
TrainFors: A Large Benchmark Training Dataset for Image Manipulation
Detection and Localization

Soumyaroop Nandi, Prem Natarajan, Wael Abd-Almageed
USC Information Sciences Institute, Marina del Rey, CA, USA

{soumyarn,pnataraj,wamageed}@isi.edu

Abstract

The evaluation datasets and metrics for image manipula-
tion detection and localization (IMDL) research have been
standardized. But the training dataset for such a task is
still nonstandard. Previous researchers have used uncon-
ventional and deviating datasets to train neural networks
for detecting image forgeries and localizing pixel maps of
manipulated regions. For a fair comparison, the training
set, test set, and evaluation metrics should be persistent.
Hence, comparing the existing methods may not seem fair
as the results depend heavily on the training datasets as
well as the model architecture. Moreover, none of the previ-
ous works release the synthetic training dataset used for the
IMDL task. We propose a standardized benchmark train-
ing dataset for image splicing, copy-move forgery, removal
forgery, and image enhancement forgery. Furthermore,
we identify the problems with the existing IMDL datasets
and propose the required modifications. We also train the
state-of-the-art IMDL methods on our proposed TrainFors1

dataset for a fair evaluation and report the actual perfor-
mance of these methods under similar conditions.

1. Introduction

Image manipulation and the effects of such acts have be-

come a challenging problem in today’s society, owing to

the low-cost, publicly accessible image editing tools ([50],

[40], [63], [17]) and photo-realistic generative models like

GANs([25], [47], [78]) and VAEs([36], [52]) for creating

manipulated images. Deceitful attackers may use such tools

to spread misinformation like deep fakes ([56]), fake news

([33]), plagiarised academic publications ([57]), internet ru-

mors ([68]), forged satellite images ([30]). A news arti-

cle ([64]) highlights the usage of manipulated images and

videos in the Russia-Ukraine war to spread misinformation.

Defending such manipulated misinformation spread is the

need of the hour and image manipulation detection and lo-

calization is an effort to counter such societal problems.

1https://github.com/vimal-isi-edu/TrainFors

Pristine Manipulated Groundtruth

Sp
lic

in
g

C
op

ym
ov

e
R

em
ov

al

Figure 1: Image Manipulation Localization Examples - From top to bottom, each
row shows Image Splicing, Copymove Manipulation, and Removal Manipulation.
The binary mask on the third column represents the localized manipulated pixels.

The problem can be divided into two subtasks - detect-
ing manipulated images and localizing a pixel map of the

manipulated region in the forged images. Generally, an im-

age can be tampered in two ways - using image content or

without using any image content. Image content can ei-

ther be moved from one part of the image to another inter-

nally (copy-move forgery) or externally import certain parts

from an alien image (splicing forgery). Some forgers try to

remove certain image patches or objects and replace them

with surrounding inpainted pixels (removal forgery). Be-

sides this, image forgeries can also be executed without

modifying the image content, but by image enhancement
(e.g., compression, resampling, blurring, noise, morphing,

quantization, histogram manipulation). see Fig. 1 and Fig. 2

The image manipulation process often leads to artifacts

around the tampered patches. Researchers have used vari-

ous clues like noise pattern ([73], [44], [15]), camera model

parameters ([10], [9]), edge inconsistencies ([58], [75]),

color inconsistency ([20]), EXIF inconsistencies ([33]), vi-

sual similarities ([69], [70], [71]) and JPEG compression

artifacts ([27], [62], [41]) to detect artifacts in forged im-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

403



Figure 2: Image Enhancement Manipulations, without modifying the image content,
are difficult to detect - From left to right: Pristine, Double JPEG Compressed, Lancoz
Resampled, Histogram Manipulation, and Dithering Quantization.

ages. Most of the previous works have tried to focus on one

or two clues to detect and localize manipulations. Also, they

localized the manipulated patches or pixels on the tampered

images. But in the real-world scenario, we never know if

the image is manipulated or pristine. Neither do we know

all the types of manipulations applied on an image and post-

processing performed to hide such malicious acts.

