengths are represented as Xic, Yic,

and Zic, where X, Y, and Z are lengths in mm correspond-

ing to axes x, y, and z, with i as index and c as class, such as

tomato (t) and peduncle scar (ps).

Figure 3: Measurement points for tomato DUS trait analysis

Depth measurement Depth data was collected using an

Android mobile device, with Augmented Reality Core (AR-

Core) compatibility [8]. ARCore implements Simultaneous

Localization and Mapping (SLAM) to track the orientation

and position of a camera, relative to the world over time,

which is referred to as a pose. By keeping track of changes

of the position and orientation, SLAM can be used to de-

termine the distance to an object that is within view of the

camera.

In every recorded frame, a new pose is calculated and

new depth information was acquired based on the depth im-

age, as provided by the ARCore depth API. The depth API

provides depth data in two ways: through a depth map or

raw depth. By default, the depth API provides the depth

map, which has an equal resolution to the camera RGB

image, with matching distance estimations. However, the

depth map is actually interpolated based on raw depth, mak-

ing it less accurate. Therefore, the raw depth data was used

in this work. Raw depth data is provided by the depth API

as a 16-bit image equal to the size of the depth sensor, as

recommended in the ARCore documentation for more ac-

curate measurements [6].

Distance After obtaining individual tomato masks from

the proposed algorithm, each mask centroid x and y pixel

value pair was used to get a distance value. The individual

distance values are stored in a byte buffer. In order to get

the index corresponding to an x, y coordinate of the RGB

image, the equation below was used:

Distance = RGBx

RGBwidth/depthwidth
∗ pixel stride +

RGBy

RGBheight/depthheight
∗ row stride

(1)

where x and y are the coordinates of a pixel of the RGB im-

age, pixel stride is the number of bytes used to store a value,

and row stride is equal to the width of the depth map. Since

637



a 16-bit value uses 2 bytes, the pixel stride was equal to 2.

Through this method, each tomato is assigned an individual

distance measurement.

Pixel to millimeter conversion After determining the

distance from the camera to the tomato, the image pixels

were converted to mm. This can be done by measuring the

Field of View (FOV), as calculated based on the focal length

provided by the Android camera intrinsics. The conversion

factors for x and y pixel values were calculated as below:

Pixels per mmx =
2 ∗ tan(0.5 ∗ FoVx) ∗ distance

RGB image width
(2)

Pixels per mmy =
2 ∗ tan(0.5 ∗ FoVy) ∗ distance

RGB image height
(3)

Trait extraction The algorithm is able to extract four

tomato DUS traits including: fruit size, fruit shape ratio,

peduncle scar size, and fruit volume, as calculated using the

following equations:

Fruit size (mm2) = Xt ∗ Yt (4)

Fruit shape ratio = Xt/Yt (5)

Peduncle scar size (mm2) = Xps ∗ Yps (6)

Fruit volume (mm3) = 4/3π ∗Xt ∗ Yt ∗ Zt (7)

In this work, fruit size is the tomato area based on a 2-

dimensional view, fruit shape ratio is the ratio between the

tomato length (Xt) and width (Yt) for determining tomato

squareness, peduncle scar size is the peduncle scar size area

based on a 2-dimensional view, and fruit volume is calcu-

lated based on ellipsoid volume.

2.4. Model training, optimization and deployment

YOLOv8-seg models were trained using a desktop com-

puter, equipped with an Intel Xeon ES-1650 CPU and an

NVIDIA GeForce GTX Titan X GPU, operating under

Ubuntu OS 22.04. The primary training goal was to opti-

mize model inference speed for mobile application deploy-

ment, with accuracy optimization as secondary goal. Dif-

ferent model sizes were used in training, namely YOLOv8-

nano (YOLOv8n-seg), YOLOv8-small (YOLOv8s-seg),

and YOLOv8-medium (YOLOv8m-seg), while learning

rate was also iteratively tested with values of 0.05, 0.01,

and 0.005, using stochastic gradient descent as optimizer.

A train-validation-test split ratio of 70:20:10 were used in

all trials while using a batch size of 2, learning rate of 0.01,

and 50 iterations per trial. Each model was exported to

ONNX format and deployed in the mobile phones using

ONNX runtime [5]. All algorithm testing results were ob-

tained from inferences using the exported ONNX models,

deployed in a Samsung Galaxy A52 mobile phone.

