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Abstract

Vertical farming has emerged as a solution to enhance
crop cultivation efficiency and overcome limitations in con-
ventional farming methods. Yet, abiotic stresses signifi-
cantly impact crop quality and increase the risk of food
loss. The integration of advanced automation, sensor tech-
nology, and deep learning models offers a promising so-
lution for quality monitoring addressing the limitations of
stress-specific approaches. Due to the large range of pos-
sible quality issues, there is a need for a general method.
This study proposes a new plant canopy dataset, dubbed
AGM of 1M images, annotated with 18 classes, an in-depth
analysis of its quality for its use in transfer learning, and a
methodology for detecting canopy stresses in vertical farm-
ing. The present study trains ViTbase8, ViTsmall8, and
ResNet50 both on ImageNet and the proposed dataset on
crop classification. Features from AGM and ImageNet are
used for a downstream task on healthy and stress detec-
tion using a small annotated validation dataset obtaining
0.97%, 0.93%, and 0.92% best accuracy with the AGM fea-
tures. We compare with standard datasets like Cassava,
PlantDoc, and RicePlant obtaining significant accuracy1.
This research contributes to improved crop quality, pro-
longed shelf life, and optimized nutrient content in verti-
cal farming, enhancing our understanding of abiotic stress
management.

1. Introduction
Vertical farms, also known as plant factories, have

emerged as a solution to improve crop cultivation response

whilst maximising their nutrient content. Providing a highly

protected environment for crop cultivation vertical farms

enable (1) a significantly higher productivity [77], (2) a re-

duction in biomass waste, land usage, and water consump-

tion, (3) growing fresh, nutritious, pesticide-free plants, re-

1The datasets will be available at https://huggingface.co/

datasets/deep-plants/AGM_HS and https://huggingface.co/

datasets/deep-plants/AGM; the code at https://github.com/

deepplants/AGM_plant_phenotyping.

(a) Step 1: A network is trained to learn useful features

(b) Step 2: Features are re-used to train data efficient classifiers

Figure 1: Presentation of the main methodology

gardless of location and 365 days a year. However, as all

input conditions are controlled, critical parameters such as

irrigation, substrate quality, pH, light intensity and qual-

ity [63, 50, 51], along with climate conditions such as air-

flow [34], temperature, and humidity actively induce abiotic

stresses on the canopy significantly impacting crop quality,

yield and exacerbating the risk of biomass loss. Detection

of canopy stresses, such as excessive plant humidity, leaf

nutrition deficiency, or leaf damage, throughout the growth

cycle, coupled with meticulous analysis of crop manage-

ment data, is crucial to mitigate the root causes of abiotic

stresses. By proficiently identifying and managing canopy

stresses, farmers can optimise yield, crop quality, prolong

shelf life, and ensure an optimal nutrient content profile.

With the integration of advanced automation [45] and

sensor technology [24], vertical farms provide active moni-

toring capabilities for quality assessment. Leveraging com-

puter vision technology [24, 27, 28], and high-resolution

RGB imagery, accurate and scalable monitoring in ver-

tical farming becomes achievable through the application

of computer vision [60, 72] and deep learning techniques

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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[55, 9, 7, 33]. However, the existing approaches are often

confined to detecting specific stresses, limiting the ability

to identify and address unknown stresses that may emerge

as outliers. A more comprehensive algorithm is needed to

extract meaningful features from captured images and auto-

matically check whether a canopy is healthy or unhealthy,

encompassing known and unknown stresses. Methods such

as self-supervised, weakly supervised, and transfer learning

[30, 14, 12] not relying on specific labelling but on very

large-scale datasets are better indicated to lifting good fea-

tures for stress and disease detection. Yet, to leverage these

methods to plant phenotyping, adequate datasets are needed

[81] to obtain separable feature spaces. In this work, we

introduce a methodology showing crucial transfer learning

aspects that apply well to vertical farms, but in fact, it is

general. Our main contributions are summarised in Figure

1, and in the following statements:∎ We present a large dataset on plant canopies exceeding

currently available public plant datasets in size. See foot-

note 1.∎ We show that the features we can extract with transform-

ers such as ViTsmall and ViTbase, and CNNs like Resnet 50

as encoders on the crops (species and mix of them) classifi-

cation task, requiring no labelling effort, have good transfer

learning properties.∎ We show that generating a small dataset for detecting

health and stress and attaching different heads to the en-

coders obtains the best accuracy of 97%.∎ We compare with other compelling datasets for plant

health detection pretrained on ImageNet such as PlantDoc

[69], Cassava [48], and RicePlant [39]. On PlantDoc and

Rice plants, our method is state-of-the-art with resp. 79%

and 89% accuracy on the val set, proving the competitive-

ness of the features obtained with our dataset.