Recent DNN-based object detection methods ([80], [19],

[29], [32]) try to detect single or multiple objects in an im-

age. But our task is to determine the tampered pixels in a

given image. This task is somewhat more challenging be-

cause an attacker removes/modifies certain pixels and re-

places those pixels with new objects/backgrounds. An ob-

ject detector may perform semantic segmentation to distin-

guish all the objects in an image, but we can never know if

any of those objects were tampered with in the first place.

This necessitates the development of image manipulation

detection and localization (IMDL) models, working in par-

allel with an object detector.

Previous research works do not use a standard train-

ing dataset for developing the IMDL models. They have

claimed to improve the AUC and F1 scores with a new

neural network architecture, trained on a curated synthetic

training dataset that varies for each model. Moreover, nei-

ther do they release the synthetic training dataset and the

training code to reproduce the claimed results nor do they

elaborately describe the synthetic training dataset genera-

tion procedure. Only the inference code and pre-trained

model weights are released for some of the existing re-

search. This violates the repeatability of scientific exper-

imentation in the IMDL tasks. To overcome this mas-

sive flaw in the IMDL experimentation, we propose a new

benchmark dataset - TrainFors. We hope that TrainFors will

standardize the IMDL algorithm designing and software de-

velopment. TrainFors contain 1 million images (200K pris-

tine, 800K manipulated), belonging to four standardized

image forgery tasks - image splicing, copy-move forgery,

image inpainting (removal), and image enhancement.

The main contributions of our paper are as follows:

• A large standardized benchmark training dataset with

real-world forgeries for the image manipulation detec-

tion and localization (IMDL) task.

• Extensive analysis of the baseline IMDL models,

trained from scratch on our proposed TrainFors

dataset. All the baseline models are trained under sim-

ilar conditions and evaluated with the same evaluation

metrics for a fair comparison.

• The major challenges in curating a training dataset for

IMDL tasks are elaborately described and intelligent

solutions are proposed to minimize the difference be-

tween real-world manipulated images and the forged

training images.

2. Related Work
Most of the previous works have focused on one or mul-

tiple forgeries like boundary artifacts, noise pattern-based,

double JPEG compression-based, color filter array-based to

detect and localize the tampered pixels. Some researchers

used handcrafted features and others have trained a deep

neural network (DNN) to find the image forgeries.

2.1. Handcrafted feature-based methods
The most prominent handcrafted feature-based methods

used in image forgery detection and localization are ELA
[38] (finds the compression error difference between forged

regions and pristine regions through different JPEG com-

pression qualities), NOI1 [45] (models local noise by us-

ing high pass wavelet coefficients) and CFA1 [21] (approxi-

mates the camera filter array patterns by using nearby pixels

and generates a tampering probability for each pixel). They

studied only a single type of forgery (among splicing, copy-

move, and inpainting), splicing being the most common.

2.2. Early DNN-based models and training datasets
The earlier DNN-based studies predominantly detected

a specific type of manipulation, e.g., splicing ([14], [69],

[37]), copy-move ([13], [53], [70], [71], [34]), removal

([79]) and enhancement ([6], [7], [12]). But we do not have

apriori information about the type of forgery implemented

on real-world manipulated images. So general forgery

detection and localization algorithms were proposed that

could detect any type of unknown manipulation in an image.

