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Abstract

Apples are widely consumed worldwide, but the quality
of the fruit flesh might deteriorate during storage, resulting
in brown tissue formation. X-ray radiography has emerged
as a non-destructive method for quickly detecting internal
quality problems. This method provides X-ray imaging data
that should be processed in an accurate and efficient way.
In this paper, we investigate the classification of healthy and
defect apples from different orchards and storage conditions
using deep learning. The aim of the study was to select a
robust and efficient deep learning network that can be used
on an X-ray sorting system in a practical setting in the agri-
food industry. To this end, the models were evaluated not
only in terms of performance but also computational cost.
As biological variability is inherent to agrifood problems,
we strongly focused on generalizability of the models by
using multiple test sets with apples from another orchard
and stored under different conditions. The best model had
the GoogLeNet architecture, reaching an accuracy of re-
spectively 100 (0)% on a first test set with apples from an-
other orchard, and 82 (8)% on a second test set stored at
other conditions. The comparative study provides valuable
insights for improving robust and efficient detection algo-
rithms and implementing X-ray technology in the agrifood
industry. The proposed technology can be extended to other
fruit and vegetables that also suffer from internal quality
problems.

1. Introduction

To ensure a year-round supply of fresh produce, fruit and

vegetables are typically stored under controlled atmosphere

conditions. However, quality deterioration can still occur

due to suboptimal conditions or the inherent susceptibility

of certain products. Apples, a highly consumed commodity

worldwide, are prone to internal quality deterioration, of-

ten appearing as browning of the fruit flesh [12, 17, 34]. In

today’s agrifood industry, only a small sample size of ap-

ple fruit per batch is evaluated by cutting open the fruit, but

the entire batch is discarded in case of a negative evalua-

tion. This leads to large food losses of a significant fraction

of healthy products in the batch. Postharvest losses due to

quality decay, often caused by disorders, affect 5 to 25% of

total horticultural crop production [35].

Recently, X-ray radiography has been proposed as a non-

destructive and fast technique to detect the internal quality

in fruit and vegetables, as demonstrated for apple [26, 27,

28], pear [38, 40, 42], citrus [10, 37], seeds and grains [1, 2,

4], and many other commodities [7, 9, 29].

2. Related work

Over the years, image processing has developed from

visual inspection to machine learning. Last years, deep

learning for machine vision tasks such as classification has

achieved a great success. In 1998, Lecun et al. [18] in-

troduced the first convolutional neural network (CNN) for

classification. In the following years, various state-of-

the-art CNNs have been proposed, such as AlexNet [16],

GoogLeNet [31], VGG [30], ResNet [11], EfficientNet [32],

and ResNeXt [41]. While CNNs have been the standard

in vision tasks for many years, natural language process-

ing has developed differently, with Transformer architec-

tures becoming the norm. Recently, vision and language

research has converged, aiming to apply Transformers on

vision tasks, such as the Vision Transformer (ViT) [8]. In-

spired by this, Liu et al. [21] started from ResNet and grad-

ually incorporated Transformer elements to improve perfor-

mance, resulting in the ConvNeXt model.

In food quality inspection, prior work on deep learning

used simulated X-ray radiographs for pear and a ResNet

classifier [11, 40]. Also grain and seed quality [4, 24]

was inspected by AlexNet [16], VGG [30], ResNet [11],

Inception-ResNet [31], Xception [3], and MobileNetV2

[25]. Besides these CNNs, ViT has also found its way to-

wards food imaging, such as the detection of diseased kiwi
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[20] and cassava leaves [36], and the classification of di-

verse types of vegetables [19].

The earlier agricultural studies have often focused on one

or a few specific network architectures, evaluated on a small

test set of foods from the same batch. In addition, mod-

els have sometimes been developed and tested on simulated

X-ray data, but not further evaluated for real X-ray images

from an industrial machine [40]. Hence, to obtain a deep

learning algorithm that is applicable in the agrifood indus-

try, the most efficient and effective architecture should be

identified as well as it should be thoroughly evaluated on

more diverse test sets that cover the biological variability

inherent to nature. Another hurdle is that the datasets in

agrifood studies typically consist of just a hundred of sam-

ples. This is in contrast to the state-of-the-art models that

are designed for large public datasets, such as ImageNet [6].