2. Related work
Plant Stress detection Stress detection and classification

are common in image-based phenotyping, [26] trained an

explainable network that presented a pathologist-level per-

formance in 2018. Approaches exploiting publicly avail-

able datasets, such as Plant Village [47], Cassava [48],

Rice Leaf Disease Dataset [56], and PlantDoc [68], have

achieved very high accuracy for classification. All these

approaches use backbones pretrained on ImageNet. These

datasets often show single leaves with a high-stress level

compared to healthy ones and require backbone pretrain-

ing, being too small to be used for feature representation

learning. [29] achieved the best results on three datasets:

99.39% on PlantVillage, 99.66% on Rice Leaf Disease

Dataset, and 76.59% on Cassava, with a Xception-like ar-

chitecture [15]. Comparable high results were obtained by

[8] on Plant Village, reaching 99% accuracy, using other

backbones, including Vision Transformer (ViT) [19]. They

achieved 100% mean accuracy on the Wheat Rust Classi-

fication dataset and 92% on the Rice Leaf Disease dataset.

PlantDoc is a more challenging benchmark, with the best

result being 65.74% obtained by [61]. Many other works

used deep learning to detect diseases in citrus [73], rust

[62], tea leaf blight [4, 65], Northern Leaf Blight in maize

plants [17], and other rice plant diseases [67]. Reviews on

computer vision and machine learning methods for disease

detection have been conducted in [6], [1], and [43].

Plant stress detection and segmentation This have been

explored in the works of [75] and [86]. Typically, dis-

ease segmentation uses image processing techniques such

as filtering, thresholding, Gaussian mixtures, and colour

transforms. [5] noted that when disease symptoms exhibit

colour variations compared to the surrounding areas, region

of interest (ROI) segmentation can be effectively used to

improve classification. This observation has led to further

studies on improving disease classification through segmen-

tation, as demonstrated by [27] and [64]. Segmenting the

leaf also enhances disease classification. [2, 3] proposed

automatic extended region of interest (EROI) generation

through leaf segmentation, which improves detection. An-

other approach, as applied in the case of [83], involves di-

viding a large image into smaller patches for lesion classifi-

cation using a sliding window technique.

Plant Stresses Specific to vertical farm In the context of

plant stress detection, [66] conducted tip-burn identification

in Plant Factories using GoogLeNet. They performed bi-

nary classification on single lettuce images, manually col-

lecting images of individual plants to detect tip-burn. In

[27, 24], both detection and segmentation for tip-burn on

large dense canopies of indoor-grown plants were modelled.

A study by [20] focused on segmentation at the canopy level

for apple scab detection. The authors augmented the seg-

mentation training set using conditional GANs to improve

segmentation accuracy.

Transfer learning and self-supervised detection in plant
phenotyping. Transfer learning is a well-established tech-

nique in Deep Learning, where the weights of a model

trained on a specific task A are reused as a starting point

for a new task B. This approach is particularly effective

when task A involves training on a large dataset, with

popular choices being ImageNet [37]. Several studies

[47, 76, 71, 23] demonstrated that transfer learning from

ImageNet leads to superior performance compared to train-

ing models from scratch. In a study by [41], an alterna-

tive large dataset called PlantCLEF 2015, with more than

2 million images but only 100 images per species, is con-

sidered. PlantCLEF 2015 was used to pretrain a network

for disease detection. The authors showed that a plant-

specific dataset reduces the risk of overfitting compared

to ImageNet. Self-supervision, another approach in trans-

fer learning, has been investigated by [49], where they
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Figure 2: The figure shows the 18 crop types from the AGMS P dataset with their index name.

have tested self-supervised methods such as SimCLR[14],

SwAV[12] and Barlow Twins [84] to check the efficacy of

self-supervision on the soybean plant stress dataset; how-

ever, they applied end-to-end fine-tuning evaluation. Self-

supervised methods have dealt with ImageNet features so

far, and it is hard to believe that ImageNet can provide op-

timal features for plant phenotyping downstream tasks. A

study by [52] compared self-supervised learning methods

with supervised alternatives for plant phenotyping down-

stream tasks and found that the self-supervised methods

performed worse. The study suggests that dedicated feature

extraction methods and datasets for plant phenotyping are

still relevant problems for self-supervised deep learning.