J-LSTM [4] and H-LSTM [5] jointly trained an LSTM and

CNN to capture the boundary-discriminative features by

training a synthetic dataset (unavailable) sampled from MS-

COCO [42], NIST16 [2], and Dresden database [24]. Both

methods detected predefined size regions (restricted by pre-

set patch size) and are very time-consuming. RGB-N [77]

used a synthetic training dataset (unavailable) sampled from

MS-COCO [42] and adopted a steganalysis-based SRM

kernel model [22] and a two-stream Faster R-CNN [54], but

it cannot generate pixel-wise segmentation masks but only

bounding boxes around tampered regions. ManTraNet
[72] used a synthetic training dataset (unavailable) sam-

pled from KCMI [1] and Dresden database [24] and clas-

sified 385 unknown manipulation types and trained bipar-

tite end-to-end network to detect image-level manipulations

with one part using SRM kernel [22] in feature extraction

404



and training, while the second subnet used Bayar convo-

lution on synthetic forgery datasets followed by pixel-wise

anomaly detection, but failed for double JPEG compression

artifacts. SPAN ([31]) used the synthetic dataset created

by ManTraNet (unavailable) and used a pyramid structure

of local self-attention blocks to model the relationships of

pixels on varying scales. However, the correlation is only

considered in the local regions and fails in capturing spa-

tial correlation on global features. GSR-Net [76] used a

synthetic training dataset (unavailable) sampled from MS-

COCO [42] and Casiav2 [18] and implemented an edge de-

tection and refinement branch that accepts features from dif-

ferent levels. Region segmentation and edge detection are

very different tasks and can affect the performance of each

other if trained together.

2.3. Recent DNN-based models and training datasets
PSCCNet ([43]) used a synthetic training dataset (unable to

download) sampled from MS-COCO [42], KCMI [1], Dres-

den [24], and Busternet database [70] and extracted hierar-

chical features along a top-down path and used a bottom-up

path to detect manipulated regions in images. MVSS-Net
[11] used Defacto [46] and Casiav2 [18] datasets for both

training and evaluation and tried to address this problem by

using an edge-supervised branch. They used noise distri-

bution to create generalizable features and boundary arti-

facts surrounding tampered regions. They tried to address

an important challenge of the IMDL task of balance be-

tween sensitivity and specificity, but fails to reach an equi-

librium. CAT-Net [39] used a synthetic training dataset (un-

able to download) sampled from MS-COCO [42], Casiav2

[18], IMD2020 [49] and Fantastic Reality [37] and learns

forensic features of compression artifacts on RGB and DCT

domains and concatenates the features at a middle stage.

They employ DCT histograms to detect double JPEG com-

pression for image splicing only. Transforensics [28]

used Casiav2 [18], Coverage [67] and IMD2020 [49] for

both training and evaluation. They used a transformer-

based model with dense self-attention encoders (FCN) and

dense correction modules to capture global context and pair-

wise interaction between local patches through spatial self-

attention. RTAG [8] used Fantastic Reality [37] dataset for

training and extended the MAGritte [37] model to perform

style transfer to create forged images, detect manipulated

images, and localize manipulated pixels for splicing forgery

using two GANs (faker for retouching and authenticator for

localizing forgeries). They Adversarially train both gener-

ators to find whitening and coloring transforms. Trace [3]

created a manipulated database with controlled image cues

(noise models, image demosaicing, color correction, JPEG

compression) and evaluated the image forensic tools. They

generated user-defined endo-mask and exo-mask for each

manipulation cue and the database has 5000 manipulated

images, which is not enough to train a large DNN. This

database is not very impactful when trying to detect real-life

manipulated images. Objectformer ([66]) used a synthetic

training dataset sampled from MS-COCO [42] and Paris-

Street-View [51] and detected the manipulation artifacts by

extracting and training multimodal patch embeddings with

high-frequency features and RGB features combined and

then used object prototypes to model object-level consis-

tencies and find patch-level inconsistencies. They did not

release their code or training dataset and hence the claimed

results cannot be verified.

We found three major problems with the prior research

work done in the IMDL task:

• The synthetic training datasets for most of the methods

are unavailable. Only the pre-trained weights and in-

ference code is released for a few of them. No detail is

provided for creating a standardized training dataset.

