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Abstract

Weed mapping is a technique used to identify and locate

harmful weed plants in farm fields. Accurate weed mapping

enables targeted herbicide application and helps plant sci-

entists to estimate the effectiveness of field experiments. In

this paper we discuss a highly practical and effective work-

ing pipeline to weed map a wheat field combining GIS and

deep learning technology. This pipeline is an end-to-end

process including using an unoccupied aerial vehicle (UAV)

to collect ultra-high definition whole-field images, labelling

and training deep learning models and an efficient evalu-

ation process for the resulting weed map. We show that

our method can generate accurate pixel-wise weed maps by

only training on small regions of the field, and can general-

ize well when making predictions back on the larger whole-

field orthomosaic image.

1. Introduction

Weed management remains one of the primary concerns

for modern agronomy and uncontrolled weeds lead to yield

loss [1] and reduced carbon sequestration [10] in crop fields.

The common approach to weed control involves uniform

broad spraying of herbicide on the field. Even though this

method is effective, broad herbicide application creates a

high cost for the farmers and the large quantity of chemi-

cals used also has potential for negative impact on the envi-

ronment. These problems led to increasing interest in preci-

sion spraying due to its potential economic and environmen-

tal benefits. Compared with traditional uniform spraying,

targeted spraying not only reduces chemical costs but also

helps protect crops and leaves a significantly smaller envi-

ronmental footprint in the process. Whole-field weed maps

showing the exact locations of weed and crop plants are

needed as a “prescription” for spotted herbicide sprayers.

Apart from precision spraying, automatic weed detec-

tion has also gained momentum in plant science research.

Many agronomy field experiments involve measuring and

comparing the density of crops/weeds before and after her-

bicide application. Traditionally agronomy field experi-

ments are evaluated manually by human observers walking

through the field experiment, which is time-consuming, te-

dious, subjective and prone to rater bias. With the help of

automatic weed detection, agronomists can more efficiently

and accurately research over larger areas of the fields.

Prior to deep learning, traditional machine learning

methods like Support Vector Machines and Linear Discrim-

inant Analysis were used to detect weeds [11][24]. How-

ever, extracting features from image pixels can be difficult

and requires a substantial amount of domain knowledge in

agriculture [8]. Lottes et al. [15] and Milioto et al. [16]

started to experiment with applying deep learning models

for semantic segmentation to weed detection and have seen

promising success. Convolutional neural networks (CNNs)

are a type of deep learning model that is specialized for

computer vision tasks such as object detection and semantic

segmentation. Object detection identifies objects and marks

the location of the objects with bounding boxes. In the case

of weed detection, weeds could grow close to the plants

which can lead to numerous bounding boxes colliding. Seg-

mentation avoids this problem by performing a pixel-level

classification of the image. Semantic segmentation is ideal

for weed detection since it not only identifies the weeds but

also gives a precise description of their shape and location.

Current applications of CNNs in computer vision are

highly task specific. The model generally needs to be

trained with a large and well-annotated dataset created for
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the desired task. For popular tasks like autonomous driv-

ing, training on available public datasets like Cityscapes [5]

can often yield satisfactory results. Weed detection datasets

have fewer and larger images. Whole-field images are com-

monly collected by taking a series of images with an unoc-

cupied aerial vehicle (UAV) and stitching these tiles into an

whole-field orthomosaic image. With high-resolution cam-

eras, the stitched whole-field orthomosaic image can have

a size over 10 GB which makes direct training impractical

due to limited GPU VRAM memory sizes.

One practical way to adapt field crop datasets to the train-

ing process is to break each image into smaller and uniform-

sized tiles [20]. This brings out the problem of balancing

the tile size and the amount of overlap between tiles for

efficient and effective training. There are a few tiling hy-

perparameters to consider, mainly size/resolution of image

tiles and degree of tile overlap. Batches of the largest tile

size that can fit into the GPU memory is preferred for train-

ing efficiency [18]. Tile overlaps can potentially increase

the dataset size, but have the trade-off of incurring longer

training time. Once the training is complete, we would also

need a practical way to infer on the much larger whole-field

image. One of the challenge is to stitch and merger overlap-

ping tile predictions. Whole-field predictions are particu-

larly challenging for agronomy field experiments which are

much more variable than production fields due to imposed

variation between regions of the field due to differences in

treatment, e.g. rate and type of herbicide application.

