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Abstract

The majority of existing image forgeries involve aug-
menting a specific region of the source image which leaves
detectable artifacts and forensic traces. These distinguish-
ing features are mostly found in and around the local neigh-
borhood of the manipulated pixels. However, patch-based
detection approaches quickly become intractable due to in-
efficient computation and low robustness. In this work, we
investigate how to effectively learn these forensic repre-
sentations using local window-based attention techniques.
We propose Forensic Modulation Network (ForMoNet) that
uses focal modulation and gated attention layers to auto-
matically identify the long and short-range context for any
query pixel. Furthermore, the network is more interpretable
and computationally efficient than standard self-attention,
which is critical for real-world applications. Our evalua-
tion of various benchmarks shows that ForMoNet outper-
forms existing transformer-based forensic networks by 6%
to 11% on different forgeries.

1. Introduction

Manipulation or forgery is the act of altering the orig-

inal content of data and presenting it in a distorted form

which can be detrimental to society and personal lives. Re-

cent advancements in generative modeling has brought this

problem into more focus. However, manually performed

manipulations or “photoshopping” is still one of the easiest

and most widely used way that images are manipulated in

the wild. Since generative models like Diffusion and GAN

generally create an image from scratch, these fall more un-

der the category of fake images, rather than manipulated. In

this work we focus on detecting image manipulations and

understanding how well neural network based detectors can

represent the forensic traces in images.

Image forgery localization is a type of semantic segmen-

tation problem where we are only concerned with the tam-

pered regions than the semantic objects. Manipulated re-
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Figure 1: The top row shows an example of an original and ma-

nipulated image, followed by our network’s predicted localization

mask. The bottom left image illustrates how the forged region’s

local and global neighbours differ in their interaction and feature

granularity with a specific query pixel. The modulation and gated

layers of the local window attention learn to recognise these dif-

ferences and can extract forensic features within the image.

gions can vary widely in scale, shape and content. This

makes it a challenging task for existing FCN architec-

tures since they are optimized towards summarizing the

semantic context of an image rather than identifying the

forensic traces. Typical solutions to this problem include

training with huge amounts of data on deeper networks

[65, 40], using multiple networks to learn separate modali-

ties [24, 35, 78, 12, 57], or relying solely on noise and dis-

criminatory signals [76, 16, 5, 56]. However, such deep

networks are generally difficult to interpret and even harder

to understand the cases where they fail [17]. Self-attention

is capable of effectively modeling the pairwise forensic re-

lations of an image through their dense correction architec-

tures [27, 28, 46, 58]. However, vision-transformer mod-
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els have the drawback of requiring large computation over-

head in order to generate all pair attentions. Additionally,

by replacing convolutions with self-attention, they require

large amounts of data and parameters to learn the spatial

dependencies of images. Since these models are heavily

over-parameterized [2], it is difficult to interpret their fea-

ture space. As a result, their applications for forensics are

still lacking in terms of generalisation and explainability for

widespread application.

In this work we re-investigate the fundamental property

of manipulated images, which is to learn the boundary be-

tween modified and authentic pixel regions. Instead of com-

puting entire image representations, we focus on learning

local neighbourhood differences. In the case of forgeries

such as splicing, copy-move or inpainting, the tampered re-

gion is always localized to a certain portion of the image. As

seen in Fig. 1, pixels within the tampered section are more

similar to one another and, are greatly distinct from the re-

maining portion of the image. This creates a clear discrep-

ancy between the overall feature space which can be iden-

tified using frequency or compression analysis [38, 61, 16].

To locate the forged pixels from these boundaries a number

of patch and window based analysis frameworks have been

proposed over time [75, 48]. Although a straightforward

concept, these manual patch based approaches are greatly

limited by the size of their windows, influence to post pro-

cessing attributions, and unshared feature granularity. As a

result, these methods never gained widespread traction.

To tackle the challenges of utilizing local patch fea-

tures, we propose our Forensic Modulation Network (For-

MoNet) that uses focal modulation [70] and a dynamic win-

dow based attention decoder to automatically learn local

feature disparities and neighborhood interactions. Foren-

sic features within an image are already quite subtle and

easily gets diminished when using deep or complex neural

networks. Transformers using self-attention modules com-

pute a O(n2) map at each layer of the network, and they

need deep layers to effectively capture the receptive field

of the entire image. This dilutes the subtle forensic de-

tails and regional variations. Instead of focusing on the

entire image, focal modulation dynamically identifies the

appropriate query windows and attends to their local con-

text. Focal attention adapts the granularity of short and

long range interactions based on their importance to a par-

ticular region. This is similar to the local receptive field

of CNN’s, but is better at identifying token correlations.

