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Abstract

Modern computer vision technology plays an increas-
ingly important role in agriculture. Automated monitoring
of plants for example is an essential task in several applica-
tions, such as high-throughput phenotyping or plant health
monitoring. Under external influences like wind, plants typ-
ically exhibit dynamic behaviours which reveal important
characteristics of their structure and condition. These be-
haviours, however, are typically not considered by state-of-
the-art automated phenotyping methods which mostly ob-
serve static plant properties. In this paper, we propose an
automated system for monitoring oscillatory plant move-
ment from video sequences. We employ harmonic inver-
sion for the purpose of efficiently and accurately estimating
the eigenfrequency and damping parameters of individual
plant parts. The achieved accuracy is compared against
values obtained by performing the Discrete Fourier Trans-
form (DFT), which we use as a baseline. We demonstrate
the applicability of this approach on different plants and
plant parts, like wheat ears, hanging vines, as well as stems
and stalks, which exhibit a range of oscillatory motions.
By utilising harmonic inversion, we are able to consistently
obtain more accurate values for the eigenfrequencies com-
pared to those obtained by DFT. We are furthermore able to
directly estimate values for the damping coefficient, achiev-
ing a similar accuracy as via DFT-based methods, but with-
out the additional computational effort required for the lat-
ter. With the approach presented in this paper, it is possible
to obtain estimates of mechanical plant characteristics in
an automated manner, enabling novel automated acquisi-
tion of novel traits for phenotyping.

1. Introduction

In modern agricultural applications, computer vision and

its potential for automating many laborious tasks play an

Figure 1: The oscillatory movement of a wheat ear after

excitation in an image sequence together with the trace of

a marker and an estimate of f [Hz] and β [s-1] at four pro-

gressive points in time.

increasingly important role. Phenotyping, monitoring plant

health and even selective harvesting [28] are all tasks that

can benefit from the capabilities of modern technology in

order to reduce the necessary amount of human labour. To

this end, an automated system surveying the state of plants

with the help of state-of-the-art (SOTA) computer vision

tools is crucial for enabling the automation potential of

all of these applications. The majority of current research

in this domain focuses on monitoring static plant proper-

ties such as shape, colour, complexity or structure [10].

Plants however are highly dynamic and motile systems, of-

ten experiencing motion caused by external forces such as

wind [22] or physical interactions, like the ones necessary

in crop picking applications [27]. The short-term dynamic

responses of plants to these interactions are often charac-

terised by oscillatory motions which are an indicator of in-

ternal plant properties. These properties may include their

rigidity and ability to withstand strong wind or heavy rain,

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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but also their more acute health status, including for ex-

ample water stress [5]. Due to that, an increasing amount

of scientific consideration has been given to the dynamic

mechanical properties of plants for computer vision-based

agricultural applications in the recent past.

In this paper, we propose an automated monitoring sys-

tem for estimating key dynamic plant properties from video

data acquired via a standard RGB camera. In our system,

we use colour-based markers to localise and track individ-

ual plant parts undergoing dynamic oscillatory motion, like

fluttering, waving or shaking. We subsequently use the ve-

locity of the tracked marker as input data for spectral analy-

ses, estimating the eigenfrequency and damping coefficient

of the observed motion. The velocity of the marker is used

instead of the raw position since velocity is phase-shifted

but directly correlated to the position, which therefore elim-

inates any static bias while still accurately representing the

dynamic changes. We rely on artificial markers for motion

tracking and focus our investigations in this paper on the

deduction of dynamic plant properties, not dealing in close

detail with the intricate technicalities of marker detection

and motion tracking. It has however been shown previously

that it is also possible to derive oscillatory plant motions

directly from video data using optical flow instead of dedi-

cated markers [26], which provides the potential for a fully

automated pipeline.

In summary, this paper introduces the following key con-

tributions:

• an approach for estimating the frequency f and the

damping coefficient β of plants from video sequences

with the help of harmonic inversion;

• identification of the critical parameters of the method,

their respective influences on the results and compar-

ison against classical spectral analysis methods based

on Fourier transform;

• an evaluation of the performance of our method in real-

life scenarios with various moving plants exhibiting

several characteristics and under different data acqui-

sition regimes.