3. Motivations
Deep-learning methods for plant phenotyping need ac-

cess to well-defined features to meaningfully lift segmen-

tation and classification methods to face a large number

of challenging missions on plants, which often can exploit

just a few thousand images. And despite as in any other

task, pretraining on ImageNet [18] is better than training

from scratch [47], this seems to be verified only on datasets

with clear separation of disease features such as PlantVil-

lage [32] and Cassava [48]. However, it cannot be general-

ized to any plant phenotyping task, considering Imagenet is

conceived for everyday human tasks, as shown in [41, 46].

Yet, gaining the extraordinary vastity of classes and well-

curated features such as ImageNet is very hard, and few

attempts have been made so far [13]. In this work, we in-

troduce a new giant dataset of plant canopies collected in a

Vertical Farm with a limited number of classes, namely the

plant species, and discuss basic pretraining methods and the

features space of the dataset, comparing the emerging prop-

erties to the ImageNet ones. Furthermore, we show that

features extracted from the proposed dataset can be used on

a small dataset for detecting healthy and stressed plants ob-

taining accuracy scores better than ImageNet, on the same

dataset. Comparable results on well-known public datasets

for disease detection, such as PlantDoc [69], Cassava [48],

and RicePlant [39] show that despite our dataset being lim-

ited to vertical farms canopies, it is already comparable to

Figure 3: Above: Class frequency distribution of AGM. Below: Preva-

lence of stresses on AGM dataset.

ImageNet for plants stress and disease detection.

4. Dataset

We introduce a dataset, named AGM, meaning AGricol-

tureModern, consisting of 972,858 120×120 RGB images,

encompassing 18 plant crops, here a crop is a species or a

mix of species. Figure 3 (above), provides an overview of

how the images are distributed among the different crops,

where scarcely represented crops are used as tests. Within

certain classes, there are variations in crops or different va-

rieties present. For example, crops bz, by, and bx repre-

sent different varieties of basil, while crops tu1, j1, zx3 are

different varieties of Batavia lettuce. Additionally, some

crops feature a combination of two or three different species

mixed together, e.g. m1a, m1b, idb, ida and m1a and idb
share the same mixture but in different proportions, as well

as m1b and ida. Further insights into these mixes can be

found in Figure 2. During harvesting, trays of different sizes

are assembled in a grid and placed over a moving table.

The images of the full table were captured using a high-
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resolution camera over a period spanning from May 2022

to December 2022. It is worth noting that the illumination

projects light patterns on the plants, resulting in a high vari-

ance of shade and light. During harvesting, agronomists

utilized specialized software to divide the table images into

images of size of 1073×650 pixels of the original trays, with

1px corresponding to 0.5mm, and annotated the crops as

well as the type and severity of any observed stress, assign-

ing it a numerical score (0 to 3). A breakdown of the most

common types of stresses found in the dataset is shown in

Figure 3.

Preprocessing and Pretraining We set up a supervised

classification task for crops classification on AGM and train

a model composed of a large encoder E and a classifica-

tion head H by optimizing a cross-entropy loss between the

model predictions and the ground truth labels. For each

mini-batch (x, y), the learning objective is:

L = −∑
i

yi log(H(E(xi))) (1)

Successively, we discard the head H and evaluate the ef-

fectiveness of pretraining with our dataset by treating the

encoder E as a feature extractor and analyse the quality

of the extracted features by adapting them to new plant-

disease domains. The architecture of the model encoder

E is either based on a deep convolutional residual neural

network (ResNet50 [31]) or transformer-based architectures

(ViT base8 and ViT small8 [19]), which have shown promis-

ing performance in computer vision tasks. During pretrain-

ing, we employed a simple classification head consisting

of a 3-layers MLP with GELU non-linearities and hidden

dimension halved at each layer before the last one. We uti-

lized the Adam [35] optimizer with a learning rate of 10−3

and train for 100 epochs.