In this paper, we propose a practical workflow to create

an accurate weed map of a wheat field. The workflow de-

scribes the end-to-end process of collecting a whole-field

image, labelling samples, tiling and training, and inferring

on the whole-field image. Six smaller samples are cropped

from the whole-field image and manually labelled to train

and evaluate the CNN model. The trained model is then

applied to the whole-field image to create the desired weed

map. There are two canonical and widely-used CNN-based

segmentation architectures, UNet and DeepLab, but it is not

clear which is most effective for crop-weed segmentation.

We also experiment with different tiling overlap strategies

and compare the models’ performance at different image

resolutions. This workflow ensures the model’s compatibil-

ity with whole-field applications with minimal data collec-

tion and annotation effort.

2. Related Works

A fully-convolutional neural network (FCN) [14] is a

type of deep learning model that replaces the dense lay-

ers in CNNs with convolution layers. FCNs expand the

feature maps from the encoder to generate high-resolution

pixel-wise predictions for semantic segmentation tasks. The

UNet [19] is a popular variation of FCN due to its struc-

tural simplicity and effectiveness. The DeepLab [3] model

family uses dilated convolution to create deeper and more

powerful models and the latest DeepLabv3+ [4] iteration

achieved state-of-the-art results on the PASCAL VOC 2012

and Cityscapes datasets.

The success of deep learning in computer vision tasks

inspired researchers to apply these techniques to weed de-

tection. Many explored object detection methods like Sap-

kota et al. [21] and Gao et al. [7] which works well for

sparse vegetation. As vegetation coverage increases, the

increased effort in labelling and decreased interpretability

due to dense and colliding bounding boxes make object

detection less practical for many crop fields. Some pub-

licly available datasets for weed object detection include

RoboWeedSupport [6], Rumex-Ancenis Dataset [13], and

Maize Seedling and Weeds [17].

Figure 1: The whole-field orthomosaic RGB image of the

wheat field experiment used in this study (A) with sub-

region images denoted S1-S6 (outlined with yellow boxes).

A cropped and zoomed-in view of one sub-region showing

the RGB image (B) and corresponding annotations (C) for

wheat crop (purple), weed (blue), and bare soil (grey).

Most weed detection applications, e.g. selective spray-

ing, do not need to differentiate individual plant instances,

therefore semantic segmentation is an appropriate approach

for weed mapping. One popular public dataset for weed se-

mantic segmentation is the Bonn 2016 Sugar Beets Dataset

[2]. This dataset uses a ground vehicle to capture close-

up images on a sugar beet farm with a four-channel multi-

spectral camera. Lottes et al. [15] discussed a sequen-

tial FCN-based system trained on the Bonn 2016 Dataset,

which generalizes well on two other private datasets. Wang

et al. [23] found that the inclusion of NIR channels un-

der weak lighting conditions improves segmentation re-

sults. You et al. [25] suggested that adding hybrid di-
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lated convolution and DropBlock to the encoder, and uti-

lizing RGB+NIR based indices, bridge attention blocks and

spatial pyramid refinement block can all attribute to in-

creased accuracy. Other notable weed semantic segmenta-

tion datasets include the GrassClover Dataset [22] and the

WeedMap Dataset [20]. Both the Bonn Sugar Beets and

the GrassClover are collected with ground roaming cameras

where each image in the dataset covers a relatively small

area of the field. The WeedMap dataset is collected with a

UAV and provides data in both orthomosaics and tile im-

ages. This dataset has sparse vegetation coverage similar

to the Bonn Sugar Beets dataset and relatively low resolu-

tion. We did not find an existing weed semantic segmenta-

tion dataset that is high-resolution and has high weed den-

sity and high vegetation coverage from more mature crop

growth stages. Most of the research above also only focus

on common computer vision evaluation metrics, e.g. mIoU,

which do not scale well with larger fields due to annotation

cost. Therefore, our dataset and the practical and scalable

evaluation method for field-scale weed maps is a contribu-

tion of this paper.

When dealing with high-resolution images, it is common

to cut the large image into tiles due to limited GPU VRAM

memory capacity. Reina et al. [18] found tiling hyper-

parameters including size, overlap and orientation can all

cause variations in predictions for medical images. Huang

et al. [9] compared three strategies for stitching tile predic-

tions: clipping, averaging and concatenation and suggest

clipping the edge of the tiles for remote sensing tasks. In

this study, we will also explore the effect of tiling hyperpa-

rameters and image resolution on model training.