2. Related Work

The automation potential of high-throughput phenotyp-

ing and the possible use of computer vision for it has been a

highly active area of research in recent years. This has been

highlighted recently on the example of strawberry plants in

a comparative study by James et al. [10]. The key character-

istics used for phenotyping are typically of a static nature,

like length or general size of individual plant parts, or sim-

ply colour and location of fruit [19]. Some temporal traits

have been considered in the past, like growth rate [14] and

flowering duration [8]. More recently, however, the short-

term dynamics, characterising movement on the scale of

seconds rather than days or weeks, has started to gain at-

tention for these purposes as well.

Some recent work underlines the potential importance

of the dynamic properties of plants, specifically oscillatory

movements, for phenotyping and other agricultural appli-

cations. For example, Jung et al. have recently demon-

strated the significance of the fluttering dynamics of leaves,

which can be a valuable indicator of the water stress level

of plants [13] and give useful insights into a plant’s fitness

for a certain climate. Leaf flapping dynamics are investi-

gated in more detail in recent work by Bhosale et al. in

which the authors study the reaction of leaves to the impact

of raindrops [2]. Even further analyses of leaf flutter are

given in [25], highlighting its important contribution to the

resilience of trees to wind damage.

In [3], Brüchert et al. give a detailed mechanical de-

scription of plants that are “top loading with negligible stem

mass”, like wheat ears for example, illustrating the corre-

lation between the oscillation frequency of plants, the di-

mensions and weight of their parts as well as their elastic-

ity. Similarly, de Langre et al. have recently studied plant

vibrations at all scales [5] and even provide a specific in-

vestigation of utilising free plant oscillations to phenotype

poplar (Populus sp.), tobacco (Nicotiana benthamian) and

wheat (Triticum aestivum L.) plants [6] with respect to pa-

rameters like changes in mass and the internal levels of wa-

ter stress that the plant experiences. Both of these attributes

are highly relevant for phenotyping in order to breed plants

which are well suited for hotter climates and more resilient

to buckling. Furthermore, this work also relates closely to

previous investigations by Nakata et al. [20], who utilise

stem vibrations to identify mutants of thale cress (Arabidop-
sis thaliana), highlighting again the usefulness of oscilla-

tory parameters for phenotyping purposes.

All these examples focus mostly on undamped oscilla-

tions, however damping plays an important role in naturally

oscillating plants as well, mostly for the purpose of pro-

tecting the structural integrity of the plant by distributing

energy efficiently among its entire structure or into the sur-

rounding media [9][22]. These different modes of damp-

ing and their effects are thus very relevant for phenotyping

purposes as well, since they help to select more resilient

and robust plants. The respective effects have been studied

intensely for example in work by Castro-Garcia et al. [4]

who investigate the different modes of oscillation and their

individual damping behaviours. Spatz et al. have investi-

gated the contribution of different types of branches to os-

cillation damping in trees [23], while Jonsson et al. have

documented the effects, be they structural or caused by the

surrounding media, that lead to the actual phenomenon of

damping in plants [12]. It is therefore obvious that damping
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in plants is just as important an area of investigation as the

phenomenon of plant oscillations itself.

All this highlights the possibility of, as well as the de-

mand for, using short-term dynamics and oscillatory motion

in modern phenotyping and automated plant monitoring ap-

plications. Simultaneously, it also underlines the difficul-

ties and possible downsides of this approach, with the time

needed to actually perform measurements and the tools used

to collect and evaluate data being some of the biggest hin-

drances. Therefore, by improving this process and automat-

ing as much of it as possible, large benefits can be brought

to the area of high-throughput phenotyping and autonomous

crop monitoring.

The tools needed for enabling us to collect these data ef-

ficiently are therefore twofold. On the one hand, we require

standard SOTA computer vision tools for detection and

tracking, which are typically available as off-the-shelf solu-

tions [1][26]. On the other hand, we need a toolset to deter-

mine the oscillatory parameters themselves. For analysing

spectral behaviours in general, Fourier transform has been

the default choice in the recent past, specifically discrete

Fourier transform (DFT) is most commonly used [24]. Nev-

ertheless, while DFT is a well-established, straightforward

method for spectral analyses, its capabilities in terms of

dealing with decaying signals, i.e. damped oscillations like

the movement of wheat ears as illustrated above, are limited.

It is therefore relevant to also consider other approaches,

like harmonic inversion (HI) [18]. HI takes the approach

of dividing the input signal into a combination of decaying

sine waves. By doing so, it provides an insight not only into

which frequencies are the most dominant in the input signal

but also into their decay rate / damping ratio, which as high-

lighted previously can be a valuable indicator for various

plant health-related factors and more.