Table 1 presents the training, validation, and test accura-

cies for crops classification using three different encoders

and the MLP classification head. The encoders are pre-

trained on either ImageNet or AGM. We observe that the

ViT models consistently outperform the ResNet50 architec-

ture in terms of both training and validation accuracy. Inter-

estingly, the accuracy achieved by the ViT models does not

exhibit a strong dependence on the model size. Both ViT

base8 and ViT small8 attain comparable training and vali-

dation accuracy, indicating that the smaller variant can ef-

fectively learn representations despite its reduced capacity.

Moreover, despite employing a simple classification head

and encoder architectures, we achieve results that are better

than encoders pretrained on ImageNet, which could point

to the effectiveness of AGM pretrained models in capturing

the unique characteristics of plant images.

To test if the generalization capabilities of the model

are enhanced by augmentation strategies with varying de-

grees of strength, different configurations were applied dur-

ing training. These strategies included:

Encoder Pre-trained Training Validation Test

on Acc Acc. Acc.

ViT small8 AGM* 0.9965 0.9720 0.9784

ViT small8 ImageNet 0.9305 0.9309 0.9298

ViT base8 AGM* 0.9950 0.9702 0.9798

ViT base8 ImageNet 0.9330 0.9303 0.9312

ResNet50 AGM* 0.9610 0.9440 0.9410

ResNet50 ImageNet 0.9512 0.9145 0.9243

Table 1: Training, validation and test accuracies for crops classification

using three different encoders (ViT small8, ViT base8, and ResNet50) with

a MLP classification head. The encoders are pretrained on either ImageNet

or AGM. Here ∗ indicates the best in class.

∎ Rotations and Flippings: Random rotations and hor-

izontal/vertical flips were applied to introduce geometric

variations.∎ Mixup [85]: Mixup augmentation combines pairs of

training samples to generate interpolated images; specifi-

cally, for a pair of input images and labels (xi, yi), (x j, y j)
Mixup generates new inputs (x̂, ŷ), such that

x̂ = μxi + (1 − μ)x j

ŷ = μyi + (1 − μ)y j

with hyperparameter μ ∈ [0,1]. (2)

∎ Randaugment[16] no Solarization and Posterization:

We used Randaugment technique to apply a sequence of

random image transformations, excluding solarization and

quantization.

Model Augmentation Training

Acc.

Val

Acc.

ViT base8 Randaug,

Mixup

0.995 0.970

ViT small8 Randaug,

Mixup

0.970 0.962

ViT small8 Rotations & 0.995 0.972

Flippings

ViT small8 None 0.996 0.968

ResNet50 Randaug,

Mixup

0.951 0.914

Table 2: Pretraining accuracy for train and val sets of AGM

The selected augmentation strategies address the chal-

lenges of plant images. Stronger augmentations could hin-

der learning faithful representations from a very specific

dataset with high self-similarity. Such datasets have a clus-

tered data distribution, and applying strong augmentations

may generate samples too far from the actual distribution,

resulting in poorer generalization. Results in Table 2 con-

firm this hypothesis. Excessively strong augmentations,

like Randaugment and Mixup, lead to a slight decrease in

validation accuracy for the ViT small8 model compared to

milder augmentations. These findings emphasize the need
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Figure 4: Coordinates of features projected on S 2, for visualization pur-

pose. The last sphere shows the 3 zones chosen to compute the distribu-

tions on S 2.

to strike a balance between variations and preservation of

the inherent characteristics of the original images [22].

5. Features representation analysis
Features representation has been shown to be pivotal

for semi-supervised, self-supervised, and transfer learning

[30, 14, 12, 46, 11]. Most weakly or self-supervised meth-

ods rely on feature metrics based on the cosine-similarity

between two vectors of features Fi,F j ∈ RN [53]. For ex-

ample, with ViT the feature vectors could be the class token

cls, with cls∈R384, with small8, and cls∈R768 with ViT base8.

Cosine similarity compares pairs of feature vectors on a unit

hypersphere S N−1 [79], image by image, but it cannot com-

pare sets of image features to study specific properties of

the induced feature space.

The purpose of this section is to show relevant differ-

ences between ImageNet and AGM features representa-

tion on features extracted by ViT as shown in Section 4.