2.5. Algorithm performance evaluation

The detection performance of the coarse and fine in-

stance segmentation models were measured using precision,

as measured using the following equation:

Precision =
TPdet

TPdet + FPdet
(8)

where TPdet is a true positive detection and FPdet is a false

positive detection. Each detection was automatically eval-

uated by measuring the detection Intersection-over-Union

(IoUdet) between each set of ground truth bounding box co-

ordinates with each predicted box coordinates, as computed

below:

IoUdet =
area(B1 ∩B2 ∩ ...Bi)

area(B1 ∪B2 ∪ ...Bi)
(9)

where Bi is the bounding box coordinates of each detected

object, with i as the object index. Bi includes four coordi-

nates: x1, y1, x2, and y2, where x1 and y1 belong to the

object’s x and y vertex box coordinates, and x2 and y2 be-

long to the vertex opposite to x1 and y1. IoUdet values

closer to 1 indicate higher overlap and 0 otherwise. If the

TPdet between two paired coordinates was higher than 0.5,

it was considered as a TPdet.

Meanwhile, segmentation performance was measured

using segmentation Intersection-over-Union (IoUseg),

which is a slight variation of IoUdet. Instead of matching

box coordinates, TPseg measures the overlap between

individual pixels of the ground truth masks and predicted

masks, as shown below:

IoUseg =
TPseg

TPseg + FPseg + FNseg
(10)

where TPseg is the number of correctly predicted pixels,

FPseg is the number of incorrectly predicted pixels, and

FNseg is the number of predicted pixels that are outside of

the ground truth mask.

2.6. Trait quality evaluation experimental setup

Manual reference measurements were taken to evaluate

the accuracy of the ARCore distance measurements and the

automatically measured traits.

Experimental setup A Pixel 3a phone was used for test-

ing with a fixed setup. The phone was clipped to a holder

attached to a tripod, resulting in a fixed height of 954 mm

from camera to the ground. The distance was determined to

be a reasonable height in which the examiner can hold the

phone and see the samples on-screen.

There were 3 varieties used for testing, consisting of 9

tomatoes each. Tomatoes were spaced out evenly on the

black tray resulting in a 3 x 3 grid representing the 3 orien-

tations. The center of the camera was focused on the tomato

638



(a) Main menu

(b) Sample results

Figure 4: Mobile application screenshots

in the middle of the grid, referenced as Side 2. For each

tomato, relevant Xt, Yt and Zt values were manually deter-

mined, as well as the distance from the center of the tomato

to the camera as measured using a tape measure.

ARCore distance measurement evaluation A total of

5 replicate images per variety were obtained for evaluating

the distance measurement accuracy of ARCore, resulting

into 114 individual tomato measurements, while excluding

missed detections. For each measurement, the error was

determined in reference to manual measurement.

2.7. Mobile application user interface

For practical use, a mobile application was developed.

Upon opening the mobile application, as shown in Figure 4,

the user can press Open camera to start taking images.

While attempting to acquire an image, the user is notified

to take the images 50 cm to 120 cm away from the target

samples, which is found to be the best distances for acquir-

ing high quality images. To simplify the process of logging

the tomato variety information, the user can enable the QR

code scanner; otherwise, the tested tomato variety will be

labelled as unknown. The user can view the individual anal-

ysis results by pressing the image of a tested variety in the

main menu, as shown in Figure 4b. Finally, the user can

export all the results into a .csv file by pressing Export.

3. Results and discussion

3.1. Algorithm optimization

3.1.1 Coarse instance segmentation

The coarse instance segmentation model optimization re-

sults are summarized in Table 2. In terms of detection per-

formance, it can be clearly seen that the precision of the

model slightly decreased after shrinking the model size and

input size. But in terms of segmentation performance, the

IoUseg of all the models were relatively too low for accurate

measurements, which proves that the coarse instance seg-

mentation step was not yet enough to obtain reliable DUS

traits. But based on the optimization goal mentioned in Sec-

tion 2.4, The YOLOv8n-seg, with input size of 640 x 640,

was selected as the coarse instance segmentation model for

deployment to accurately detect all tomatoes with minimal

inference time.