3. Dynamic Plant Behaviour Monitoring
In this section, we describe the process we employ in

order to determine the short-term dynamic parameters of

plants in more detail. We start off by applying colour-based

tracking markers on different types of plants and plant or-

gans. We then detect and track these markers using simple

colour-based thresholding and a standard object tracking al-

gorithm (i.e., SORT [1]) to obtain their movement data (as

for example shown in Fig. 1). We use these data to obtain

reference values for ground truth (GT) data of their dynamic

oscillation behaviour, however in a fully automated system,

as for example presented by Wagner & Cielniak [26], no

markers are necessary to obtain these values, which allows

for a high degree of automation.

Subsequently, we excite the plant parts manually and use

the velocity of the tracked markers (in the image pixel do-

main), sampled at a camera frame rate of fs = 200 Hz over a

period of 10 s after excitation. This manual act of excitation

Figure 2: Ringdown behaviour of a wheat ear (see also

Fig. 1 for reference), illustrated as the velocity (in pixels)

of a tracked marker over time. Data calculated using a fit-

ting oscillator model are shown for reference as well.

can be easily automated for example by an articulated robot

arm to increase the degree of automation of this method.

For the purpose of our experiments however this did not

prove to be necessary and we therefore leave it for future

work or in-field applications.

As mentioned above, the data annotation we utilise is

performed in image-pixel space. Since we are not particu-

larly interested in the absolute magnitude of movement at

this point but primarily in frequency and damping param-

eters, we assume that a transformation to real-world coor-

dinates or even 3D space is not necessary. Both of the ob-

served quantities are scale-invariant, therefore this assump-

tion holds. An example of the input data thus obtained is

illustrated in Fig. 2.

The behaviour observed in this figure, commonly known

as “ringdown”, can be modelled by the well-known equa-

tion for the classical damped harmonic oscillator, defined

by Eq. (1) as

x(t) = x0 · e−i(2πft−φ)−βt, (1)

wherein xt is the amplitude at a given point in time t with

x0 being the initial amplitude at t = 0, f is the frequency,

φ the phase and β the decay rate, representing the damping

of the system. From all the parameters introduced by this

equation, for our purposes we are particularly interested in

f and β, as they enable us to obtain a deeper understand-

ing of the state and behaviour of a plant. Nevertheless, we

implicitly also obtain measures of φ and x0 as well. These

parameters hold the potential for further evaluation in fu-

ture work, however for the purposes of this paper we do not

consider any significance they may hold and focus on f and

β instead. To actually obtain numerical values for these pa-

rameters, we require spectral analysis methods, which we

now discuss in the following section.

4. Spectral Analysis Methods
Analysing the spectral components of signals is a well-

established area of research, as they hold great significance

for many applications in e. g. electrical or mechanical engi-
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neering. As such, several approaches to this problem exist.

While the most popular choice for extracting the spectral

components of a signal is arguably DFT, HI provides var-

ious advantages over the classical Fourier-based analyses.

Specifically, HI holds the potential for a much higher fre-

quency resolution and grants insight into the damping be-

haviour of signals directly without the need for additional

computation. In this section, we investigate both methods

and highlight their respective peculiarities and strengths.

4.1. Harmonic Inversion

The harmonic inversion of time signals is an approach

to spectral analysis which fundamentally operates on the

assumption that the investigated signal is constituted of a

number of decaying oscillations with different parameters

and attempts to find the determining parameters of these.

The problem can be formulated as a non-linear fit of a

signal C sampled at τ equidistantly spaced points:

C(nτ) =
K∑

k=1

dke
−inτωk , n = 0, 1, 2, ..., N (2)

Eq. (2) introduces K sets of parameters, with dk describ-

ing the amplitude and the real part of ωk the frequency of

a certain signal component. HI imposes no restrictions on

the closeness of these components, allowing in theory for

an arbitrarily high resolution of the results, depending on

the results of the non-linear fit. Furthermore, by also using

the imaginary part of ωk the width of the frequencies can be

deduced, thus their decay rates can be calculated directly.

To solve the nonlinear set of equations from Eq. (2), at

least N = 2K points are required, with the method being

most efficient and stable with K no larger than 50 - 200 [15].

Choosing an appropriate value for K, the number of fre-

quencies to be identified, is thus essential for the perfor-

mance of the algorithm. In practice it is also essential to

define a frequency range for the algorithm, with plants typ-

ically exhibiting oscillations in the range from 0.5 - 10Hz.