These effects have advantages or drawbacks, according to

the transfer learning method used: linear (e.g. linear clas-

sifier or K-means) versus nonlinear (e.g spectral clustering,

kernel PCA), and the task at hand.

Clearly, a vector of size N lies in a Euclidean space

of size N, and each specific feature is a coordinate in this

space. Since N can be very large, to study the feature space

induced by a dataset with M images we need to consider a

group of k < N features coordinates of M and map them on

a manifold to analyse the distribution of sets of image fea-

tures with respect to the considered coordinates. Here we

choose the sphere S k with k < N, namely the hypersphere

in the Euclidean space k + 1, as the manifold of interest.

To better illustrate the idea consider the image shown in

Figure 4. Here we consider three random feature coordi-

nates (for visualization purposes) from the feature average

pooling of ViT base8 trained on AGM and on ImageNet, and

project them on the ordinal sphere S 2 in R3. We can note

that while AGM features (the left sphere) are concentrated

in an area, they lack points on a big part of the sphere. On

the other hand, ImageNet (the central sphere) features are

quite sparse but cover the whole sphere. Here, all visible

points are the projection of a randomly selected triple of co-

ordinates of the features of the whole dataset, and each point

pj is the projection of three sampled coordinate features of

Figure 5: K(α) with α varying in (1,3), we can observe that by a smaller

increment of arc length between points, the number of features points clus-

tering together augment exponentially for the AGM features, while the

growth for ImageNet is much slower.

the j-th image.

Projection on the hypersphere Given the set of M im-

ages from the dataset and the corresponding features set

X∈RM×N , let k∈{3, . . . ,n},n<<N define a group of feature

coordinates. Let q j=(xi0 , . . . , xik) be the chosen set of co-

ordinates of the feature vector v ∈ RN of an image j in M,

with i indicating the randomly chosen tuple of coordinates.

Consider a hypersphere in Rk with center w∈Rk with w=0k,

and ray r, defined according to the set of features X, namely,

r= 1
2
(min{X} +max{X}). The point p j on the hypersphere

surface, corresponding to the j-th image feature vector Xj,

is defined:

p j = ( r
∥q j∥)q j (3)

Note that because w=0k no translation is used in the map-

ping. Given k, the surface area of the hypersphere is:

S k−1(r) = 2πk/2

Γ( k
2
) rk−1, Γ is the gamma-function (4)

Distribution of tuples of features on the hypersphere
Given k-tuples of coordinates of features randomly sampled

from a set of 600 k-tuple both for the ImageNet and AGM

features, we want first to assess how close they are to the

uniform distribution.

Using the Kullback-Leibler divergence [38], namely

DKL( fs∥g), s∈{ImageNet,AGM} with fs a kernel density

on the k−1 hypersphere, we evaluate how close the two dis-

tributions are from the uniform distribution g ∼ U(0,1), see

Table 3. To make this meaningful in terms of spatial distri-

bution, we consider k-zones. These zones (see the sphere

on the right in Figure 4, showing three zones) are defined

on k-great circles of the k−1-sphere and have a bandwidth

of dimension α. We defined the spherical zones on the hy-

persphere as follows. Let BI be the regularized incomplete

beta-function, an hyperspherical cap Ah with height h is:

Let: h = r − α/2 and ν = (2rh−h2)
r2 then

Ah = 1
2
S kBI (ν; k−1

2
, 1

2
) (5)
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Figure 6: Kernel density estimation of points on the K = 4 zones of the k-coordinate features for both ImageNet and AGM features. Features were extracted

by average pooling the last block of ViTbase8, and projected on the k−1-sphere. We note the different shapes: while KDE for ImageNet features is smooth

and in zone 1 close to a uniform distribution, the KDE for AGM features looks more like a mixture.

A k-spherical zone results from the difference between the

hypersphere surface and two equal spherical caps:

S zone = S k − 2Ah (6)

For the kernel density estimation (KDE) [25], we used the

Gaussian kernel over the points within the k S zones. The

density plots shown in Figure 6 help to visually check that

ImageNet features have a distribution very close to the uni-

form, differently from the AGM ones. See also Table 3.