Moreover, to further model the multi-scale dependencies

of forged regions, we use a multi window decoder to com-

bine the intermediate feature maps and generate a hierar-

chical representation. This improves the decoder’s abil-

ity in localizing forged regions of arbitrary scale through

intermediate position-mixing [53] and pooling operations.

ForMoNet achieves 93.1% AUC(%) on CASIA, and 85.0%

AUC(%) on IMD2020 benchmarks, outperforming existing

transformer based forensic networks by a margin of 6% -

11%, while also ensuring model explainability.

2. Related Works

Existing research on image manipulation have generally

divided forgery operations into three distinct categories −
splicing, copy-move and inpainting. Each operation con-

fines the region of the image being manipulated to a local

group of pixels. Although post-processing like blur, or com-

pression is applied to the final result, these operations still

leave behind some distinct artifacts due to the feature mis-

alignment of the local and global regions. These artifacts

include, PRNU sensor information [14], compression and

noise features[76, 56], camera model features [9, 48], etc.

Various filters and kernels have been developed overtime

[34, 44, 22] to learn these artifacts, but they are not robust.

Earlier neural network based detectors largely revolved

around using deep FCNs and large amounts of data to learn

the underlying forensic patterns [65, 33, 40]. Many works

have shown that the extent on data requirement can be

somewhat circumvented by utilizing additional noise and

steganalytic features [3, 4] through either pre or post fusion

before the final classification [79, 37, 24, 36]. Contrastive

learning [46, 71, 73] has also shown promise in identifying

difference structures between local windows by learning the

comparative representations. Additionally, various works

have also explored the use of classification [49, 11, 45, 23],

object proposal [6, 62], segmentation [8, 7, 74], and self-

supervised frameworks [80, 1] for manipulation detection

and localization.

Self-Attention is the core component of Transformer ar-

chitectures which was primarily developed for long-range

modeling of language tokens. Self-attention involves com-

puting a correspondence map between all pairs of query to-

kens i.e. pixels of an image to determine correlations over

features. In image forensics this can be used to model the

global dependency and pixel relationships, which is one of

the key requirements of forgery detection. However, com-

puting all-pair attention is an expensive operation requiring

O(n2) complexity over the number of pixels. Furthermore,

since vision transformers do not use convolution layers for

spatial modeling, they require much more data to learn the

same semantic structure. Different variations of transform-

ers have been proposed to reduce the complexity of oper-

ations [10, 55, 60, 15, 64]. These methods have also been

extended to the task of image segmentation via the trans-

formers’ encoder-decoder framework [52, 66, 77, 13]. They

either use a hierarchical pyramid or transformer encoder

backbone to generate intermediate image features and con-

sequently merge them through selective attention to gener-

ate the segmentation mask.
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Figure 2: The overall architecture of our proposed Forensic Modulation Network (ForMoNet). The network is composed of two sections;

(i) A four stage transformer encoder that uses focal modulation and locally gated attention. In between each stage, the features are

downsampled and normalized. The output of the final stage goes through a classification head to generate binary labels. (ii) A multi-

window decoder that processes upsampled features from each encoder stage to generate the localization mask. To upscale the forensic

embeddings to their precise spatial positions, the decoder employs multi-head window attention followed by MLP layers.

For our work we utilize the comparative relationship

modeling capabilities of attention for a local neighborhood

span instead of looking at the whole image. Although gen-

erating a global relationship mapping would be considered

ideal in order to identify which pixels are out of distribution

i.e forged, this operation is both exhaustive and detrimen-

tal for forensic analysis due to their abstruse nature. Using

local attention we can achieve the same or even better rep-

resentations by focusing on a smaller window and prevent

feature dilution. Existing attention transformers implement

this operation either via shifted windows [42, 41, 20], di-

lated windows [29, 30], window based clustering [59, 67],

and dynamic kernel or patch operations [50, 72, 39]. But

these methods use heavy query interactions and aggrega-

tion for visual tokens. They also lack the semantic advan-

tages of convolution layers which is necessary to understand

the spatial dependency for localization. Additionally, ear-

lier research [17] has shown that gated networks are able to

filter the necessary forensic traces from observable image

features for better forgery detection. Thus, we make use of

focal modulation networks [69, 70] which performs atten-

tion over adaptive neighborhood contexts in a focal manner

through a sequence of hierarchical gating. This results in

faster computation over each window and better interpreta-

tion of the gated values. Gating over selective windows re-

inforces the underlying features and propagates the forensic

modulations during the upscaling and decoding phase. This

leads to better information sharing through the network and

improvements in detection of multi-scale forgeries.