Model Input size Precision IoUseg Ave. inference time

YOLOv8n-seg 320x320 0.96 0.86 335 ms

YOLOv8s-seg 320x320 0.97 0.86 515 ms

YOLOv8m-seg 320x320 0.96 0.86 834 ms

YOLOv8n-seg 640x640 0.99 0.86 820 ms

YOLOv8s-seg 640x640 0.99 0.87 1491 ms

YOLOv8m-seg 640x640 0.99 0.86 2795 ms

Table 2: Coarse instance segmentation model optimization

summary

Model Input size Precision IoUseg Ave. inference time

YOLOv8n-seg 320x320 0.94 0.91 292 ms

YOLOv8s-seg 320x320 0.94 0.91 330 ms

YOLOv8m-seg 320x320 0.95 0.91 650 ms

YOLOv8n-seg 640x640 0.94 0.90 437 ms

YOLOv8s-seg 640x640 0.94 0.92 1113 ms

YOLOv8m-seg 640x640 0.93 0.91 2532 ms

(a) Tomato class

Model Input size Precision IoUseg Ave. inference time

YOLOv8n-seg 320x320 0.72 0.65 292 ms

YOLOv8s-seg 320x320 0.72 0.65 330 ms

YOLOv8m-seg 320x320 0.72 0.65 650 ms

YOLOv8n-seg 640x640 0.73 0.70 437 ms

YOLOv8s-seg 640x640 0.73 0.70 1113 ms

YOLOv8m-seg 640x640 0.73 0.71 2532 ms

(b) Peduncle scar class

Table 3: Fine instance segmentation model testing sum-

mary, with cubic interpolation for upscaling

639



Model Input size Precision IoUseg Ave. inference time

YOLOv8n-seg 320x320 0.94 0.97 504 ms

YOLOv8s-seg 320x320 0.94 0.97 542 ms

YOLOv8m-seg 320x320 0.98 0.97 862 ms

YOLOv8n-seg 640x640 0.96 0.97 649 ms

YOLOv8s-seg 640x640 0.96 0.97 1325 ms

YOLOv8m-seg 640x640 0.97 0.97 2744 ms

(a) Tomato class

Model Input size Precision IoUseg Ave. inference time

YOLOv8n-seg 320x320 0.84 0.84 504 ms

YOLOv8s-seg 320x320 0.84 0.84 542 ms

YOLOv8m-seg 320x320 0.84 0.83 862 ms

YOLOv8n-seg 640x640 0.85 0.83 649 ms

YOLOv8s-seg 640x640 0.85 0.82 1325 ms

YOLOv8m-seg 640x640 0.86 0.82 2744 ms

(b) Peduncle scar class

Table 4: Fine instance segmentation model testing sum-

mary, with super-resolution for upscaling

3.1.2 Fine instance segmentation

The results of testing the inferences of the fine instance seg-

mentation model are shown in Tables 3 and 4. Among the

models tested, the YOLOv8n-seg with an input size of 320

x 320 was selected for deployment since it had a reason-

able IoUseg and best inference time for both classes. The

lowest inference time had to be considered for fine instance

segmentation since there were a minimum of 9 tomatoes to

analyze per image.

It clearly shows that using super-resolution for upscaling

allows the model to detect the peduncles more reliably com-

pared to using cubic interpolation alone. It can also be no-

ticed that the segmentation performance was boosted from

0.91 to 0.97 for the tomato class and from 0.70 to 0.83 for

the peduncle scar class, if considering the YOLOv8n-seg

with input size of 320 x 320.

In total, the average inference time of the algorithm was

about 5.4 s, if considering 9 tomatoes per tray. Despite

the slight increase in inference time, the results prove that

applying super-resolution for mobile computing was bene-

ficial since some mobile phone images have poor quality.

As summary, it was shown that the coarse-to-fine instance

segmentation approach generated better results compared to

using only a single instance segmentation model.

3.2. Trait analysis quality evaluation

Sample manual and automatic measurements taken for a

single variety are shown in Tables 5 and 6, respectively. The

testing summary for all the varieties is also shown in 7.