• All the previous methods used varying datasets of dif-

ferent sizes and tasks to create a synthetic training

dataset. Some methods used the same dataset for train-

ing and evaluation. This may induce bias in evaluation.

• All the previous methods used varying backbone deep

neural networks for pretraining and finetuning. We

propose to verify the performance of all the models,

when pretrained on a single backbone network.

3. TrainFors: Benchmark IMDL training set
The main contribution of this paper is the development

of a large-scale image manipulation dataset - TrainFors.

The IMDL community uses benchmark evaluation datasets

for manipulation detection and localization. But large-

scale training dataset with real-world manipulations for the

IMDL task is non-existent. We used open-source images to

curate TrainFors. We need both manipulated and pristine

images for the image manipulation detection task. The ma-

nipulated images can have four types of manipulations as

discussed in section 1. Hence, we created five sets of im-

ages - pristine and the four manipulated types in the Train-

Fors dataset, see Tab. 1. Most of the previous works used

one or more of these five image sets for training. Train-

Fors is an effort to accumulate all the manipulation types

and pristine images under the same umbrella with the goal

to diminish the difference between the curated training set

tampered images and real-world manipulated images.

3.1. Image Collection
There exist a few image manipulation datasets that are

released. But they are not sufficient and most of the mod-

els create their own synthetic training datasets to train the

large DNNs. TrainFors is a large database that contains

images from existing manipulated datasets and also some

405



Source Dataset #Pristine #Manipulated #Splicing #Copy-Move #Removal #Enhancement

Existing Training

Trace [3] 1K 10K 5K 5K 0 0

Defacto[46] 0 149K 105K 19K 25K 0

Casiav2[18] 0 5123 1828 3295 0 0

Dresden[24] 0 35K 35K 0 0 0

Newly Generated Training

MS-COCO [42] 172K 541K 25.2K 172.8K 171K 172K

Socrates [23] 3.2K 6.4K 3.2K 0 0 3.2K

Vision [59] 12.3K 24.6K 12.3K 0 0 12.3K

FODB [26] 7.6K 15.2K 7.6 0 0 7.6K

KCMI [1] 916 1832 916 0 0 916

Paris-Street-View [51] 3K 12K 4K 0 4K 4K

Total: TrainFors 200K 800K 200K 200K 200K 200K

Evaluation

Columbia [48] 183 180 180 0 0 0

Coverage [67] 100 100 0 100 0 0

CASIAv1 [18] 800 920 461 459 0 0

NIST16 [2] 0 611 225 282 104 0

IMD2020 [49] 414 2010 1810 100 100 0

Table 1: Training and Evaluation Image Distribution - Number of images for each
type of manipulation

new manipulated images were generated to create an ex-

clusive superset of IMDL training database. We used ma-

nipulated images from Trace [3], Defacto [46], Casiav2 [18]

and Dresden [24] datasets and created another set of pristine

and manipulated images using MS-COCO [42], Socrates

[23], Vision [59], FODB [26], KCMI [1], and Paris-Street-

View [51] datasets. A detailed description of the source

images used to generate the TrainFors database is presented

in Tab. 1.

3.2. Dataset Description
Socrates [23], Vision [59], FODB [26], and KCMI [1]

are Camera Identifying datasets and are not manipulated di-

rectly, neither do they possess ground-truth binary masks of

manipulated pixels. To create meaningful tampered images

from these images, we have externally added manipulated

pixels and generated the ground-truth binary masks. They

were used to generate splicing and image enhancement ma-

nipulations. The external manipulated pixels were added

from MS-COCO [42] objects because MS-COCO provides

a ground-truth mask of two million objects. Semantically

meaningful objects were created from MS-COCO annota-

tions and were used to generate splicing dataset. Paris-

Street-View [51] dataset was directly used for creating re-

moval manipulated images following the inpainting proto-

col mentioned in [51]. Copy-move images can only be gen-

erated if the ground-truth masks of objects are available and

hence only MS-COCO was used to generate them.