3. Proposed Method

3.1. Overview

The proposed architecture as shown in Fig. 2 is com-

posed of two modules; an attention encoder that gener-

ates hierarchical feature maps through focal modulation,

and a multi window attention decoder which combines

the multi granularity features to generate the segmenta-

tion map. The input image I ∈ R
3×H×W is first passed

through parallel feature suppression modules which include

SRM filter [78], ELA conversion [17], and a constrained

Bayer-conv layer [5] to generate additional noise and ste-

ganalytic features. The resulting concatenated input X ∈
R

54×H×W = {Conv2D(I), SRM(I),Bayer(I),ELA(I)} is

passed through a a 4 × 4 patch-embedding layer which

projects the patches into hidden features with dimension

d = 96. This spatial feature map then passes through

four stages of focal transformer blocks. Each stage i ∈
{1, 2, 3, 4} consists of Ni focal attention layers followed by

a downsampling layer. The features of the four intermediate

stages are each passed through an MLP before upsampling

and being passed to the decoder. The localization map is

generated by the decoder through hierarchical window at-

tention and mixing of these intermediate representations.

Additionally, the final feature of the encoder is also passed

through a dense layer to generate a classification label.
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Figure 3: The structure of the focal modulation block [69]. The

input feature map is processed in parallel by the context aggrega-

tion and gating branches to produce the modulation vector Z . The

bottom row shows how the neighborhood features are captured by

the local window as the input passes through the layers.

3.2. Focal Modulation

Traditional self-attention is a generic encoding process

that produces a feature representation yi ∈ R
C for each to-

ken xi ∈ R
C in an input feature map X ∈ R

C×H×W , by

computing an interaction with its neighbors in X and ag-

gregating over the contexts. This interaction becomes more

expensive as the neighborhood’s size increases. In contrast,

focal modulation requires first producing the context of the

entire input through an aggregation and then computing the

modulated interaction with this aggregated vector. This en-

ables the interactions to be focused on the actual context of

the input, as opposed to being influenced by specific values.

The two stages of the procedure are depicted in Fig. 3. This

method allows both channel and space specific modulation.

In addition, gating results in tokens that are decoupled from

one another, enabling control over fine and coarse contexts.

The modulation values of each query xi are determined as:

yi = q(xi)� h({Gl}Ll=1 · {Zl}Ll=1)

where q(·), h(·) are linear transforms, Gl and Zl are the

respective sets of gating and context values, and � is an

element-wise multiplication operation.

Local Context Aggregation: The input feature map X
is consecutively passed through a series of L windowed

transformations that generate the local context for each fo-

cal level. For forensic localization, all relevant windows

for multi-scale hierarchical contexts must be examined. A

single pooling would aggregate the visual semantics as op-

posed to the forensic traces. Sequential aggregation is per-

formed by inspecting each patch within the feature map and

compressing them using learnable and structure-dependent

depth-wise convolutions (DWConv2D). Each successive fo-

cal level has a receptive field rl = 1 +
∑l

i=1(k
l − 1) that

is larger than its kernel size kl. This is because the current

level can use the aggregated values from all preceding lev-

els to capture both short and long range contexts at varying

granularities. This allows us to summarise the semantics of

an image and locate forensic traces. Output features Zl of

each focal level l ∈ {1, ..., L} are computed as follows:

Zl = f l
ψ(Z

l−1)

fψ � ReLU(DWConv2D(Zl−1)

The weights learned by the last modulation level for each

encoder stage are depicted in Fig. 4. Because earlier stages

have smaller windows, they can only highlight the distinc-

tive features of the local region. However, as the features

propagate, the receptive field of the modulation window ex-

pands and the network is able to differentiate between the

image and forensic space. Even in the presence of multiple

forged patches, the network can locate both minima.