3. Methods

3.1. Field Description

The field trial used for this study covered an area of

1503.56 m2 and was located at the Kernen Crop Research

Farm, SK at the Nasser Site (52◦16’ N, 106◦55’ W), Saska-

toon, SK (Figure 1).

The field trial was seeded on June 29, 2020 with wheat

(Triticum aestivum L.) at a rate of 75 seeds per m2 on a

30.5 cm row spacing. The weed species were seeded in be-

tween the crop rows and extra spacing was inserted between

individual weed species to prevent overlap for image acqui-

sition. Kochia (Bassia scoparia (L.) A.J. Scott), wild oat

(Avena fatua L.), wild mustard (Sinapis arvensis L.), and

false cleavers (Galium spurium L.) were cross-seeded in

2 m strips across the experimental area in a split-block de-

sign (2.25×2.25 m per plot). The weed species were seeded

at the following rates: kochia at 15 kg/ha, wild oat at 90

kg/ha, wild mustard at 8 kg/ha, and false cleavers at 8 kg/ha.

Herbicide treatments were applied perpendicular to the

weed strips in a randomized block design (RCBD) with

four replicates. This totalled 15 herbicide treatments and

60 plots per weed species. A CO2 propelled back-pack

sprayer was used to apply the herbicide treatments on June

27, 2020, which was calibrated to apply a carrier volume of

100 l ha−1 at 40 psi at 6 km/hr.

3.2. UAV Data Acquisition

A total of 215 image frames were acquired using an un-

occupied aerial vehicle (UAV) DJI M600 hexacopter UAV

(SZ DJI Technology Co., Ltd, Shenzhen, China) equipped

with a phase one IXU 1000 RGB camera (Phase One,

Copenhagen, Denmark). The images were collected on

July 23, 2020 (24 days after seeding) from an altitude of

30 m above ground level with a nadir view while maintain-

ing 80% frontal and 80% side image overlap. At this time,

wheat was in the vegetative stage. Detailed information on

the imagery is presented in Figure 2.

Weed species were seeded in strips but many volunteer

weeds were also in crop rows. As can be seen in Figure 1C,

weeds were infesting the crop and distributed evenly over

the plots.

Image pre-processing involves mosaicking and masking

the region of interest. Image mosaicking was conducted

in Pix4D mapper Pro (Pix4D SA, 1015 Lausanne, Switzer-

land). This step includes image matching, bundle block ad-

justment, radiometric calibration and orthomosaic genera-

tion (in tiff format). The image clipping tool on ArcGIS Pro

was then used to mask regions outside the field boundary.

Figure 2: The UAV DJI M600 hexacopter platform used

for image collection, equipped with a phase one IXU 1000

RGB camera and some characteristics of the image.

3.3. Data Annotation

Labels on crop, weed, and ground were collected on

six different random sub-regions (141 m2) accounting for

9.37% of the total field area (Figure 1A). An example of

the labelled sub-region is presented in Figures 1B and 1C.

From the random sub-regions, the foreground vegetation

and background soil are separated by thresholding on a veg-

etation index called Color Index of Vegetation (CIVE) [12].

CIVE is a vegetation index that was based on the principal

component analysis from RGB bands and calculated as:
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CIV E =0.441 ∗Red− 0.811 ∗Green

+ 0.385 ∗Blue+ 18.78745
(1)

From the vegetation class, crops and weeds were sepa-

rated manually. The manual annotation was conducted by

agronomist on vegetation regions to split between weed and

crop pixels. Overall, there are six labelling sub-regions. The

labelling step was conducted on ArcGIS Pro (version 2.5.0).

An example of the labels is presented in Figure 1C. A sub-

region RGB image, its CIVE index and the ground-truth

annotations are shown in Figure 3.

(a) RGB sub-region image

(b) CIVE transform (c) Ground-truth annotations

Figure 3: An example sub-region image shown in RGB

(a), in the CIVE transform visualization scaled to [0, 255]

(b), and with ground-truth annotations (c) for wheat crop

(green), weed (red), and bare soil (black).

It is not practical to manually create pixel-level labelling

for the entire whole-field orthomosaic image due to its size.

The alternative solution is to randomly generate a num-

ber of points that are uniformly distributed in the field.