3.3. Robust Forgery Pipelines with TrainFors
MS-COCO [42] has 12 supercategories and 80 cate-

gories of object-type images. We have used different com-

binations of these categories to generate manipulated pixels

for splicing, copy-move, and removal images. We tried to

make sure that the manipulated images look like real-world

images and should be difficult to detect such manipulations

by the naked eye. For each of the manipulation types, dif-

ferent pipelines are used to create the manipulated images.

Splicing: We generated spliced images using four types of

combinations of MS-COCO categories. In the first combi-

nation, two images from the same supercategory were cho-

sen. For example bird and cat categories under the same

supercategory animal. In the second combination, objects

from two different supercategories were chosen, for exam-

ple, bird and stop sign from animal and outdoor supercat-

egories respectively. In the third combination, we created

spliced images from the same supercategory and category.

For example, two different images of the person category

were spliced. We generated 100 instances of each combina-

tion to generate the spliced images.

In image splicing, we have a pair of images - a donor

image and a target image. To make the spliced images more

realistic, we refined the segmented objects from the donor

images using MGMatting [74], before inserting them into

the target images. The manipulated objects were placed

along the X and Y axes to make them look more realistic.

We varied the size, and rotation of the donor pixels and ran-

domly added JPEG compression (quality factor 50-99) be-

fore inserting them in target images in some cases. For the

first and second types of combinations, we tried to choose

the donor object to be small, flyable, and most commonly

found to ensure a convincing representation. For example, a

sports ball can be convincingly placed flying in any outdoor

or indoor images.

In the fourth combination, we used the donor objects

from MS-COCO and spliced them into target images from

the camera identification datasets [23], [59], [26], [1], and

[51] as presented in Tab. 1, using a similar setup as the pre-

vious combinations.

Copy-move: The copy-move manipulated image genera-

tion process is similar to image splicing, except that there

is only a single image, and objects are duplicated in the

same image. The camera identification datasets [23], [59],

[26], [1], and [51] could not be used for generating copy-

move forgeries. We used two kinds of combinations of MS-

COCO categories to create the copy-move images. In the

first combination, a single category image was chosen and

the object in that image was duplicated and inserted into a

different position in the same image. For example, a bird’s

pixels were duplicated and inserted at a different location

in the same image. Similar to splicing, we refined the seg-

mented objects using MGMatting [74], before inserting the

duplicated pixels along the X and Y axes, depending on the

height and width of the objects, after resizing and rotation.

In the second combination, we extracted images with

multiple objects from MS-COCO and duplicated one of the

objects to insert them in the source image, similar to the first

combination. We repeated the process with the other object

in the same image to create another variant of copy-move

images. For example, an image may contain a backpack

406



and a handbag. We duplicated the backpack in the first set

and then duplicated the handbag in the second set to create

two instances of copy-move images.

Removal: In the removal manipulated images, one or mul-

tiple objects are removed from an image and substituted by

background pixels by inpainting. We have used MS-COCO

and Paris-Street-View datasets to generate the removal im-

ages with three combinations. In the first combination, we

simply choose images from any category, and after remov-

ing the object, we inpaint it with the background pixels. We

used an exemplar-based blending method [55] for inpaint-

ing. We tried to make sure that the chosen objects are not

very cluttered or complex. For example, if we remove a

hat from a person’s head, it may look visually unrealistic

if we cannot inpaint the hair and head properly. For the

second combination, we selected MS-COCO images with

multiple objects and repeated the removal procedure of the

first combination with two or more objects, creating multi-

ple instances from a single source image. In the third com-

bination, we created removal images from [51] by removing

regions from the images and inpainting them using [55]