Attention Gating: The set of feature maps {Zl}Ll=1

obtained through the context aggregation process is trans-

formed into the final modulation vector via sequential gat-

ing. In most cases, the relationship between a query pixel

and its surrounding pixels is determined by the semantic

information of the image. But we want to extract the foren-

sic features that were aggregated in the previous step. The

gating process allows control over how much we sample

from coarse or fine-grained features. By applying this op-

eration over the L feature maps, we can encode both lo-

cal fine-grained and global coarse-grained features from

different levels for each query. The set of gating vectors

G = {Gl}Ll=1 = fg(X), where Gl ∈ R
1×H×W , is first

generated by applying a linear layer to the input X . These

are then used to generate the final modulation vector as,

Z =
L∑

l=1

Gl � Zl ∈ R
C×H×W

The final step in focal modulation is multiplying the modu-

lation vector with the input using element-wise multiplica-

tion. By using multiple context levels and gates, the atten-

tion is able to adapt its receptive window for any particular

query. This allows controlled communication across neigh-

boring regions, visualized in Fig. 3. Fig. 4 depicts the

attention gates of the final encoder stage. We can see that

these gates are crucial in filtering forensic traces from the

global image space. Each gate is activated by a unique set

of characteristics such as boundary edges or inner distribu-

tions. By combing their activation through the hierarchical
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Figure 4: Visualization of the modulation weights of each stage, and attention gates of the last stage learnt by the network.

addition process, we are able to utilize the combined feature

space for segregation.

3.3. Multi Window Decoder

The decoder is responsible for integrating over the

learned representations provided by the encoder and gen-

erate the spatial localization map of the forged regions. It

is important that we are able to correlate the spatial posi-

tions with the identified forensic features. Instead of itera-

tively combining and transforming the intermediate features

{F0, F1, F2, F3}, we pool the values together and perform

a multi-window attention over multiple spatial sizes. This is

similar to how multi-head attention in ViT [21] works. As

shown in Fig. 5, branches of the attention heads provide

multiple hierarchies of receptive fields for the local win-

dows. The short path realigns the feature output with the

low level image context. The resulting values are linearly

transformed through a series of MLP’s and upsampled to

generate the final segmentation.

Each head of large window attention [68] performs a se-

ries of spatial and channel mixing operations over the spe-

cific window size. Through iterative downsampling in the

encoder, the spatial positions become abstract. To realign

these activations with the image space, the attention uses a

sequence of parallel token and channel-mixing MLPs. This

is the core of MLP-Mixer [54] that allows better commu-

nication between the spatial positions. Given a 2D feature

map x ∈ R
C×H×W and a query patch xp ∈ R

C×P×P , the

operation of a single attention head can be formulated as,

x̃p = Reshape(C,P 2)(xp)

zh = Reshape(C,P, P )(ϕ({MLPh(x̃p)}))
MLPh(x̃p) = W2σ(W

T
1 x̃p + b)

where W1 ∈ R
HW×d and W2 ∈ R

d×HW are both learned

linear transformations along with a sigmoid non-linearity,

and ϕ is an average pooling operation performed over the

multiple outputs of the mlp-mixer. zh is the output of the

h-th attention head. The outputs of each head for the spe-

cific query patch xp are concatenated to create the position-

mixed content z = concat({z1, z2, ..., zh}). The final

learned attention after combining the outputs of each head

is formulated as,

A = softmax

(
(Wqx) (Wkz)

T

√
d

)
(Wvz)

Â = concat({A1, A2, ..., Ah})Wm

where Wq,Wk,Wv ∈ R
C×d are the learned linear trans-

forms and Wm is the learned weights that aggregates mul-

tiple attention values.

The use of multiple window attention heads is essen-

tial in retrieving the relevant patch activations for a partic-

ular position. The high level encoder features summarize

the forged context with narrower windows, while the lower

ones have a larger window that correlates the position of

that region to its surroundings. Instead of arbitrarily upscal-

ing the forged pixel’s position, the attention heads collect

important response values across several windows and fine-

tune the exact location.

3.4. Complexity Analysis

Vanilla self-attention in ViT takes O((HW )2C +
HW × (3C2)) complexity [69]. As the size of

an image increases, or the number of tokens in-

crease, (HW )2 increases quadratically. Focal mod-

ulation uses three linear projections q(·), h(·), and

fψ(·). The final complexity of the modulation operation

is O
(
HW ×

(
3C2 + C(2L+ 3) + C

∑
�

(
k�
)2))

[69],

which is devoid of the (HW )2 constraining term.