In addition, such public datasets consist of RGB images,

while X-ray radiographs are one-channel data.

In this work, we leverage the history of network archi-

tectures for the classification of healthy and defect apples

based on X-ray images. We apply basic state-of-the-art

deep learning models. Thereto, we focus on the model per-

formance for multiple independent test sets and its compu-

tational workload. Our findings and discussion aim to en-

courage rethinking the importance of efficient model design

and convolutional operations in computer vision. The ulti-

mate goal of this study is to select an efficient and robust

deep learning model for accurate detection of internal qual-

ity of apples from different orchards and storage conditions,

that can rapidly run on an available industrial X-ray sorting

machine. In general, the aimed throughput of such a device

is ten samples per second to meet the speed of commercial

sorting lines for external quality attributes, such as color

and shape. Such an X-ray scanner with a conveyor belt is

already commercially available. It can even be simply com-

bined with a small embedded GPU for inference. The X-ray

technology has been approved to be safe on food for human

consumption, with today’s application in the food industry

mainly laying in foreign object detection [5, 39]. The main

contributions of this work are as follows.

• We collected and curated three datasets of radiography

images with binary labels for detecting internal disor-

ders in apple fruit. The datasets include fruit from dif-

ferent orchards and storage conditions and can serve as

a benchmark for the research community. The images

are manually labeled as ’healthy’ or ’defect’ based on

RGB images of cut-open fruit. The datasets will be

made available upon reasonable request.

• Ten state-of-the-art pretrained models were trained us-

ing ten-fold stratified cross-validation: AlexNet,

GoogLeNet, VGG16, ResNet18, ResNet50,

EfficientNet-B0, EfficientNet-B1, ResNeXt50,

ViT, and ConvNeXt.

• The model performance and generalizability was eval-

uated on two independent datasets with apples from

another orchard and storage condition.

• The ten models were evaluated in terms of accuracy,

recall, and precision, in addition to the computational

requirements. The latter aspect is essential for devel-

oping an efficient and fast sorting system in the agri-

food industry.

3. Datasets

Apple fruit (cultivar Braeburn) was harvested from dif-

ferent orchards and stored under diverse controlled atmo-

sphere conditions. Table 1 gives an overview of the number

of samples per dataset, later used as training and test data

for classification. All fruit were harvested in the late picking

window of 2021. The fruit underwent a cooling period of 21

days before applying the optimal conditions, consisting of

regular air or 0.7% CO2 and 2.5% O2. Other fruit was im-

mediately placed under controlled atmosphere for the disor-

der conditions, consisting of anoxia (100% N2) for 4 weeks

or hypoxia (10% CO2 and 1% O2) for 3.5 months. Prior

to X-ray imaging, all fruit were put in shelf-life condition

(18°C) for three days.

From all fruit in Table 1, X-ray radiographs were col-

lected using a prototype industrial line scanner with con-

veyor belt (InnospeXion), available in the lab (Figure 1).

Four radiographs per fruit were collected by turning the

fruit around its longitudinal axis for 90 degrees. The X-

ray source operated at 35 kV and 5000 mA. The X-ray de-

tector had a resolution of 8160 x 256 pixels, a pixel size

of 27 μm, and line rate of 2000 Hz. The pixels in the ac-

quired data underwent a binning process with a factor of

five, resulting in an image comprising 1632 x 2000 pixels.

The speed of the conveyor belt was set at 0.27 m/s. Each

apple was placed in a Styrofoam sample folder to fix its po-

sition during scanning. In the preprocessing step, the X-ray

images were subjected to darkfield and flatfield correction.

The sample holder was removed by thresholding the image,

and a gamma correction of 0.5 was applied to the image

data. The object of interest was cropped out to 1632 x 1632

pixels and the images were resized to 224 x 224 pixels.