The mathematical intricacies of the harmonic inversion

problem are complex and exceed the scope of this paper.

We refer the interested reader to the explanations presented

in [18], [16] & [17], and for implementation details to [11].

4.2. Fourier Transform

A standard approach to spectral analysis, the mathemat-

ical definition of the Fourier transform for a discrete time

series of complex numbers x0, ..., xN−1 is given as

X(k) =
N−1∑

n=0

xne
−i2πkn

N (3)

wherein X(k) represents the magnitude of a frequency

component k present in the input series x with

k = 0, 1, 2, ..., N − 1. DFT thus basically iterates over a

finite number of frequency components and provides infor-

mation about the presence of each of these frequency com-

ponents in the signal.

The main difference in this equation in comparison to

the definition of HI is that while in HI the frequency com-

ponents can be arbitrarily close, DFT imposes a restriction

on the granularity of the calculated frequency “bins”, with

them being all equally sized. Furthermore, the resolution

in the frequency domain for DFT is not only determined by

the sampling rate fs but also by the number of samples N ,

so that the frequency resolution Δf , i.e. the size of one bin,

is defined as per Eq. (4) as

Δf =
fs
N

=
1

T
(4)

for a data collection period of length T . The range of fre-

quencies that can be observed is in theory mathematically

limited to a maximum of N ·Δf = fs. However, in accor-

dance with the Shannon-Nyquist sampling theorem, only

frequencies of up to fs
2 can be accurately described [21].

Finally, DFT can not directly provide information about

the decay value of a signal since it only provides insights

into frequency components in a signal for one point in time.

To obtain information about signal decay, additional steps

are necessary, as will be illustrated in Section 5.2.

For the calculation of all DFTs in this paper, we have

utilised the implementation as a fast Fourier transform

(FFT) from the numpy library [7], we are therefore using

DFT and FFT interchangeably hereinafter.

5. Implementation Details
5.1. Harmonic Inversion

For harmonic inversion, we initially have to define a

range of frequencies to search in, as well as a number of sig-

nal components K to reconstruct the input signal from, as

explained in Section 4.1. The frequency range needs to be

restricted relatively closely around the frequency of interest

since HI tends to otherwise also pick up the harmonics of

the actual eigenfrequency. In our investigations, we there-

fore limit the frequency range to roughly ± 90% around the

frequency of interest, to block the influence of any harmon-

ics. In practice, most oscillatory motions in plants occur

below 10 Hz. The correct value for K needs to be selected

carefully as well since too small values produce less accu-

rate results and too large values lead to inefficient calcula-

tions and thus require increased processing time. In prac-

tice, a value of K = 200 as recommended in [15] has proven

to work well, which is why all further analyses in this paper

use K = 200, unless otherwise specified.

From performing the harmonic inversion of the input sig-

nal, we obtain a series of signal components, each charac-
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Figure 3: Frequency values calculated using HI on data ob-

tained from Scenario 1 with a moving window of varying

length.

Figure 4: Decay values obtained directly by running HI on

data obtained from Scenario 1 with a moving window of

varying length.

terised by f , x0, φ, β and a subjective error value that de-

scribes the methods’ “confidence” in a specific component.

To further de-noise the results, we disregard components

with negative values for the damping coefficient β (i. e.

signals growing in magnitude) and components which are

overdamped (i. e. components where β > 2πf , which

would allow for no oscillation at all). From the remaining

components, we select the one with the lowest error value

and use those values for f and β. By doing so, we are able

to obtain much more accurate results for f than the ones

obtained with FFT, as can be seen in Fig. 3 and Fig. 5. We

also directly obtain values for β, which are correspondingly

shown in Fig. 4, however, the improvement in accuracy of

these values in comparison to the ones produced by FFT (as

shown in Fig. 6) is less obvious and highly dependent on

the amount of input data available.

5.2. Fourier Transform

Using FFT, it is a straightforward matter to obtain the

dominant frequency from a signal such as the one shown in

Fig. 2. We perform the actual FFT on the same input data as

for HI, crop the obtained spectral signature to a frequency

range of interest to reduce the possible impact of noise and

select the bin with the highest magnitude. If we run this

algorithm continuously for a moving window of length T
over the input data, the calculated frequency result will de-

velop as shown in Fig. 5.