Image Enhancement: We have performed a series of im-

age enhancements using major image processing methods -

adding noise, image morphing, image compression, image

resizing, and image blurring. We added Gaussian Noise,

Uniform Noise, Poisson Noise, and Impulse Noise. We per-

formed Open Morphing, Erode Morphing, Dilate Morphing

and Closed Morphing. We did Area Resize, Cubic Resize,

Lanczo Resize, Linear Resize, and Nearest Resize. We cre-

ated images with JPEG Compression, JPEG Double Com-

pression, and WEBP Compression. We added Box Blur,

Gaussian Blur, Median Blur, and Wavelet Blur. Finally,

we created images with Quantization, Dithering, Posteriza-

tion, Histogram Equalization, and Auto Contrast. We used

opencv functions to perform the image enhancements and

applied MGMatting [74] blending when required in certain

cases to make the enhanced images look natural.

Pristine Images: Image manipulation detection training

requires negative samples, represented by unmanipulated

pristine images. We have used a sample set of original im-

ages from [[42], [23], [59], [26], [1], and [51]] datasets to

create the non-manipulated pristine image set of 200K.

In total, TrainFors have 800K manipulated images (pos-

itive samples) and 200K pristine images (negative samples)

as depicted in Tab. 1.

4. Experimental Evaluation
We trained four state-of-the-art IMDL models on our

proposed TrainFors dataset and evaluated the IMDL per-

formance on five benchmark evaluation datasets. The eval-

uation mainly comprises two tasks - detecting manipulated

images and in the latter task, we generate a manipulated

pixel map of the positively detected manipulated images.

4.1. Benchmark Evaluation Datasets
We have evaluated the manipulation localization task

on five benchmark datasets: Columbia[48], Coverage[67],

CASIAv1[18], NIST16[2] and IMD20[49]. Columbia[48]

is an image-splicing dataset, consisting of 180 images.

Coverage[67] is an image copy-move detection dataset

composed of 100 images. CASIA[18] has both copy-move

and splicing images: 5123 images in v2.0 and 921 images

in v1.0. NIST16[2] dataset includes splicing, copy-move,

and image enhancement/reduction manipulations with 611

images. IMD20[49] includes 2,010 manipulated images

scraped from the internet. Refer to Tab. 1 for the detailed

summary of the number of images of each type of manipu-

lation for all the evaluation datasets.

4.2. Evaluation Metrics
We have evaluated the model performance for both im-

age manipulation localization and detection tasks. For

manipulation localization, pixel-level Area Under Curve

(AUC) and F1 scores are reported. While for manipulation

detection, image-level AUC and F1 scores are reported.

4.3. Baseline Models
Most of the previous works followed a two-step train-

ing method in generating the IMDL models. Firstly they

pretrained a backbone network with a synthetic training

dataset and then fine-tuned the pretrained model with the

train-split of the evaluation datasets. PSCCNet[43] 2 used

HRNetV2p-W18 [65] as a backbone network for pretrain-

ing their own synthetic data. ObjectFormer[66] used Effi-

cientNetb4 [60] as the backbone network. MVSS-Net[11]
3 used ResNet-50 [29] as the backbone network. CAT-Net
[39] 4 also used HRNet [65] as the backbone network. All

the state-of-the-art models used varying input image sizes

for pretraining the network. We ran two sets of experiments

- firstly pretraining all the models on TrainFors using the

backbone network specified by each of them respectively

and then fine-tuned using the models from the inference

code, if released by the authors, else we wrote the model

code referencing their respective papers. In the second set

of experiments, we fixed the backbone network as Efficient-

NetV2 [61] (pretrained on ImageNet [16] weights) for all

the models and fine-tuned it in a process similar to the first

set of experiments. We were not able to report the perfor-

mance of the early DNN-based models from Sec. 2.2 and

some models from Sec. 2.3 because either the code is not

released or is no longer publicly accessible.