After X-ray imaging, all apple samples were cut open to

visually inspect the internal quality. All apples under opti-

mal conditions were unaffected, while all these under disor-

der conditions developed internal browning. These observa-

tions were used as ground-truth labels (’healthy’ or ’defect’)

for each individual apple.
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Dataset Optimal condition Disorder condition Orchard

Training set n=30, regular air, 3°C n=30, 100% N2, 3°C 50.82°N, 5.28°E

Test set (1) n=14, regular air, 3°C n=30, 100% N2, 3°C 50.79°N, 5.37°E

Test set (2) n=107, 0.7% CO2, 2.5% O2, 1°C n=168, 10% CO2, 1% O2, 1°C 50.82°N, 4.80°E

Table 1. Overview of the collected datasets (n, number of samples)

Figure 1. Prototype industrial line scanner with conveyor belt (In-

nospeXion), available in the lab. Device used for collecting X-ray

imaging datasets.

4. Method
4.1. Approach

In this work, multiple state-of-the-art classification net-

works were applied to detect internal disorders in apple fruit

based on X-ray imaging data. To this end, models were

trained on a balanced training set consisting of 30 healthy

and 30 disordered apples. From both labels, 27 (90%) and

3 (10%) samples were respectively used for model train-

ing and validation. Data augmentation including image flip-

ping (horizontal, vertical, horizontal and vertical) and ran-

dom affine transformation resulted in 1080 and 120 images

for training and validation, respectively. Ten state-of-the-

art ImageNet-pretrained networks were fine-tuned on this

specific dataset. The models were trained in ten-fold strati-

fied cross-validation, using a binary cross-entropy loss and

Adam [14] and AdamW [22] optimizer (ß1=0.9, ß2=0.999)

for the CNNs and Transformer-inspired (ViT, ConvNeXt)

models, respectively, as in the original works. The batch

size was kept at 256 and the initial learning rate (LR) was

optimized during the network design (10-3, 10-4, 10-5), and

gradually decreased by factor 0.1 if no improvement was

seen for the training loss for three epochs. We applied early

stopping for all the architectures to avoid overfitting as eval-

uated by the accuracy on the validation set. The input di-

mensions at the first convolutional layer of each network

architecture were adapted to 224 x 224 and the output chan-

nels of the last layer was set to one, followed by a sigmoid

function to perform the binary classification (threshold at

0.5). Finally, ten models were obtained that were used for

inference by providing them X-ray imaging data from the

two independent test sets.

4.2. Network architectures

Ten pretrained classification models were fine-tuned us-

ing the PyTorch library [23] and an RTX A6000 Nvidia

GPU.

• AlexNet [16]. The implementation provided in Py-

Torch was slightly different from the original one, and

is based on [15]. LR = 10-4. Epochs = 70.

• GoogLeNet [31]. The first version, i.e., Inception v1,

was used. As the original PyTorch model only accepts

three-channel input data, the model was preceded by a

two-dimensional convolutional layer with a 1 x 1 con-

volutional operation to extend the one-channel input

data to three channels. LR = 10-3. Epochs = 50.

• VGG16 [30]. The VGG16 model with batch normal-

ization was used. LR = 10-4. Epochs = 50.

• ResNet [11]. A ResNet18 and ResNet50 model was

used. LR = 10-3. Epochs = 50.

• EfficientNet [32]. The baseline EfficientNet-B0

network was used as well as the scaled model

EfficientNet-B1. LR = 10-3. Epochs = 50.

• ResNeXt50 [41]. The version with a 32 x 4d template

was used. LR = 10-3. Epochs = 50.
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• ViT [8]. The base version of this model with 16 x 16

input patch size, i.e., ViT-B/16, was used. AdamW

optimizer. LR = 10-5. Epochs = 50.

• ConvNeXt [21]. The tiny version of this model, i.e.,

ConvNeXt-T, was used. AdamW optimizer. LR =

5*10-5. Epochs = 50.

4.3. Model performance

Model performance on the two independent test sets (Ta-

ble 1) was evaluated against ground-truth labels of ‘healthy’

and ‘defect’ using a confusion matrix that presents the true

positive (TP), true negative (TN), false positive (FP) and

false negative (FN) classifications. Additional metrics, in-

cluding the accuracy (1), precision (2), and recall (3) were

calculated from these results. These metrics were calcu-

lated for all models obtained via ten-fold cross-validation

and reported as median (interquartile range) as the data-

points were often not normally distributed.

accuracy =
TP + TN

TP + FN + TN + FP
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

Besides the accuracy rate, the model complexity was an-

alyzed by counting the total amount of learnable parame-

ters and collecting the size of the parameter file in terms of

megabyte (MB) for the considered models. In addition, the

computational cost of each deep learning model was cal-

culated via Giga Floating-Point Operations per Second (G-

FLOPS). The information is useful for gaining insights into

the powerful hardware required, such as GPU memory, for

each model.