The accuracy of the results depends strongly on the

amount of data available, i. e. the value of T . For example,

in accordance with Eq. (4), the smallest granularity we can

Figure 5: Frequency values calculated using FFT on data

obtained from Scenario 1 with a moving window of varying

length.

Figure 6: Decay values calculated from a curve fit on the

amplitudes obtained by running FFT on data obtained from

Scenario 1 with a moving window of varying length.

achieve for T = 3.0 s, the largest T used in this experiment,

is Δf = 0.33 Hz. For frequencies in our comparatively low

range of interest, this is significant, leading to an uncertainty

range of roughly 15 % for f = 2.2 Hz.

Also, obtaining a decay value is not directly possible by

using FFT. To address this issue, we utilise the signal ampli-

tude values which can be directly obtained from FFT, store

them and perform a curve fit on all available amplitudes. As

the model for this fit, we can use the decay function from

Eq. (1) with f = 0 and φ= 0, which leaves only x0 and β as

unknowns. Since we can use x(0) as x0, we only need to

obtain a value for β, which can be obtained through a least-

square-fit. By doing so, we get a gradually refining value

for β, as shown in Fig. 6 which also highlights the differ-

ences stemming from the use of different window lengths

on the results, with a more thorough evaluation presented in

the following sections.

To further evaluate both of the introduced approaches

and compare them appropriately, we now perform numer-

ical comparisons in Section 6.

6. Evaluation

6.1. Methodology

To test the suitability of our approach for obtaining oscil-

lation parameters from plant motion, we first define GT data

to compare our results against. For this, we manually select

fitting values for the parameters of Eq. (1) in order to repre-

sent the movement data shown in Fig. 2 accurately. We then

fine-tune these parameters with the help of a least-square fit
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T 0.5 s 1.0 s 2.0 s 3.0 s IW

HI
f 1.0 % 0.9 % 0.6 % 0.6 % 0.4 %

β 34.9 % 43.6 % 11.7 % 11.1 % 5.2 %

FFT
f 10.4 % 10.4 % 10.9 % 4.5 % 3.1 %

β 7.3 % 6.2 % 11.2 % 9.5 % 61.2 %

Table 1: Mean percentage error for frequency and decay

calculated using HI or FFT with different evaluation win-

dow sizes as well as an increasing-size window.

to ensure the most accurate representation possible. The os-

cillation behaviour thus defined by these parameters is plot-

ted in Fig. 2 and aligns closely with the GT data as well,

which underlines the validity of the oscillator model. From

this, we can also observe the good correspondence of the

calculated GT data to the real data collected from the video

sequences. The parameters obtained in this way are there-

fore used as reference values for our further evaluations. As

mentioned above however, we do not address the issue of

tracking plant parts and assume marker-provided, perfect

data. In practice, this component is a possible source of

additional error introduced into the system.

To evaluate the performance of the different spectral

analysis methods, we infer f and β from the oscillation data

obtained from the video sequences, as shown in Fig. 1, us-

ing both methods. We then compare the determined param-

eters against our GT data. By doing so, we obtain an esti-

mate of the accuracy and performance of HI in comparison

to FFT. For evaluation purposes, we subsample the input

data with a moving fixed-size window of different lengths

T as well as an increasing-size window and investigate the

influence of these two sampling methods on the results.

6.2. Critical Parameters

In the first step, we evaluate the influence of the type

and size of the evaluation window used on the results of

the analyses. We use fixed-size windows with a length of

T = 0.5 s, 1.0 s, 2.0 s and 3.0 s as well as a window of in-

creasing length which continuously accumulates data. As

input data, we use the plant movement data shown in Fig. 2.

To evaluate the performance of HI vs. FFT, we define a

“stable period” in which we analyse the results by compar-

ing them to the manually defined GT values as explained in

Section 3. For the increasing-size window, this stable pe-

riod starts as soon as 2K samples are available as this is the

minimum required for HI to be able to solve the nonlinear fit

as explained in Section 4.1. For a fixed-size, moving eval-

uation window, the stable period starts after 1.5T . In both

cases, the stable period ends when the oscillation amplitude

becomes less than 10 % of its original magnitude. By utilis-

ing this period we attempt to suppress the influence of noise

and low-confidence calculations. All metrics in this section

#1, #2, #3, #4

#5

#1, #5

#2
#3

#4

Figure 7: Camera positions and excitation modes used in

the different evaluation scenarios for a wheat ear.

evaluate the data inside this period. We now calculate f and

β using the various fixed-size windows and compare them

to the GT values inside the stable period. The respective

mean error values are given in Table 1.