Based on the reference measurements in Tables 5 and 6,

the automated measurements show that the distance from

Tomato Distance Xt Yt Zt

Top 1 909 81 72 -

Top 2 901 87 81 -

Top 3 902 90 81 -

Side 1 882 81 - 54

Side 2 874 82 - 55

Side 3 891 84 - 59

Down 1 906 81 76 -

Down 2 894 82 76 -

Down 3 914 74 74 -

Average 897 82.44 76.67 56

Table 5: Manual measurements (mm) for variety 1 over the

X, Y and Z axis as defined in Figure 3

the camera to each tomato can be reliably estimated, with

an average error of 2.44%, as shown in Table 7. Among the

three axes of measurement, it was observed that the Xt val-

ues had the largest errors due to variations within the variety

in which some were more round and square.

One limitation of ARCore is that the depth map resolu-

tion cannot be exactly the same as the corresponding RGB

image without interpolation. Thus, distances per pixel can-

not be easily obtained, even though it may improve the mea-

surements. There were also few cases in which a tomato

was not properly in place, causing measurement discrepan-

cies. This causes an issue in terms of image perspective

since there are unavoidable variations in how the images

were acquired. Therefore, it is recommended to apply some

correction based on the shooting angle and other related fac-

tors. But even though the results needed some improve-

ment, the average absolute measurement error for the tested

varieties were close to 5%, which was the allowable error

percentage by the examiners.

3.3. Ergonomic benefit assessment

Based from the algorithm optimization results, the pro-

posed algorithm has a total average processing time of 5.4

s. By including the average image acquisition time of 6.6

s, which involves camera focusing and finding the right dis-

tance from camera to tray, the total average measurement

time was about 12 s. On the other hand, manually measur-

ing the traits and writing up the results take an average time

of 57 s. It clearly shows that the mobile application was

able to accelerate DUS trait analysis and provide support

for DUS examiners. As future consideration, the models

can also be selected based on the phone model to optimize

over-all performance.

640



Tomato Distance % error Xt % error Yt % error Zt % error

Top 1 895 -1.54 85.5 5.56 77.2 7.22 - -

Top 2 888 -1.44 88.3 1.49 84.2 3.95 - -

Top 3 879 -2.55 90.3 0.33 81.1 0.12 - -

Side 1 882 0.00 83.1 2.59 - - 56.4 4.44

Side 2 882 -0.92 80.2 -2.20 - - 59.3 7.82

Side 3 877 -1.57 86.2 2.62 - - 61.8 4.75

Bottom 1 885 -2.32 82.6 1.98 78.1 2.76 - -

Bottom 2 882 -1.34 81.3 -0.85 78.4 3.16 - -

Bottom 3 900 -1.53 76.5 3.38 75.9 2.57 - -

Average 886 -1.26 83.78 1.66 79.15 3.24 59.17 5.67

Table 6: ARCore measurements (mm) for variety 1 over the X, Y and Z axis as defined in Figure 3

Variety % error (distance) % error (Xt) % error (Yt) % error (Zt)

1 2.57 4.49 3.67 2.79

2 2.66 7.09 4.49 2.12

3 2.10 9.98 8.37 0.07

Average 2.44 7.19 5.51 1.66

Table 7: Average absolute measurement error for all tested varieties

4. Conclusion
This work has proven that deep learning and augmented

reality were useful techniques for building a reliable mo-

bile application for rapid DUS trait analysis. The coarse-to-

fine instance segmentation algorithm, coupled with super-

resolution, was useful for finding hard to measure tomato

traits from various image resolutions. ARCore was proven

to be capable of measuring object distances with an accept-

able error, compared to manual measurement. The biggest

challenges lie in distortion due to perspective but can be

mitigated as future improvement. As future work, the mo-

bile application shall also be developed for other agricul-

tural produce in order to promote the use of faster DUS trait

analsis methods.

5. Acknowledgements
This work was funded by the Horizon 2020 Framework

Programme (Grant No. 817970) under the project name In-

novations in Plant Variety Testing in Europe (INVITE).

References
[1] Gopinath Bej, Abhra Pal, Tamal Dey, Sabyasachi Majum-

dar, Amitava Akuli, Alokesh Ghosh, and Nabarun Bhat-

tacharyya. Extraction of appearance-based dus character-

istics of okra stem, flower, and seed using image process-

ing. In Proceedings of International Conference on Com-
putational Intelligence, Data Science and Cloud Computing,

pages 209–223. Springer Nature Singapore, 2022.