These points are manually labelled by plant scientists which

represents an independent and out-of-distribution test from

the above mentioned test sub-region images annotated by

CIVE thresholding. Among the 10,000 randomly generated

points, 8,140 points are background pixels, 1,343 are crop

pixels and the remaining 517 points are weed pixels. An ex-

ample of the point labels layered on top of the ground-truth

annotation is shown in Figure 4.

Figure 4: A cropped portion of the whole-field image show-

ing the weed map prediction with background in black, crop

in grey, and weed in white. Red dots denote points that

were sampled and manually annotated for whole-field im-

age evaluation.

3.4. Weed Detection Model

3.4.1. Sub-region Images Training and Evaluation

The RGB whole-field image used in this project has a di-

mension of 29,395×90,599 covering the whole controlled

field. Six smaller sub-region images were cut out from

the original image (Figure 1A) and each pixel was labelled

with one of the three classes: background, crop and weed.

Three images were chosen for training while one is used

for validation and two are used for testing. Even though

the dataset consists of only six images, the images cropped

from the original ultra-high resolution whole-field image

contain more than nine million pixels, which means they

can be further cropped into many smaller tiles with good

details. These tiles will provide the models with sufficient

data to learn the traits of the field.

The sub-region images from the dataset are still too large

to fit in most GPUs for training and as a result, are cropped

into smaller tiles. The process of training and evaluation

is broken into three main parts. First, the train, validation

and test images and their labelled masks are broken down

into uniform-sized tiles, forming the train, val and test sets.

Then, the model is trained on the tiled train and val sets

and then used to predict the test tiles. The last step involves

stitching predicted test set tiles back into the same size as

the test sub-region images. The stitched predictions are
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compared to the test images’ labels to evaluate the model’s

performance by calculating class IoUs and mIoU.

There are two strategies that can be used for tiling: divide

the images equally on each side or cut fixed-sized tiles from

the images. Since all of the images in the dataset have dif-

ferent sizes, the equally dividing method would need the im-

ages to be scaled and padded to the same size first. Scaling

images will cause loss of information and result in images

having different qualities. To avoid losing information from

resizing, the images are uniformly cropped into 256×256

tiles. The cropping software is designed such that a tile can

be from 0 to less than 100 percent overlapped with the previ-

ous tile. An example of three consecutive tiles can be found

in Figure 5. To stitch the tiles correctly, the tiles are fed into

the model in spatial order and the stitching is done in reverse

order using the recorded tile locations. When stitching the

predictions with overlapping areas, we employ a greedy ap-

proach where the predicted pixels with higher confidence

(softmax probability) are kept. When tiling without over-

laps, some objects will be split by two or more tiles with

each part of the object appearing at the edge of the tiles. The

smaller object with an incomplete contour makes it harder

for the model to predict. By having overlaps when tiling,

an object at the edge of one tile will move to the center of

the consecutive one. Another benefit of overlapping tiles is

that it creates more data from each sub-region image and

expands the training data.

Figure 5: Three consecutive 256×256 tiles with 50% hori-

zontal overlap.

The models used to detect weeds are fully-convolutional

neural networks (FCNs) which specialize in semantic seg-

mentation. Instead of a last fully-connected layer which

produces a single prediction, the FCN consists of 1×1 con-

volutions followed by a number of upscaling operations to

scale the prediction heatmap back into the same size as the

input image. Two popular FCN models are chosen for this

project: UNet and DeepLabv3+. The UNet model is im-

plemented with four symmetrical contraction and expan-

sion blocks with Keras, trained with a dynamic learning rate

from 1e-4 to 1e-8, batch size of 8 and Adam optimizer. The

official implementation and runner scripts of DeepLabv3+

are used with the xception65 backbone. The experiments

are run on either a Tesla V100 or an RTX 2080Ti GPU.

3.4.2. Whole-field Evaluation

We use the trained models to predict and create weed

maps for the 29,395×90,599 whole-field orthomosaic im-

age. This image goes through a two-stage cropping pro-

cess where it is first split into 25 smaller images of size

7,348×22,649 and then each smaller image is tiled into

256×256 tiles. The models predict on the tiles and a two-

stage stitching process is used to create a weed map of

the same size as the whole-field orthomosaic image. This

two-stage crop/stitch process allows us to test the pipeline

quickly on individual small regions rather than the en-

tire whole-field image, and to easily conduct visual san-

ity checks with GIS software. The weed-map images are

then geo-referenced using the same coordinates from the

original whole-field orthomosaic raster. Geo-refencing the

predictions gives them practical uses since now every pre-

dicted pixel has an exact geographical location which a pre-

cision sprayer can use to find weeds. We evaluate the geo-

referenced whole-field predictions by extracting the pre-

dicted pixel values using the coordinates of the labelled

sample points and compare the extracted prediction values

with the manually labelled sample points.