5. Results & discussion
5.1. Apples with different disorders

X-ray images were collected from the apples and these

were labeled by cutting open the fruit. Figure 2A-C shows

an example for disordered cut-open apples for each avail-

able dataset (Table 1) together with an X-ray radiograph.

These images were compared to the data from a healthy ap-

ple in Fig. 2D. The N2 condition for the training set and

test set (1) resulted in internal defects appearing as dark

brown speckles in the fruit flesh (Fig. 2A, B). On the other

hand, the CO2 condition caused large patches of brown-

ing and external injury symptoms visible just beneath the

skin (Fig. 2C). This is in contrast to the fruit stored un-

der air/optimal conditions, which all remained unaffected

(Fig. 2D). The radiographs in Fig. 2 were adapted via Con-

trast Limited Adaptive Histogram Equalization (clip limit

5, tile grid 10) to better visualize the disorders. Some het-

erogeneities were observed in the radiographic images from

the disordered fruit (Fig. 2A-C) compared to the radiograph

from the healthy apple (Fig. 2D). However, relating these

observations to the specific browning in the cut-open sam-

ple remained difficult. The other appearance of browning

disorder in the fruit flesh stored under N2 or CO2 could also

not be clearly observed in the radiographs, although an ear-

lier study with X-ray computed tomography that resulted

in 3D imaging data demonstrated that the large browning

patches under CO2 had a higher density compared to the

healthy fruit tissue, while the brown speckles under N2 had

a lower density [33].

5.2. Deep learning architectures

During the last decade, advanced deep learning architec-

tures have been designed with constantly improving accu-

racy on the ImageNet dataset. However, successful models

could also be very large and therefore difficult to implement

in a practical application. This work represents the history

of state-of-the-art deep learning classifiers, and started from

exploring some typical classification models in terms of

size, top-1, and top-5 accuracy on the ImageNet-1K dataset.

Table 2 depicts that the accuracy of these classification net-

works has gradually increased over the past years.

5.3. Generalizability

The success rate in deep learning is typically highly de-

pendent on the network architecture, specific dataset, and

classification task. For instance, some models may need

much data or be more difficult to stabilize during training,

such as Transformer-based models [8]. In this work, we

applied the history of ImageNet-pretrained state-of-the-art

classification architectures on ’healthy’ vs ’defect’ classifi-

cation for X-ray images from ‘Braeburn’ apples. We fo-

cused on the generalizability of the models to diverse test

sets, as well as the computational requirements for the dif-

ferent network architectures.

Deep learning models were trained on the training set

consisting of healthy samples and defect ones due to N2

storage (Table 1). A total of ten architectures were evalu-

ated on two test sets using the accuracy (eq. 1), precision

(eq. 2), and recall (eq. 3) as evaluation metrics, with results

presented in Table 3. The numbers show that all models

had a considerable higher performance on the first test set

which consisted of apples stored under N2, like the training

set, but coming from another orchard. In contrast, the ap-

ples in the second test set were stored under CO2. As stated

above, the storage conditions led to a different appearance

of disorders in the fruit flesh (Fig. 2). The models were thus

trained on disorders arising from N2, but also evaluated for

their detection ability of CO2 induced disorders.

From Table 3, it is clear that AlexNet, together with ViT
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Figure 2. Image of a cut-open apple with X-ray radiograph. Disordered samples from A Training set, B Test set (1), and C Test set (2).

Healthy apple from D Training set.

AlexNet GoogLeNet VGG16 ResNet18 ResNet50 EffNet-B0 EffNet-B1 ResNeXt50 ViT ConvNeXt

Year 2012 2013 2015 2015 2015 2016 2016 2017 2020 2022

Size (MB) 233.1 49.7 527.9 44.7 97.8 20.5 30.1 95.8 330.3 109.1

Top-1 acc. (%) 56.5 69.8 72.4 69.8 76.1 77.7 78.6 77.6 81.1 82.5

Top-5 acc. (%) 79.1 89.5 91.5 89.1 92.9 93.5 94.2 93.7 95.3 96.1

Table 2. Overview of the ten pretrained deep learning architectures used in this research and the top-1 and top-5 accuracy on the ImageNet-

1K dataset.

and ConvNeXt had a considerably lower performance than

all other models. To clarify the differences between the

models, the network architectures were considered in de-

tail.