From this initial investigation, we can observe that a

larger window consistently leads to better results for f . For

β however, the influence of T is less linear. When using HI,

a larger T almost universally leads to better results for β
as well (except for T < 2.0 s, since at fs = 200 Hz a smaller

value for K is required than for the other window sizes, as

explained in Section 4.1, which leads to less predictable re-

sults). Conversely, the FFT based calculations for β utilise

the average signal amplitude in the evaluation window for

the curve fit, therefore an increased window size artificially

flattens the decay of the curve, thereby worsening the ob-

tained estimates of β.

In practice, therefore, we choose an increasing-size win-

dow for all evaluation scenarios except for the calculation

of decay by FFT, for which we choose T = 1.0 s. As shown

in Table 1, these values produce the best results for the re-

spective tools and thus allow for a fair comparison.

6.3. Evaluation Scenarios

We perform several experiments with an increasing-size

window as well as with a fixed-size window of T = 1.0 s

in different scenarios. In the first step, we record diverse

data of an oscillating wheat ear such as illustrated in Fig. 2,

which exhibited an eigenfrequency of f = 2.2 Hz and a de-

cay value of β = 0.4 along its main axis of oscillation. The 5

different data recording scenarios we used in this analysis,

in which we varied camera position as well as direction of

excitation, are illustrated in Fig. 7. Scenario 1 is equivalent

to the one used for primary analyses in the previous section

and will thus serve as a point of reference.

As above, we calculate the mean percentage error for f
and β for each scenario. The results, using an increasing-

size window for all calculations except for the calculation

of β by FFT as explained above, are given in Table 2.
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Scenario # 1 # 2 # 3 # 4 # 5

HI
f 0.4 % 0.3 % 0.4 % 0.3 % 2.5 %

β 10.5 % 4.7 % 7.6 % 8.5 % 44.3 %

FFT
f 3.1 % 3.1 % 3.1 % 3.2 % 5.6 %

β 6.2 % 7.9 % 6.6 % 2.4 % 37.8 %

Table 2: Mean percentage error for frequency and decay es-

timates of wheat ears calculated using HI and FFT respec-

tively. A fixed-size, moving evaluation window (T = 1.0 s)

was used for the calculation of β by FFT and an increasing-

size window was used for all other calculations.

Scenario # 1 - 5 # 6 # 7 # 8 # 9 # 10

f [Hz] 2.23 0.63 1.76 1.62 1.97 1.53

β [s-1] 0.40 0.11 0.95 0.72 0.61 0.79

Table 3: Ground truth values for f and β of the different

plants / plant parts illustrated in Fig. 1 & Fig. 9.

It is immediately apparent that the worst results are ob-

tained when changing the direction of excitation. This is

because the direction of excitation for Scenarios 1 - 4 is in

the plane of oscillation of the wheat ear, while the direction

of excitation in Scenario 5 is perpendicular to it. Because of

this, the wheat ear changes direction mid-oscillation to re-

turn to its main oscillation axis, experiencing a phase-shift

as well as losing some oscillation energy, both of which in-

fluence the analyses negatively.

We can also see that in all other cases, the results for f
obtained by HI are not only roughly ten times more accu-

rate than the results obtained by FFT, but also below 1%

mean percentage error. The calculated values for β are in

most cases marginally better when calculated by FFT, how-

ever the differences are not very large and HI is able to pro-

vide these values directly without any additional computa-

tion steps, unlike FFT. To illustrate the different behaviours

of the calculated values for f and β over time a comparison

of the methods within the stable periods is shown in Fig. 8.

6.4. Generalisation

To extend our investigations beyond only the wheat

plants we have used thus far, we also evaluate data from

three commonly available plant types exhibiting various os-

cillatory behaviours. Specifically, we analyse the behaviour

of a hanging vine of Epipremnum aureum (“golden pothos”,

Scenario 6, see Fig. 9a), the stem of a Ficus elastica (“rub-

ber tree”, Scenario 7, see Fig. 9b) and various branches of

a Zamioculcas zamiifolia (“ZZ plant”, Scenarios 8 - 10, see

Fig. 9c, Fig. 9d & Fig. 9e) exhibiting different degrees of

overhang. The GT values for f and β for these respective

Scenarios are given in Table 3.