3.5. Evaluation Metrics

3.5.1. General Image Segmentation Metrics

There are many metrics available when evaluating the

performance of segmentation models. Pixel accuracy is

the most simple solution where it gives a percentage of

location-wise correct pixels. However, it can be mislead-

ing since this method does not consider the relationship be-

tween neighbouring pixels when calculating the correctness

of a single pixel. For a background-dominated image, a pre-

diction of all backgrounds would have a high pixel accuracy.

But this prediction in practice is bad since the model failed

to detect any target objects. Other commonly used metrics

for classification such as precision and recall all suffer the

same problem. Mean Intersection over Union (mIoU) is one

of the most commonly used metrics for semantic segmenta-

tion. This method is widely used for semantic segmentation

as it not only counts for pixel prediction accuracy but also

considers spatial accuracy. To calculate class IoU, we use

three statistics from the confusion matrix: True Positives

(TP), False Positives (FP) and False Negatives (FN). The

individual class IoU is given as:

IoU =
TP

TP + FP + FN
(2)
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Class UNet DeepLabv3+

Background 0.990 0.968

Crop 0.935 0.806

Weed 0.694 0.678

Overall 0.873 0.817

Table 1: Comparing the performance of UNet and

DeepLabv3+ on the test set with 50% tile overlap. Both

models have similar background and weed IoU while UNet

has a much higher crop IoU.

The mIoU is calculated as an average over all the classes.

3.5.2. Plant Science-Specific Metrics

In addition to the general image segmentation mIoU met-

ric, we also employ a number of plant science specific eval-

uation metrics, including user’s accuracy, producer’s accu-

racy, and kappa. The above mentioned mIoU metric is not

practical when evaluating the full-sized weed map predic-

tion of the entire experimental field. This is due to the sig-

nificant effort required to manually generate pixel-wise la-

belling for the large whole-field orthomosaic image. There-

fore we adopt a more efficient random point sampling strat-

egy commonly found in GIS software like ArcGIS. A num-

ber of randomly sampled points are evenly distributed on

the whole-field orthomosaic image and given manual la-

bels. The labelled points are compared with the correspond-

ing model prediction values to generate a confusion matrix.

Three types of accuracy indices are calculated to evaluate

the prediction quality. The user’s accuracy(Uacc) is used

to indicate false positives for a class while the producer’s

accuracy(Pacc) indicates false negatives. For each class, the

user’s accuracy and producer’s accuracy are given as:

Uacc =
TP

TP + FP
(3)

Pacc =
TP

TP + FN
(4)

The kappa index provides an overall assessment of the pre-

diction by comparing the observed accuracy(Po) with the

expected accuracy(Pe). The kappa index is given as:

κ =
Po − Pe

1− Pe

(5)

4. Results

4.1. Weed Detection Accuracy

Both the UNet and Deeplabv3+ models are first evalu-

ated on the test sub-region images. Both models’ IoU per-

formances when using a tile overlap of 50% are reported in

Table 1.

The weed IoU for both models are similar with 0.694

for the UNet and 0.678 for the DeepLabv3+. Both models

also showed very high accuracy for background recognition

with IoUs above 0.96. However, the DeepLabv3+ resulted

in a lower crop IoU of 0.806 which is over 10% lower than

the UNet’s 0.935. The difference in crop IoU resulted in

the UNet having a more than 5% mIoU advantage over the

more complex DeepLabv3+.

4.2. Effect of Tile Overlap

The effect of overlapping region percentages on model

accuracy is shown in Figure 6. Four overlap percentages are

tested: 0%, 25%, 50% and 75%. The mIoU, weed and crop

IoUs all increased with larger overlap percentages. This

benefit is more visible for the weed class where the UNet

has seen a 9% IoU increase. For the classes with higher

IoUs, the tiling has less effect on accuracy. Both models

had less than 2% IoU gain for crops and no significant in-

crease in background IoU. UNet showed higher IoU in most

classes across all overlap percentages except for the weeds.