4.4. Implementation Details
All the images in TrainFors are resized to 256X256 be-

fore feeding them to the backbone network. We imple-

2https://github.com/proteus1991/PSCC-Net
3https://github.com/dong03/MVSS-Net
4https://github.com/mjkwon2021/CAT-Net

407



Columbia[48] Coverage[67] CASIAv1[18] NIST16[2] IMD20[49]

Method AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Author-Specified Backbone

MVSS-Net[11] 61.1±1.2 52.9±1.1 51.9±1.3 36.8±1.3 54.6±1.7 35.1±1.8 38.7±1.8 19.3±2.1 47.9±1.7 30.2±1.6

Cat-Net[39] 56.3±2.1 44.7±2.3 23.4±1.9 7.6±0.7 28.7±1.6 8.9±0.6 29.6±1.4 11.4±1.1 19.3±1.6 6.4±0.3

PSCCNet[43] 58.7±1.3 49.4±1.2 63.9±2.6 46.8 ±2.3 60.9 ±1.1 42.9±0.9 48.6 ±0.8 29.3 ±1.3 41.3±1.7 28.5±2.2

ObjectFormer[66] 55.8±1.1 46.3±1.1 64.2±1.8 47.2±1.7 61.3±1.6 43.2±1.1 48.7±1.2 29.4±1.1 42.5±1.2 28.7±1.3

EfficientNetV2 [61] Backbone

MVSS-Net[11] 68.3±1.2 58.4±1.2 56.7±1.3 42.6±1.3 59.3±1.8 41.5±1.7 42.1±1.9 24.4±2.1 53.2±1.6 34.1±1.6

Cat-Net[39] 70.4±1.4 64.2±1.9 25.6±1.1 9.2±0.9 33.5±1.8 10.6±0.8 37.2±1.5 14.8±1.2 24.8±1.8 9.2±0.5

PSCCNet[43] 62.7±1.3 53.4±1.3 67.1±1.9 50.8±2.1 63.8±1.2 46.7±1.1 52.6±1.2 35.7±1.1 44.5±1.6 32.6±2.3

ObjectFormer[66] 55.8±1.1 46.3±1.1 64.2±1.8 47.3±1.7 61.3±1.6 43.2±1.1 48.7±1.2 29.4±1.1 42.5±1.2 28.7±1.3

Table 2: Manipulation Localization AUC (%) and F1 (%) scores of Pre-trained models, when trained with author-specified backbone networks and EfficientNetV2 [61] backbone
network respectively: Upper and Lower limits over 6 runs

Columbia[48] Coverage[67] CASIAv1[18] NIST16[2] IMD20[49]

Method AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

Author-Specified Backbone

MVSS-Net[11] 71.2±1.3 63.8±1.3 62.9±1.2 45.3±1.1 63.3±1.8 45.2±1.8 47.8±1.9 29.2±1.7 56.6±1.7 39.8±1.7

Cat-Net[39] 67.8±2.3 55.5±2.1 32.3±1.2 12.9±0.6 33.7±1.4 13.6±1.1 41.3±1.8 17.9±1.5 28.4±1.6 10.1±0.9

PSCCNet[43] 69.5±1.2 60.6±1.3 72.3±2.1 57.4±2.1 71.6±1.6 51.2±1.1 59.3±1.2 38.7±2.6 52.7±1.6 38.4±1.7

ObjectFormer[66] 66.3±1.2 56.7±1.1 73.1±1.2 56.4±1.3 72.7±1.7 52.6±1.7 59.1±1.2 37.6±1.2 51.9±1.4 38.3±1.1

EfficientNetV2 [61] Backbone

MVSS-Net[11] 78.9±1.2 62.7±1.2 69.7±1.2 53.2±1.1 70.4±1.6 52.9±1.7 59.2±1.7 36.7±2.3 62.3±1.8 46.4±1.7

Cat-Net[39] 79.5±1.7 65.3±1.1 37.6±2.1 14.6±1.3 38.6±1.6 15.2±1.2 50.1±1.7 22.3±1.5 34.6±1.5 12.8±1.1