AlexNet was one of the earliest CNNs [16], having a se-

quential architecture with five convolutional layers, and ob-

tained an accuracy of 62 (2) and 50 (3)% on the two test

sets. Following research extended the capabilities of the

model in later CNNs. In 2014, Szegedy et al. [31] intro-

duced the inception module, which performs convolutions

using different sizes of filters on the same level, resulting in

the GoogLeNet model. This inception module led to sub-

stantial improvement in performance of 100 (0) and 82 (8)%

on the test sets. The kernels of size 1, 3, and 5 in a single

inception module are thus more effective than using individ-

ual kernels in the convolutional layers of AlexNet. Further

design of CNNs, with deeper models, residual training, and

scalable modules in the VGG [30], ResNet [11], and Effi-

cientNet [32] families, all resulted in similar performances.

On the other hand, drawing conclusions for the performance

on test set (2) is difficult because of the high interquar-

tile range, calculated from the inference by the ten mod-

els trained for each architecture and train-validation split.

The reason for this inferior performance for all models on

test set (2) might be found in the data itself. As discussed

above, the appearance of the CO2 related disorders is dif-

ferent from the disorders due to N2 storage. Hence, the ex-

tracted features for the latter disorders, on which the models

are trained, are thus not sufficient to detect CO2 related dis-

orders. Generalizability is a common issue in agricultural

vision tasks. For instance, Kamal et al. [13] reached a per-

formance of 99.5% by using VGG on a public plant leaves

dataset, but decreased to 33.3% for in real-world detection.

Besides CNNs, also upcoming Transformer-based mod-

els were considered. However, a ViT typically needs a large

dataset and might be difficult to stabilize [8]. Recently, the

ResNet50 model has been reintroduced as ConvNeXt using

similar training procedures as ViT [21]. However, both ViT

and ConvNeXt resulted in an inferior performance, with

models having diverging accuracy according to the specific

training-validation set folds as demonstrated by the high in-

terquartile range.

The results are somewhat different from the accuracy on

ImageNet. To explain, we notice from Table 2 that our

most accurate models, i.e., GoogLeNet, VGG16, ResNet,

EfficientNet, and ResNeXt, were outperformed by ViT and

ConvNeXt for the ImageNet dataset. We fine-tuned all these

pretrained models for our specific classification task, but it

gave inferior results for the two latter architectures. A pos-

sible reason might be the limited number of training images

used in our work.

Apart from the accuracy, the recall and precision were

also provided. The first metric is important to circumvent

that disordered fruit reaches the consumer. On the other

hand, not too much healthy fruit may be regarded as disor-

dered, as represented by a low precision, resulting in ele-

vated food loss. Comparing the two test sets in more detail,

a very high recall was observed for all models on test set
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AlexNet GoogLeNet VGG16 ResNet18 ResNet50 EffNet-B0 EffNet-B1 ResNeXt50 ViT ConvNeXt

Test set (1)

Acc. (%) 62 (2) 100 (0) 100 (0.7) 99.1 (0.7) 100 (0.9) 99.6 (0.9) 100 (0.6) 100 (0) 73 (7) 74 (12)

Recall (%) 96 (4) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 99 (1) 100 (2)

Precision (%) 57 (1) 100 (0) 100 (1) 98 (1) 100 (2) 99 (2) 100 (1) 100 (0) 65 (6) 66 (8)

Test set (2)

Acc. (%) 50 (3) 82 (8) 80 (13) 85 (14) 85 (11) 81 (4) 80 (9) 80 (9) 56 (10) 74 (21)

Recall (%) 0 (6) 75 (16) 70 (26) 80 (30) 80 (22) 74 (8) 79 (17) 69 (18) 98 (4) 66 (43)

Precision (%) 0 (61) 87 (2) 87 (5) 87 (2) 89 (2) 87.2 (0.7) 86 (4) 87 (2) 54 (6) 78 (19)

Table 3. Overview of the performance of the ten state-of-the-art classifiers on Test set (1) and (2). Median and interquartile range reported

for the ten models obtained via ten-fold cross-validation.