The DeepLabv3+ model showed higher weed IoU with 0%

and 25% overlaps while UNet performed better with larger

overlap percentages.

Figure 6: IoU improvements with increased tile overlaps for

each class. The background and crop IoU show little to no

improvement with more tile overlaps while weed IoU shows

positive correlation with tile overlaps.

4.3. Effect of Image Resolution

The flying height of the UAV determines the area the

captured image can cover and the quality of the image. Fly-

ing at a higher altitude allows the UAV to capture a larger

field at the price of a lower-quality image. The effect of

capturing at a higher altitude is simulated by downscaling

the images. The downscaling experiment is conducted with
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Class Bg Crop Weed Total Uacc

Bg 8089 226 63 8378 0.966

Crop 18 1089 31 1138 0.957

Weed 33 28 423 484 0.874

Total 8140 1343 517 10000 0

Pacc 0.994 0.811 0.818 0 0.960

Table 2: Whole-field validation confusion matrix for UNet,

κ = 0.867

four levels: original, 2×, 4× and 8×. The results in Fig-

ure 7 show both models’ performance degrades with higher

downscaling. UNet showed less IoU decrease compared

to DeepLabv3+ for background and crops. UNet’s back-

ground accuracy barely degraded while the DeepLabv3+

had an 8% IoU decrease. Both models had more signifi-

cant degradation in crop IoU with an 8% decrease for UNet

and a 39% for DeepLabv3+ at 8× downscaling. Both mod-

els showed similar significant degradation in weed IoU with

decreases of more than 30% at 8× downscaling. Overall,

the UNet appeared to be more robust to downscaling com-

pared with DeepLabv3+ where the latter suffered signifi-

cantly with more than 2× downscaling.

Figure 7: Class IoU degrades with more downsampling.

The UNet model shows less degradation in background and

crop IoU compared to DeepLabv3+. Both models show vis-

ible weed IoU degradation with UNet drops sharply at 4×

downsampling and DeepLabv3+ at 2× downsampling.

4.4. Whole-field Prediction

The confusion matrices show the whole-field prediction

accuracy of our two models in Table 2 and Table 3. The

user’s accuracy (Uacc), the producer’s accuracy (Pacc) and

the kappa index are calculated for each model.

Class Bg Crop Weed Total Uacc

Bg 7967 199 35 8201 0.971

Crop 108 1051 20 1179 0.891

Weed 65 93 462 620 0.745

Total 8140 1343 517 10000 0

Pacc 0.979 0.783 0.894 0 0.948

Table 3: Whole-field validation confusion matrix for

DeepLabv3+, κ = 0.834

5. Discussion

5.1. Evaluation Set Results

As shown in section 4.1.1, the UNet model outper-

forms the more complex DeepLabv3+ for all classes.

While both models achieved comparable background and

weed IoU, the UNet model has a significantly higher crop

IoU than DeepLabv3+. This result is interesting because

DeepLabv3+ is a more advanced and complex model which

performed better than its predecessors including UNet on

large public datasets such as the PASCAL VOC 2012.

It should be pointed out that the weed detection tasks

have considerably fewer classes compared to the PASCAL

dataset which has 20 classes. The weed detection dataset

also has another unique trait where background and fore-

ground(vegetation) pixels have distinct colors. This makes

the weed detection task an easier task where the main chal-

lenge lies in discriminating between the weeds and crops,

compared to a generic segmentation task where the model

needs to learn the traits of 20 or more distinct objects such

as planes and sheep. The reason for the DeepLabv3+ per-

forming worse than the simpler UNet model may be that it

is too complex for a simpler task like weed detection and

the model overfits the data. Moreover, the smaller size of

our dataset, which is a common property of plant image

datasets, may also result in the exaggeration of the overfit-

ting problem. UNet on the other hand, being a less capable

model, is less likely to memorize the patterns of the smaller

dataset resulting in better performance.

The tile overlap result in section 4.1.2 suggests that more

tiling overlap results in better performance for both mod-

els while UNet shows more improvements compared to

DeepLabv3+. The DeepLabv3+ model showed better per-

formance with fewer data samples (0 and 25% overlaps)

for weed detection. This is the only time in our experi-

ments that the DeepLabv3+ outperforms the UNet model.