4. Experiments
4.1. Data & Setup

We follow the evaluation protocols in [65, 17] for train-

ing and validation. The model was trained on four types
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Figure 5: The decoder consisting of multi-head window atten-

tion [68] which uses the channel and position mixing frame-

work of MLP-mixer to generate the output. The decoder takes

in {F0, F1, F2, F3} the encoder features and through sequential

upscaling generates the final localization mask.

of data samples − copy-move, splicing, inpainting, and au-

thentic images taken from Dresden [25], MS COCO syn-

thetic [4], Defacto [43], and IMD-Real [47] datasets. We

use the standard datasets: CASIA [19], NIST16 [26], COV-

ERAGE [63] and IMD-2020 [47] for pre-trained and fine-

tuned evaluation. For finetuning we perform train/test split

of the datasets independently, following the process out-

lined in [78, 40].

4.2. Loss Function

The train data consists of input images I ∈ R
3×H×W

and binary ground-truth masks M ∈ [0, 1]1×H×W . The

network was trained end-to-end using a multi-task loss

function following [17] which combines both detection and

localization losses as follows,

L = wc · LBCE + wd · LDSC + wf · LFL

where, LBCE = − 1

N

N∑
i=0

yi · log (ŷi)

LDSC(P,G) = − log

(
2 · |P ∩G|+ ε

|P |+ |G|+ ε

)
LFL (P ) = −αt (1− P )

γ
log (P )

here L is the final loss which is a weighted sum of the

classification BCE loss, and Dice and Focal losses for the

segmentation map. By combining both losses, we are able

to reinforce the segmentation by the classifier predictions.

Additionally, dice and focal loss significantly improves out

of bound errors and reduces false positives. The hyper-

parameters were set as ε = 10−7, γ = 2, wc = 1, wd =
1.10, and wf = 1.15.

Method CASIA NIST16 COVERAGE IMD2020

MantraNet [65] 81.7 79.5 81.9 74.8

SPAN [33] 79.7 84.0 92.2 75.0

PSCC-Net [40] 82.9 85.5 84.7 80.6

ObjectFormer [58] 84.3 87.2 92.8 82.1

ForMoNet (Ours) 86.4 84.6 85.2 83.9

Table 1: Pixel-level AUC comparison with pre-trained models.

4.3. Benchmark Evaluation

We compare the network’s performance for both detec-

tion and segmentation against existing transformer based

and SOTA forgery detection models. We report the exist-

ing values of other models as mentioned in their papers or

from existing re-implementations [27, 57, 18].

Pre-trained: For pre-trained model evaluation, we com-

pare our model’s localization performance to that of another

transformer-based network, ObjectFormer [58], as well as

existing SOTA models such as MantraNet [65], SPAN [33],

and PSCC-Net [40]. Table 1 shows that different models

perform very differently on independent benchmarks. CA-

SIA is a balanced dataset that contains a variety of forg-

eries. On CASIA, ForMoNet obtains an AUC of 86.4, sur-

passing ObjectFormer by 2.5% and SPAN by 8.4%. On

IMD2020, our network got an AUC of 83.9, outperform-

ing PSCC-Net by 4% and MantraNet by 12%. This indi-

cates that ForMoNet can handle a wide range of real-world

manipulations. For NIST16 and COVERAGE, which are

primarily concerned with splicing and copy-move, we lag

by approximately 2.9% and 7.5%, respectively. The expla-

nation for this could be that the synthesised training data

used by other models more closely mimics the distribution

of specific forgeries.

Fine-tuned: We fine-tune the pre-trained model on each

individual dataset and compare it to a few other attention-

based models in Table 2. On CASIA and IMD2020, we

outperform contemporary transformer attention-based net-

works as well as SOTA architectures, as we have in the past.

On CASIA, we surpass TransForensics by 11% with an

AUC of 93.1. On NIST16, where we had previously failed,

our model improved its own performance by 13%, outper-

forming MVSS-Net by 12% and MSMG by 10%. Perfor-

mance on COVERAGE has also seen similar gains. This

demonstrates that the preceding performance issues can be

solved by increasing the number of target-specific manipu-

lations and training ForMoNet on additional synthetic data.