[2] Jose Blanca, Clara Pons, Javier Montero-Pau, David

Sanchez-Matarredona, Peio Ziarsolo, Lilian Fontanet, Josef

Fisher, Mariola Plazas, Joan Casals, Jose Luis Rambla,

Alessandro Riccini, Samuela Palombieri, Alessandra Rug-

giero, Maria Sulli, Stephania Grillo, Angelos Kanellis, Gio-

vanni Giuliano, Richard Finkers, Maria Cammareri, Silvana

Grandillo, Andrea Mazzucato, Mathilde Causse, Maria José

Dı́ez, Jaime Prohens, Dani Zamir, Joaquin Cañizares, An-

tonio Jose Monforte, and Antonio Granell. European tra-

ditional tomatoes galore: a result of farmers’ selection of

a few diversity-rich loci. Journal of Experimental Botany,

73(11):3431–3445, 2022.

[3] J. Borys, B. Kowalczyk, and J. Waszak. Distinctness, unifor-

mity and stability testing of tomato varieties in poland. Acta
Physiologiae Plantarum, 22(3):225–229, 2000.

[4] Limiao Deng and Zhongzhi Han. Image features and dus

testing traits for peanut pod variety identification and pedi-

gree analysis. Journal of the Science of Food and Agricul-
ture, 99(5):2572–2578, 2019.

[5] ONNX Runtime developers. Onnx runtime. https://
onnxruntime.ai/, 2021.

[6] Google. Use raw depth in your android app.

https://developers.google.com/ar/
develop/java/depth/raw-depth, 2023.

[7] Hao-Chun Hsu, Kung-Ling Hsu, Chuan-Yi Chan, Chun-

Neng Wang, and Yan-Fu Kuo. Quantifying colour and spot

characteristics for the ventral petals in sinningia speciosa.

Biosystems Engineering, 167:40–50, 2018.

[8] Micheal Lanham. Learn ARCore-Fundamentals of Google
ARCore: Learn to build augmented reality apps for Android,

641



Unity, and the web with Google ARCore 1.0. Packt Publish-

ing Ltd, 2018.

[9] Sameena Lone, Khursheed Hussain, Khalid Masoodi, Dr

Narayan, Hussain Mazahir, Majid Rashid, and Harish Ku-

mar. Distinctness, uniformity and stability testing of vari-

ous cherry tomato accessions. Journal of Pharmacognosy
and Phytochemistry, 10:Journal of Pharmacognosy and Phy-

tochemistry, 2021.

[10] Dian Rong, Haiyan Wang, Yibin Ying, Zhengyong Zhang,

and Yinsheng Zhang. Peach variety detection using vis-nir

spectroscopy and deep learning. Computers and Electronics
in Agriculture, 175:105553, 2020.

[11] Henk J. Schouten, Yury Tikunov, Wouter Verkerke, Richard

Finkers, Arnaud Bovy, Yuling Bai, and Richard G. F. Visser.

Breeding has increased the diversity of cultivated tomato in

the netherlands. Frontiers in Plant Science, 10, 2019.

[12] Amin Taheri-Garavand, Amin Nasiri, Dimitrios Fanourakis,

Soodabeh Fatahi, Mahmoud Omid, and Nikolaos

Nikoloudakis. Automated in situ seed variety identifi-

cation via deep learning: A case study in chickpea. Plants,

10(7):1406, 2021.

[13] Juan Terven and Diana Cordova-Esparza. A comprehensive

review of yolo: From yolov1 to yolov8 and beyond. arXiv
preprint arXiv:2304.00501, 2023.

[14] Ultralytics. Yolov8, 2023.

[15] Mukesh Kumar Vishal, Biplab Banerjee, Rohit Saluja,

Dhandapani Raju, Viswanathan Chinnusamy, Sudhir Kumar,

Rabi Narayan Sahoo, and Jagarlapud Adinarayana. Leaf

counting in rice (oryza sativa l.) using object detection: A

deep learning approach. In IEEE International Geoscience
and Remote Sensing Symposium, pages 5286–5289.

[16] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.

Real-esrgan: Training real-world blind super-resolution with

pure synthetic data. In 2021 IEEE/CVF International Con-
ference on Computer Vision Workshops (ICCVW), pages

1905–1914.

[17] Haoyan Yang, Jiangong Ni, Jiyue Gao, Zhongzhi Han, and

Tao Luan. A novel method for peanut variety identification

and classification by improved vgg16. Scientific Reports,

11(1):15756, 2021.

642