It should also be pointed out that the performance boost

of higher overlap percentages comes with the cost of more

training samples and longer training time. The number

of training samples increased from around 700 samples

for non-overlapping tiles to almost 3,000 samples for 50%
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overlapping tiles. The quadratic increase of samples with

overlap percentages could scale poorly for larger datasets.

In this experiment, we found that a 50% overlap is a good

compromise between training time and model performance.

The downscaling tests in section 4.1.3 show that

DeepLabv3+ is more sensitive to lower image quality where

its performance degrades more sharply with higher down-

scaling factors. Both models experience a mild degradation

in performance at 2× downscaling and a sharper drop in

IoU with more than 4× downscaling. This could be caused

by too much spatial information being lost with high down-

scaling factors. This means that the drone could fly twice as

high with a small sacrifice in model performance whereas

a flight height over 4 times could substantially impact the

prediction accuracy.

5.2. Whole-field Prediction Results

Our sampling results show that both models generalize

well on the whole-field orthomosaic image. Both Uacc and

Pacc are above 95% for the background class which shows

the model can easily discriminate between background and

vegetation pixels. One noticeable difference between the

two models is the DeepLab model is more aggressive in

predicting pixels as weeds. The DeepLab model predicted

620 samples as weed while the UNet predicted 484 sam-

ples as weed. This led to the DeepLab model having fewer

false negatives but more false positives on the weed class

compared with the UNet. Overall, UNet has a higher kappa

index of 0.867 compared with a kappa index of 0.834 for

DeepLab. The whole-field accuracy results agree with the

mIoU of the evaluation set indicating that the simpler UNet

model generalizes better than the more complex DeepLab

model on our dataset.

5.3. Study Limitation and Future Work

There are some limitations in this work that we discuss

in this section and propose to address as future work. The

experimentation mentioned in this paper is done on one sin-

gle wheat field. Although this method should be adaptable

to other fields even with different crop and weed species,

we cannot confirm this due to a lack of experimental evi-

dence. We would like to extend our experiments to other

farm fields in the future to evaluate the generalizability of

our method. Moreover, we have plans to explore the possi-

bility of transferring a model trained from one field to an-

other field. This potential domain adaptation research could

take advantage of a pre-trained model and would likely lead

to better performance for lower annotation costs.

Another limitation of this work is that the experiments

are done in a controlled experimental field which is different

from production farms. We have more control of the weed

species, the types of herbicide treatments and the density

of vegetations in our experimental field. If future projects,

we would like to experiment on production farms where the

field condition is less carefully managed. In the proposed

production farm experiments, we would also like to collect

data and study the different growth stages of those fields

where vegetation coverage and sparsity could vary greatly.

It is also important to note that our downscaling simula-

tion is only an approximation of the effect of higher altitude

UAV flights. Our experiment simply downscales the im-

ages. Even though the pixel quality would be similar, flying

at higher altitude also results in the image covering more

ground. The whole-field image from a higher altitude UAV

would include more rows of vegetations which would in-

crease the amount of information the input image provides.

The effect of more objects with worse pixel quality on mod-

els will be studied in future research.

Lastly the geo-referencing of the weed map is presumed

to be accurate since it is using the exact coordinates of

the RGB whole-field orthomosaic image. Ground control

points were used during UAV data collection to mitigate

geo-referencing errors. However, there may exist warping

and stitching artifacts from the orthomosaic generation pro-

cess. Such distortions would cause the weed map’s geo-

location to not align properly with the actual field. The ex-

act accuracy of geo-referencing an orthomosaic and meth-

ods to correct the alignment issue will be explored in future.

6. Conclusion

In this paper, we presented a practical and effective

workflow to create a weed map using CNNs on high res-

olution UAV image of a wheat field. We started by col-

lecting an image of the whole controlled wheat field. Then

six sub-region images were cropped from the whole-field

orthomosaic image and manually labelled to form our train-

ing and testing sets. Two CNN models, the UNet and the

DeepLabv3+ were trained and evaluated using the anno-

tated sub-region images. The trained models were then used

to create full-sized weed maps for the entire whole-field im-

age and the weed maps were evaluated by comparing them

with labels generated by randomly sampling 10,000 points

from the whole-field orthomosaic image.