Manipulation Detection: To assess the performance of

image level forgery classification, we compare the F1 score

of pre-trained ForMoNet against various architectures us-

ing the evaluation policies in [17, 40]. Table 3 shows that
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Methods CASIA NIST16 COVERAGE IMD2020

RGB-N [78] 79.5 / 40.8 93.7 / 72.2 81.7 / 43.7 -

PSCC-Net [40] 87.5 / 55.4 99.6 / 81.9 94.1 / 72.3 80.6 / -

CAT-Net [34] 70.4 / 20.3 75.1 / 17.3 75.3 / 28.8 78.6 / 23.9

GCA-Net [17] 92.2 / 71.2 95.3 / 84.5 87.4 / 69.5 82.4 / 42.6

TransForensics [28] 85.0 / 62.7 - 88.3 / 67.4* 84.8 / -

at
te

n
ti

o
n

-b
as

ed MVSS-Net [18] 74.8 / 39.0 82.1 / 44.1 81.1 / 41.8 81.7 / 41.1

SPAN [33] 83.8 / 38.2 96.1 / 58.2 93.7 / 55.8 75.0 / -

MSMG [57] 72.6 / 42.5 83.1 / 49.2 85.3 / 48.0 -

ForMoNet (Ours) 93.1 / 73.4 95.1 / 84.7 86.2 / 65.1 85.0 / 43.8

Table 2: Pixel-level AUC/F1 performance of image forgery local-

ization using fine-tuned models on unseen test splits. * designates

pre-trained models.

Method Image-Level F1 Score

MantraNet [65] 56.69

SPAN [33] 63.48

PSCC-Net [40] 66.88

GCA-Net [17] 85.51

MVSS-Net [18] 75.80

ForMoNet (Ours) 87.95

Table 3: Comparison of image-level detection performance on

CASIA detection set.

our network outperforms the other approaches by a signif-

icant margin achieving a detection score of 87.95. This is

also evident from the intermediate modulation and gate vi-

sualisations shown in the previous sections. This is because

existing approaches classify the image as a threshold over

the number of detected pixels from the localization mask,

while we utilize a separate classification head.

The presented benchmark evaluations support our claim

that using windowed attention and focal modulation can

considerably improve the model in learning forensic rep-

resentations. Although ForMoNet lags behind some SOTA

approaches, it is still superior to the majority of existing at-

tention models. Furthermore, the network is interpretable,

which makes it more conducive to future research into the

usefulness of this approach.

4.4. Ablation Study

We evaluate how different hyper parameters like window

sizes, model configuration, or attention types effect the per-

formance of the network. We report the pixel-level AUC

and F1 score for the following experiments which were

done on the CASIA validation set.

Focal Parameters: For the focal attention in the encoder

we need to specify number of focal levels (L) and the win-

dow size (kl) at each level. Increasing the window size to

a large extent can defeat the purpose of our local attention

learning, while decreasing it too much makes it harder for

the model to learn the local context (Table 4(a)). Addition-

(a) Window Size

AUC(%) F1

k = 2 89.2 71.1

k = 4 89.5 71.2

k = 6 89.1 71.0

k = 9 88.2 70.8

(b) Focal Levels

L = 2 89.1 71.0

L = 3 89.6 71.2

L = 4 89.4 71.2

(c) Decoder Heads

h = 4 89.6 71.2

h = 6 89.8 71.3

h = 8 89.8 71.2

(d) Aggregation Type

#Params AUC(%) F1

Conv2D 84M 76.1 56.6

DWConv2D 50M 89.6 71.2

SE 50M 74.3 52.8

scSE 57M 76.4 57.0

(e) Model Depth

2-2-12-2 39M 87.4 68.3

2-2-18-2 50M 89.6 71.2

2-2-22-2 58M 89.9 71.3

Table 4: Ablation study of various network parameters on the CA-

SIA validation set.

ally, increasing the number of focal levels control the extent

of the receptive field for that modulation window. A large

receptive field can dilute the attention focus and increase

complexity (Table 4(b)). From experiments we found that a

window size of 4, and L = 3 focal levels gives the optimal

results for an input image of size 256× 256.

Decoder Heads: The number of heads used in the decoder

during localization is a hyper-parameter that control which

specific feature is pooled from the encoder vectors. The

original intention of multi-head attention was that by dis-

tributing the input across windows, each is able to learn a

different set of features. But this increases number of train-

able parameters, and some heads might not even learn any-

thing useful. From Table 4(c) we see that increasing heads

from 4 to 6 does not have much impact to the final result.