We further consider the K(α) function [59], adapted to

the hypersphere. Here α is the ’width’ of a zone (see Fig-

ure 4), hence of the hyperspherical cap ray, tangent to the

zone. The K(α) function describes spatial events at vary-

ing distances, it differs from KNN since it provides a syn-

thetic analysis of multi-distance spatial clustering. Here we

use an approximate adaptation to the n-sphere, considering

the hyperspherical caps with radius α on each zone surface.

Since a cover of the caps with radius α on a zone cannot

be complete, the resulting K is approximate. However, it

is quite useful (see Figure 5) to see whether at increasing

distances there is a dispersion of the points or not: given the

expected value which should be πα2. If the observed values

are above the graph of the expected one, the points cluster

(namely more and more points belong to the same region)

and are dispersed if the observed values are below. Let S zone

the surface area and Ah the surface of hypercaps with radius

α, an approximation of K, with I the indicator function, and

�=r cos−1(pip⊺j /R2) the arc length, is:

K(α) = Azone

S k
∑
i≠ j

I(�(pi,p j) < α) (7)

Given the nature of plant images, we have seen via the

K(α) function (see also Figure 5) that a small increase in arc

length (or decrease in similarity) accumulates a huge num-

ber of features in a small region of the feature space, there-

fore usual separation and augmentations methods (see also

Section 4) might not be able to separate the features. On

the other hand, AGM features generate a distribution quite

well capturing the idiosyncratic properties of the plants (see

Figure 6) with respect to the task at hand, as opposed to Im-

ageNet features generating a distribution close to the Uni-

form, see also Table 3. This is mirrored in our results

Table 3: ImageNet and AGM feature sets
Dataset Zone # coord divergence from K-test

g ∼ U(0,1)
AGM Zone 1 4 2.5592 2.4701

Imagenet Zone 1 4 0.1636 0.3804

AGM Zone 2 4 2.6455 2.5498

Imagenet Zone 2 4 0.1530 0.4436

AGM Zone 3 4 2.7846 2.7118

Imagenet Zone 3 4 0.1737 0.4275

AGM Zone 4 4 2.6113 3.7714

Imagenet Zone 4 4 0.1619 0.4360

The table shows comparisons of ImageNet and AGM features projected on

a k-sphere, as sampled from two types of distributions along k-zones of the

sphere (column 2). In column 2, the number of coordinate features used is

reported; in column 3, the divergence of the distribution from the uniform

distribution, in column 4 the distribution of points at arc length 1, in terms

of features, about the considered zones (see Figure 5). Tests are done on

600 random 4-tuple for all points on each zone.

on transfer learning for classifying healthy and stressed

canopies, see the next sections.

6. Transfer Learning and Classification
A Healthy Stressed validation set In some cases, related

to our dataset AGM, instances of stress may not be eas-

ily visible in the top-view images. Additionally, each tray

contains multiple plants and has a size of 1073×650 pixels,

making it challenging to accurately identify small areas of

stress within the full image or detect multiple stresses in a

single image. To overcome these challenges, a secondary

stage of annotation is conducted. During this stage, labelers

extract 120×120 sub-images from the tray images selecting

those ones showing clear signs of either good health or high

stress, resulting in the creation of a smaller subset of the

original dataset comprising 6,127 images. This subset con-

sists of 3,798 healthy samples and 2,329 stressed samples

across 14 of the 18 classes of AGM. For this small sub-

set, which we name AGMHS , labelers collected images by

clicking on a point on the stressed leaves. The collected

clicked points were used as prompts to Segment Anything

[36] to semi-automatically generate masks of the stressed

areas. See Figure 7, showing examples of the extracted

masks and relative stress. Together with the healthy/stressed

classification labels for AGMHS we also release the seg-

mentation masks. This addition to the dataset enables

the development and evaluation of advanced segmentation
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Figure 7: Samples from AGMHS dataset and associated masks highlighting tip-burn and chlorosis.