Figure 3. Ball chart reporting the median accuracy vs computational complexity. Accuracy using only the center crop versus floating-point

operations (FLOPs) required for a single forward pass are reported. The size of each ball corresponds to the model complexity. A Test set

(1); B Test set (2).

(1). This means that the N2 disordered fruit could be iden-

tified. However, the detection of CO2 disordered fruit was

more difficult, as observed from the lower recall for test set

(2).

5.4. Computational requirements

Besides the generalizability, an important aspect to use

deep learning in a fast sorting system is the computational

workload and speed. To this end, the accuracy on both

test sets, the amount of G-FLOPS, and the number of pa-

rameters were evaluated. Table 3 and Figure 3 illustrate

that GoogLeNet and ResNeXt provide excellent results on

the first test set, while using a limited number of param-

eters. This means that the model efficiently uses its pa-

rameters. Other good architectures with high performance

and limited parameters for this specific task are the ResNet

and EfficientNet families. We consider the other models

as inferior because of the lower accuracy (AlexNet, ViT,

and ConvNeXt) or higher number of parameters (VGG 16).

Looking at the robustness on test set (2), the ResNet fam-

ily reached the highest performance, with ResNet50 slightly

more demanding in computational power than ResNet18.

EfficientNet and GoogleNet had even less computational re-

quirements, but scored lower on performance.

To summarize, the results demonstrate that more param-

eters do not always lead to better performance. During

model design, the architecture and data are critical in addi-

tion to the limited computational resources in an industrial
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setting. GoogLeNet, with an accuracy of 100 (0)% and 82

(2)% on the two test sets, a low number of parameters and

FLOPs scored the best for our practical implementation of

apple sorting based on X-ray radiographs. Also, ResNet50

and ResNeXt50 resulted in similar performances.

The X-ray system employed in this study provided data

with a pixel size of 0.135 mm after binning. These images

were cropped and resized finally resulting in a pixel size of

0.98 mm. This is an appropriate resolution as the disorders

we want to detect are typically in the mm-range (Fig. 2).

The speed of data acquisition can even be increased to 50

cm/s, which corresponds to 5-10 apples per second. X-ray

imaging is proven to be safe on food for human consump-

tion and is already used for foreign object detection. Such

objects, such as metal, are easier to detect as the density

differences between the food and the object is high. Small

density differences inside fruit tissue due to disorders are

more challenging and require advanced algorithms.

The study also came with some challenges. For instance,

the Transformer-inspired models, i.e., ViT and ConvNeXt,

were difficult to stabilize. Furthermore, the used training-

validation dataset consisted of 1200 images which is very

limited, especially for Transformer models [8]. The CNNs

could yet reach a high performance on this small dataset.

However, the detection of CO2 disordered fruit should still

be improved. In future research, the dataset should be fur-

ther extended to enhance the model’s performance. Apart

from other types of internal disorders, the generalizabil-

ity of the proposed deep learning model should also be

checked for other seasons, cultivars, and data from an X-ray

line scanner in another industrial set-up. In addition, more

lightweight model architectures can be considered as well

as explainable AI. For instance, heatmaps can be produced

to better understand the model’s attention into the images.

Finally, the method can be extended to other species of fruit

and vegetables.

6. Conclusions and Future Work
In this paper, we have presented a study of several deep

learning architectures for classification on healthy and de-

fect apples based on X-ray imaging data. The model that

provides the best performance requiring limited computa-

tional resources is GoogLeNet. In future work, the training

dataset could be increased to enhance model performance

and robustness. Additionally, the method can be extended to

other apple cultivars and species of fruit and vegetables. We

conclude that the application of deep learning on X-ray ra-

diography data for internal quality detection holds promis-

ing preliminary results for proper sorting in the agrifood in-

dustry. An industrial sorting system that implements the

deep learning classifier will be able to quickly distinguish

healthy and defect apples. This sample-by-sample quality

control will result in decreased food losses compared to cur-

rent batchwise inspection that cuts open a sample of fruit by

hand.
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