Model Depth: The depth or number of layers in a model

directly correlates to the number of trainable parameters as

well as the capacity of the model. However, for forensic

tasks, increasing model depth can cause the subtle features

to get diluted and difficult to identify. We can see from

Table 4(e) that increasing depth to higher degrees does not

provide the equal amount of performance.

Spatial Aggregation: During focal modulation, instead of

pooling, we aggregate the structure and semantics of the

input features using depth-wise convolutions. We com-

pare how other similar operations including standard con-

volution (Conv2D), squeeze-and-excitation (SE) [32], and

spatial-and-channel excitation (scSE) [51] would perform.

We see from Table 4(d) that the baseline with depth-wise

convolution is better than others. This might be because the

excitation modules collapse the input channels and perform

a linear redistribution over the feature space. Although the

output retains the same 2D structure, it is not as effective

for patch based attention aggregation.
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4.5. Robustness Analysis

To verify the robustness of ForMoNet, we examine the

change in the network’s performance due to various post

processing operations on the input. For this purpose, we use

images from the NIST16 test set and degrade the images us-

ing different distortion settings as detailed in [40]. These in-

clude Gaussian Blur with kernel size k, JPEG Compression

with a quality factor q, and Additive Gaussian Noise using

standard deviation σ. From Fig. 6 we see that the network

can adapt to various degrees of attributions similar to other

existing methods. Increasing the Gaussian blur from k = 0
to k = 15 reduced the localization AUC by only 3.7% com-

pared to SPAN which fell by 5.7%. Similarly, for Gaussian

noise addition the performance of ForMoNet degraded by

5.3%, and for JPEG compression by 1.7%.
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Figure 6: Localization AUC performance on NIST16 dataset un-

der different post-processing distortions.

5. Limitations & Future Works

Decoder Optimization: The primary objective of our

research was to learn the local forensic representations of

a manipulated image using the focal modulation technique

and window attention. The encoder is primarily responsible

for extracting the forensic traces. The decoder simply maps

and upscales the modulated encoder features based on posi-

tion estimations. However, there are some instances where

the encoder correctly classifies the image as forged, but the

decoder is unable to localize the position accurately. Fig.

7 shows that, while there are some peaks in the output lo-

calization map, they are being overtaken by the surround-

ing noise. Nonetheless, the gate and modulation activation

maps tell us that the encoder was successfully able to iden-

tify the forensic traces. One possible solution to this prob-

lem could be specific decoder optimization by freezing the

encoder and only tuning the decoder layers. We could also

use different decoder methods, such as masked-attention

[13], which uses the groundtruth mask to improve posi-

tion accuracy, or feature alignment methods [31] , which

eliminates the upscaling operation with learnable alignment

functions. It is worth pointing out that we were able to iden-

tify this problem because of the networks’ interpretability.

Input Groundtruth Modulation & Gate Activations Output

Figure 7: Illustration of the decoders’ limitations. Although the

encoder activations could capture the forensic traces, the decoder

was unable to generate a noise-free localization

Extensions to GNN: Our research confirmed that

neighborhood-based searching is more effective than global

feature processing in identifying forensic differences within

an image. This concept can be expanded further using graph

learning techniques. If we can encode the image as a graph,

with each node containing the features for a specific sub-

set or group of pixels, the problem becomes identifying the

most activating local clusters. We can encode multi-domain

features such as noise response, compression kernels, DCT

responses, and steganalysis outputs within each node. By

processing this image graph with Graph Neural Networks,

we can ideally identify the local subgroup based on these

features. Furthermore, SOTA GNNs can easily learn from

a graph with millions of nodes. As a result, this would also

solve the issue of image scale and resolution. However, we

would still need to figure out how to convert the image into

a graph representation.