As above, we investigate the performance of HI with an

Figure 8: Calculation of frequency (left) and decay (right)

values in the stable periods (visualised as blue background)

for Scenarios 1 - 5 (top to bottom) by FFT (red) and HI

(orange). All calculations were done using an increasing-

size window except for the calculation of decay by FFT, for

which a fixed-size window of 1.0 s was used.

Scenario # 6 # 7 # 8 # 9 # 10

HI
f 1.2 % 0.5 % 1.7 % 0.7 % 4.1 %

β 39.5 % 17.9 % 14.3 % 8.6 % 17.0 %

FFT
f 7.8 % 6.0 % 6.7 % 4.2 % 6.5 %

β 35.4 % 14.7 % 12.1 % 2.3 % 17.2 %

Table 4: Mean percentage error for frequency and decay

of various plants calculated using HI or FFT respectively.

A moving evaluation window (T = 1.0 s) was used for the

calculation of β by FFT and an increasing-size window for

all other calculations.

increasing-size window and of FFT with an increasing-size

window for f as well as with a fixed-size window for β.

The results for these experiments are given in Table 4.

It can be seen that the approach generalises well to other

scenarios, albeit with some caveats. As before, the best

results for f are consistently obtained through HI with an

increasing value for T . For β, HI again produces slightly
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(a) Epipremnum aureum,

Scenario 6

(b) Ficus elastica,

Scenario 7

(c) Zamioculcas zamiifolia,

Scenario 8

(d) Zamioculcas zamiifolia,

Scenario 9

(e) Zamioculcas zamiifolia,

Scenario 10

Figure 9: Different types of plants used in our experiments.

The oscillatory motion the plants exhibited during the ex-

periments are shown as a trace of the markers applied along

with the respective values for f [Hz] and β [s-1].

worse results than FFT, however again the differences in

the mean errors are small. The worst results for decay val-

ues are achieved for Scenario 6, i.e. the hanging vine, since

it exhibits very low damping (see Table 3). It is therefore

hard for the algorithm to detect any noticeable decay in the

time frame of the investigation. This behaviour could the-

oretically be improved by extending the data collection pe-

riod significantly, but due to the low magnitude of β, very

low noise values still have a comparatively large impact on

the relative mean error.

Overall, however, HI performs significantly better in

terms of frequency estimates in all scenarios and similarly

as good as FFT for obtaining decay values. Additionaly,

as highlighted previously, FFT based methods require ad-

ditional computation steps to get a measure of the decay

values while HI does not.

7. Conclusions
In this paper, we have presented a method for automated

estimation of the short-term dynamic oscillatory parame-

ters of plants which hold the potential for significantly im-

proving the process of high-throughput phenotyping. We

have employed modern computer vision techniques aided

by harmonic inversion to obtain estimates for these param-

eters from standard video sequences and compared the re-

sults to those obtained with Fourier transform based meth-

ods, which were used as a baseline. We have evaluated both

methods in various configurations, different data acquisi-

tion scenarios, varying size of the sampling windows used

and on different types of plants under investigation. The

experiments have shown that HI provides significantly bet-

ter frequency estimates than DFT and decay values that are

similar to those obtained by progressively collecting signal

amplitudes with DFT and fitting an exponential decay curve

to those. Due to this increased complexity of DFT based

methods, HI is more suitable for this task as it can be used

directly without any secondary computation steps.

Obtaining these dynamic plant parameters reliably can

bring huge benefits to modern agricultural tasks such as

high-throughput phenotyping, as highlighted by a lot of the

recent research given in Section 2. It also makes it possible

to monitor plant state, identify plant parts of similar oscilla-

tory behaviour and improve other tasks with high automa-

tion potential, which is crucial to accommodate the needs

of modern agriculture.

In order to obtain robust results, HI requires a relatively

narrow frequency range of interest as described in Sec-

tion 5.1, which limits its applicability without any prior

knowledge of the system. In future work, we will inves-

tigate a combined approach of DFT and HI, pursuing a

coarse-to-fine approach, where an initial result for f is pro-

vided through DFT which is subsequently refined with the

help of HI while simultaneously producing accurate val-

ues for β. Furthermore we have not addressed the issue

of automated tracking of plant parts in this paper, as previ-

ous work investigates this problem and we focus mostly on

the processing of these data. A complete system however

would need to incorporate both components, data acquisi-

tion and processing. Future work could possibly also utilise

the phase information φ intrinsically provided by both HI

and DFT to further improve the results from the analyses.
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