Encoder Pre-trained Val. Acc. Val. Acc. Val. Acc.

on (MLP) (Linear) (KNN)

ViT small8 AGM 0.9720 0.8300 0.9502
ViT small8 ImageNet 0.9478 0.9461 0.8702

ViT base8 AGM 0.9273 0.9404 0.9102
ViT base8 ImageNet 0.9078 0.8321 0.8989

ResNset50 AGM 0.9142 0.8800 0.8637
ResNset50 ImageNet 0.8625 0.8446 0.8230

Table 4: ViT small8, ViT base8 and Resnet50 accuracies on the healthy

and stress task using 3 different heads, namely MLP, Linear, and KNN

fine-tuned on the small dataset of 6000 HS annotated images.

models specifically designed for detecting and localizing

plant stress in top-view images. Indeed, the top-view per-

spective of these images presents an interesting challenge

and opportunity for segmentation models. In most cases,

the majority of the image area is covered by the top view

of healthy leaves, effectively serving as the background in-

formation for a segmentation model. While there are ad-

ditional elements present in the images, such as the terrain

or pieces of the table structure, these represent a small but

non-negligible area in comparison.

In future research we shall show results using the seg-

mentation components of the dataset, in this work, we do

not actually use them, focusing on the transfer learning from

the AGM extracted feature set, for classification.

Evaluation of learned representations In our evaluation

of the learned representations [21] from AGM pretraining

models compared to their ImageNet counterpart, we focus

on the task of healthy-stressed classification. As discussed

in Section 5 here we show that AGM-pretrained models ex-

hibit better discriminative capabilities and are more adept

at capturing the nuances of stressed regions compared to

the ImageNet-pretrained models [78].

Our approach involves attaching simple classification

heads, including an MLP as described in Section 4, a lin-

ear classifier, and KNN, to the pretrained encoder E. To

train the linear and MLP heads, we use cross-entropy loss

and employed the Adam optimizer with a learning rate of

10−4. For the Vision Transformer encoders (ViTs), the

MLP-heads utilize the cls token, the linear classifier uses

the average pooling of the cls token with the last features

block, while for the ResNet50 encoder, we use the flattened

output from the last layer. The results presented in Table

4 demonstrate that AGM pretraining consistently outper-

forms ImageNet pretraining across the various classification

heads; in particular, among the tested classifiers, the 3-layer

Figure 8: Comparison of training and validation accuracies (left) and

losses (right) for AGMHS and ImageNet classification

MLP achieved the best performance. For the ViT small8-

MLP configuration, we also show the dynamics of training

and validation losses and accuracies throughout the training

process and their comparison with ImageNet in Figure 8.

Figure 9: Comparison of t-SNE 2-D projection of features from ImageNet

and AGM pretrained models for crop zx1 samples (above) and crop zx1

samples (below), from AGMHS .

This finding suggests that leveraging a dataset with

domain-specific characteristics and features, such as AGM,

can lead to improved performance and better alignment with

the target task [10]. In the context of the healthy-stressed

classification task, our findings show the benefits of pre-

training on AGM for detecting variations and accurately

identifying stressed areas within plant samples. We con-

duct an analysis of the interclass separation between healthy

and stressed plant samples on the AGMHS dataset to elu-

cidate the role of the pretraining source. Separability of

the frozen features from the pretrained ViTs via clustering

and dimensionality reduction techniques with respect to our

AGM dataset and ImageNet is shown in Figure 9.

Implementation details The experiments were conducted

on a computing setup consisting of two NVIDIA A6000

GPU and utilizing the PyTorch [54] deep learning frame-

work. We trained with a batch size of 64, where the mod-

els were pretrained for 100 epochs and fine-tuned for 30

epochs. The dataset used for pretraining consisted of nearly

one million RGB images. For evaluation, three distinct

datasets were utilized: PlantDoc [69], Cassava [48], and Ri-

cePlant [39] datasets. During the training process, a valida-

tion split of 20% was employed for all experiments. Addi-
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Dataset Model Multi-class

Val Acc.

Cassava T-RNet [87] 0.9112

Cassava ECNN [42] 0.8870

Cassava A.M. EfficientNet [58] 0.8708

Cassava FormerLeaf [74] 0.9500
Cassava DenseNet121 [70] 0.8786

Cassava Ours (ViT small8) 0.9377

PlantDoc InceptionResNet V2 [69] 0.7053

PlantDoc DenseNet201 [57] 0.6718

PlantDoc Ours (ViT small8) 0.7972
RicePlant VGG16 [40] 0.7312

RicePlant Ours (ViT small8) 0.8905

Table 5: Accuracy for a fine-tuned ViTsmall8 on Cassava, RicePlant and

PlantDoc; comparison with state-of-the-art.