6. Conclusion

In this work we investigated how to effectively learn the

local neighborhood representations of a manipulated image

in order to identify forged regions. To that end, we proposed

the Forensic Modulation Network (ForMoNet), a new archi-

tecture that uses focal modulation and window attentions to

automatically identify and learn these local neighborhoods

in an image. The network can better identify forensic fea-

tures at a lower computational cost by utilizing context ag-

gregation and gated forwarding. Furthermore, this process

is highly interpretable, allowing us to determine whether or

not the network is identifying the correct regions. We can

provide explainable interpretations of the models’ findings

by moving away from black box networks, which is crit-

ical for real-world applications. We evaluated ForMoNet

against existing transformer-based forensic models as well

as other SOTA architectures and found that the network out-

performs some of these models by a factor of 6% to 11% in

specific tasks. This demonstrates that the model is explain-

able as well as generalizable to multi forgery detection and

localization.
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[9] L. Bondi, S. Lameri, D. Güera, P. Bestagini, E. J. Delp, and

S. Tubaro. Tampering detection and localization through

clustering of camera-based cnn features. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1855–1864, 2017. 2

[10] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation net-

works and beyond. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision workshops, pages 0–0,

2019. 2

[11] Ivan Castillo Camacho and Kai Wang. A simple and effective

initialization of cnn for forensics of image processing opera-

tions. In Proceedings of the ACM Workshop on Information
Hiding and Multimedia Security, IH&amp;MMSec’19, page

107–112, New York, NY, USA, 2019. Association for Com-

puting Machinery. 2

[12] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong

Li. Image manipulation detection by multi-view multi-scale

supervision. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 14185–14193, 2021.

1

[13] Bowen Cheng, Alexander G. Schwing, and Alexander Kir-

illov. Per-pixel classification is not all you need for semantic

segmentation. 2021. 2, 8

[14] Giovanni Chierchia, Giovanni Poggi, Carlo Sansone, and

Luisa Verdoliva. A bayesian-mrf approach for prnu-based

image forgery detection. IEEE Transactions on Information
Forensics and Security, 9, 2014. 2

[15] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-

ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.

Twins: Revisiting the design of spatial attention in vision

transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021. 2

[16] Davide Cozzolino and Luisa Verdoliva. Noiseprint: a cnn-

based camera model fingerprint, 2018. 1, 2

[17] Sowmen Das, Md Islam, Md Amin, et al. Gca-net: utilizing

gated context attention for improving image forgery local-

ization and detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

81–90, 2022. 1, 3, 5, 6, 7

[18] Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and

Xirong Li. Mvss-net: Multi-view multi-scale supervised net-

works for image manipulation detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022. 6, 7

[19] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tamper-

ing detection evaluation database. pages 422–426, 07 2013.

6

[20] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming

Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining

Guo. Cswin transformer: A general vision transformer

backbone with cross-shaped windows. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12124–12134, 2022. 3

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5

[22] Gokhan Egri and Todd Zickler. Stegapos: Preventing crops

and splices with imperceptible positional encodings. arXiv
preprint arXiv:2104.12290, 2021. 2

[23] Moawad I. Dessowky Ghada M. El Banby Ashraf A. M.

Khalaf Ahmed S. Elkorany & Fathi E. Abd. El-Samie Faten

Maher Al Azrak, Ahmed Sedik. An efficient method for im-

age forgery detection based on trigonometric transforms and

deep learning. Multimedia Tools and Applications, 2020. 2

[24] Zan Gao, Chao Sun, Zhiyong Cheng, Weili Guan, Anan Liu,

and Meng Wang. Tbnet: A two-stream boundary-aware net-

work for generic image manipulation localization. IEEE
Transactions on Knowledge and Data Engineering, 2022. 1,

2

[25] Thomas Gloe and Rainer Böhme. The ’dresden image
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[43] Gaël MAHFOUDI, Badr TAJINI, Florent RETRAINT,

Frédéric MORAIN-NICOLIER, Jean Luc DUGELAY, and

Marc PIC. Defacto: Image and face manipulation dataset.

In 2019 27th European Signal Processing Conference (EU-
SIPCO), 2019. 6

[44] Hannes Mareen, Dante Vanden Bussche, Fabrizio Guillaro,

Davide Cozzolino, Glenn Van Wallendael, Peter Lambert,

and Luisa Verdoliva. Comprint: Image forgery detection and

localization using compression fingerprints. arXiv preprint
arXiv:2210.02227, 2022. 2

[45] Aniruddha Mazumdar, Jaya Singh, Yosha Singh Tomar, and

Prabin Kumar Bora. Universal image manipulation detection

using deep siamese convolutional neural network, 2018. 2

[46] Fahim Faisal Niloy, Kishor Kumar Bhaumik, and Simon S

Woo. Cfl-net: Image forgery localization using contrastive

learning. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 4642–4651,

2023. 1, 2
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