We achieved an 87% mIoU and a 69% weed IoU on the

test sub-region images. We also showed that with a sacri-

fice in longer training time more tile overlaps result in better

performance and more than 4× downscaling significantly

impacts the model accuracy. Our whole-field evaluation re-

sults showed that our model trained on only a few small

sub-region images from the whole-field orthomosaic image

can generalize very well on the entire whole-field orthomo-

saic image. Our dataset and software will be made publicly

available, and we hope our research will spark more inter-

est in computer vision in agriculture and serve as a guideline

for other field weed mapping research.

512



References

[1] Bhagirath Singh Chauhan. Grand challenges in weed man-

agement, 2020.

[2] Nived Chebrolu, Philipp Lottes, Alexander Schaefer, Wera

Winterhalter, Wolfram Burgard, and Cyrill Stachniss. Agri-

cultural robot dataset for plant classification, localization and

mapping on sugar beet fields. The International Journal of

Robotics Research, pages 1045–1052, 2017.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016.

[6] Mads Dyrmann, Rasmus Nyholm Jørgensen, and Hen-

rik Skov Midtiby. Roboweedsupport-detection of weed lo-

cations in leaf occluded cereal crops using a fully convo-

lutional neural network. Advances in Animal Biosciences,

pages 842–847, 2017.

[7] Junfeng Gao, Andrew P French, Michael P Pound, Yong He,

Tony P Pridmore, and Jan G Pieters. Deep convolutional neu-

ral networks for image-based convolvulus sepium detection

in sugar beet fields. Plant Methods, pages 1–12, 2020.

[8] ASM Mahmudul Hasan, Ferdous Sohel, Dean Diepeveen,

Hamid Laga, and Michael GK Jones. A survey of deep learn-

ing techniques for weed detection from images. Computers

and Electronics in Agriculture, page 106067, 2021.

[9] Bohao Huang, Daniel Reichman, Leslie M Collins, Kyle

Bradbury, and Jordan M Malof. Tiling and stitching seg-

mentation output for remote sensing: Basic challenges and

recommendations. arXiv preprint arXiv:1805.12219, 2018.

[10] Daniel Kane and LLC Solutions. Carbon sequestration po-

tential on agricultural lands: a review of current science and

available practices. National Sustainable Agriculture Coali-

tion Breakthrough Strategies and Solutions, LLC, pages 1–

35, 2015.

[11] Y Karimi, SO Prasher, RM Patel, and SH Kim. Application

of support vector machine technology for weed and nitrogen

stress detection in corn. Computers and electronics in agri-

culture, pages 99–109, 2006.

[12] Takashi Kataoka, Toshihiro Kaneko, Hiroshi Okamoto, and

S Hata. Crop growth estimation system using machine vi-

sion. In Proceedings IEEE/ASME international conference

on advanced intelligent mechatronics (AIM 2003), pages

b1079–b1083, 2003.

[13] Tsampikos Kounalakis, Georgios A Triantafyllidis, and

Lazaros Nalpantidis. Deep learning-based visual recogni-

tion of rumex for robotic precision farming. Computers and

Electronics in Agriculture, page 104973, 2019.

[14] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015.

[15] Philipp Lottes, Jens Behley, Andres Milioto, and Cyrill

Stachniss. Fully convolutional networks with sequential in-

formation for robust crop and weed detection in precision

farming. IEEE Robotics and Automation Letters, pages

2870–2877, 2018.

[16] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. Real-

time semantic segmentation of crop and weed for precision

agriculture robots leveraging background knowledge in cnns.

In IEEE international conference on robotics and automa-

tion (ICRA), pages 2229–2235, 2018.

[17] Longzhe Quan, Huaiqu Feng, Yingjie Lv, Qi Wang, Chuan-

bin Zhang, Jingguo Liu, and Zongyang Yuan. Maize seedling

detection under different growth stages and complex field en-

vironments based on an improved faster r–cnn. Biosystems

Engineering, pages 1–23, 2019.

[18] G Anthony Reina, Ravi Panchumarthy, Siddhesh Pravin

Thakur, Alexei Bastidas, and Spyridon Bakas. Systematic

evaluation of image tiling adverse effects on deep learning

semantic segmentation. Frontiers in neuroscience, page 65,

2020.

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In Proceeding of the Medical Image Computing and

Computer-Assisted Intervention (MICCAI), pages 234–241,

2015.

[20] Inkyu Sa, Marija Popović, Raghav Khanna, Zetao Chen,
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