Dataset Pre-trained on HS Validation Accuracy

Cassava AGM 0.8920

Cassava ImageNet 0.9065
PlantDoc AGM 0.6674
PlantDoc ImageNet 0.6566

RicePlant AGM 0.8905

RicePlant ImageNet 0.9154

Table 6: Accuracy for a fine-tuned ViTsmall8 on Cassava, RicePlant,

PlantDoc. For each dataset we formulated a binary classification for

healthy and stressed samples.

tionally, for the AGMHS experiments, also test split of 20%

was reserved. The ResNet model used in this study was

based on the Torchvision [44] implementation, while ViT

was adapted from the timm [80] library. Experiments com-

paring AGM pretraining with ImageNet pretraining used

weights provided by [82].

7. Comparisons with state of the art methods

In this section, we present the validation accuracy re-

sults obtained by fine-tuning a ViT small8 model pretrained

on our dataset and compare them with other state-of-the-art

methods. We provide a comprehensive analysis by consid-

ering three plant-based datasets, specifically PlantDoc [69],

Cassava [48], and RicePlant [39], and highlight any impor-

tant considerations for fair comparisons. For more details

see 1. Table 5 summarizes the validation accuracy results

for the fine-tuned ViT small8 model on our dataset, along-

side benchmarked results from other methods. Notably, for

the Cassava dataset, we compare with papers that utilize the

same extended dataset version of more than 21,000 images

and report results on the validation set. Additionally, we fo-

cus on comparing our results with methods applied to the

imbalanced version of the Cassava dataset to ensure consis-

tency and fairness in the comparison.

Regarding the PlantDoc dataset, we consider methods

that train on the entire images, while some studies focus on

the cropped version of the dataset where images are cropped

along the annotation bounding boxes. The fine-tuned ViT

small8 model demonstrates promising results and competes

well against other state-of-the-art methods. On the Cassava

dataset, our approach outperforms all CNN-based methods

in terms of multi-class validation accuracy, with the ex-

ception of the transformer-based method FormerLeaf [74].

Our approach also exhibits competitive performance on the

PlantDoc dataset, demonstrating efficacy while maintain-

ing simplicity and efficiency in the model architecture com-

pared to more complex methods [88]. On the RicePlant

dataset, our approach surpasses the current state-of-the-art

method proposed by Kumar et al. [40]. However, it is im-

portant to note the limited availability of studies and explo-

ration on the RicePlant dataset for comprehensive compar-

isons. Overall, the fine-tuned ViT small8 model showcases

its competitiveness and promising performance across mul-

tiple plant-based datasets, positioning it as an effective and

efficient approach for agricultural computer vision tasks.

We conduct a binary healthy/stressed classification task

on the three datasets considered, with the objective to clas-

sify images as either healthy or stressed, disregarding the

specific diseases and plant crops present. In Table 6 we re-

port results for this binary classification task. In comparison

to an equivalent model pretrained on ImageNet, our model

achieved comparable results. Specifically, on the PlantDoc

dataset, our pretrained model outperformed the ImageNet-

pretrained model by 1.6% in terms of classification accu-

racy. However, on the Cassava and RicePlant datasets, the

ImageNet-pretrained model had a slight advantage, surpass-

ing our model by 1.6% and 2.7%, respectively.

8. Conclusions

This work demonstrates the potential of pretraining vi-

sion transformers on large-scale, domain-specific datasets

for agricultural computer vision tasks, focusing on vertical

farming. Leveraging a novel dataset, AGM, of nearly 1 mil-

lion canopy images of size 120 × 120, we reveal the supe-

riority of features learned from the domain-specific dataset,

especially in stressed vs healthy plant classification. The

analysis highlights differences in feature space distributions

between ImageNet and the domain-specific dataset, indicat-

ing better nuances capturing in plant images. Fine-tuning

the AGM pretrained model on public datasets like Plant-

Doc, RicePlant, and Cassava achieves state-of-the-art ac-

curacy for plant disease detection. Future research should

optimize the model architecture, explore dataset-specific

techniques, and integrate domain knowledge for enhanced

plant species classification and health state detection algo-

rithms. This approach promises effective computer vision

models for plant health monitoring and most phenotyping

tasks based on high-resolution RGB imagery.
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