PSCCNet[43] 76.9±1.3 62.2±1.2 78.8±2.2 58.6±2.1 76.7±1.3 54.1±1.1 62.3±1.4 41.7±2.1 57.4±1.5 40.3±1.5

ObjectFormer[66] 66.3±1.2 56.7±1.1 73.1±1.2 56.4±1.3 72.7±1.7 52.6±1.7 59.1±1.2 37.6±1.2 51.9±1.4 38.3±1.1

Table 3: Manipulation Localization AUC(%) and F1(%) scores of Fine-tuned models, when trained with author-specified backbone networks and EfficientNetV2 [61] backbone
network respectively: Upper and Lower limits over 6 runs

Columbia[48] Coverage[67] CASIAv1[18] IMD20[49]

Method AUC F1 AUC F1 AUC F1 AUC F1

Author-Specified Backbone

MVSS-Net[11] 82.1 62.3 42.6 24.3 78.6 59.8 65.7 35.1

Cat-Net[39] 81.6 61.7 37.4 29.8 64.7 38.0 59.1 35.4

PSCCNet[43] 83.4 63.8 81.5 62.8 84.6 76.9 78.6 57.3

ObjectFormer[66] 84.8 64.5 82.7 63.9 86.1 77.4 79.3 58.2

EfficientNetV2 [61] Backbone

MVSS-Net[11] 85.6 65.9 57.6 41.5 83.6 64.3 69.8 40.2
Cat-Net[39] 83.5 63.9 38.6 29.9 68.9 43.2 64.3 38.6

PSCCNet[43] 85.4 65.6 83.6 64.7 87.2 79.6 67.4 39.6

ObjectFormer[66] 84.8 64.5 82.7 63.9 86.1 77.4 79.3 58.2

Table 4: Manipulation Detection AUC(%) and F1(%) scores on CASIA-D
dataset[18], when trained with author-specified backbone networks and Efficient-
NetV2 [61] backbone network respectively

mented all the models in PyTorch and trained them on

NVIDIA GeForce RTX 2080 Ti GPU. We used Adam [35]

optimizer with a batch size of 24 and a learning rate period-

ically varying between 1× 10−3 to 1× 10−6. We trained

all the models for 100 epochs. As pointed out by [43], it

is inefficient to pre-train the models with the entire 1 Mil-

lion images in TrainFors. We sampled 0.1 Million images

randomly for training in each epoch.

4.5. Image Manipulation Localization
We used the evaluation protocol defined in [31] to evalu-

ate the localization performance using two modules: Firstly,

the pretrained model is trained on the TrainFors dataset

and evaluated on the entire test set. Secondly, the pre-

trained model is fine-tuned on the train-split of the evalua-

tion datasets and evaluated on the test-splits of the datasets.

We reported the upper and lower limits of the metrics on 6

runs to evaluate the performance variance.

Pre-trained model: Tab. 2 reports the localization perfor-

mance of the pre-trained models from Sec. 4.3 on the five

benchmark evaluation datasets from Sec. 4.1, reporting the

pixel-level AUC and F1 scores. The Cat-Net performance

is best on the Columbia dataset and showed very poor per-

formance on the Coverage dataset. This could be attributed

to the fact that the Cat-Net model is designed for a Splic-

ing dataset and Columbia and Coverage datasets have all-

splicing and no-splicing images respectively (see Tab. 1).

The pre-trained PSCCNet model achieves the best local-

ization performance on Coverage, CASIAv1, and NIST16

datasets, when all the models were pre-trained with the

same backbone network. The pre-trained MVSS-Net model

achieves the best performance on the IMD20 dataset be-

cause it has real-world images and PSCCNet was pretrained

on synthetic datasets. The PSCCNet has the best generaliza-

tion ability compared to the other models as it is pre-trained

on a large amount of synthetic training data.

Fine-tuned model: According to the second protocol, we

408



Pristine Manipulated Groundtruth MVSS-Net[11] Cat-Net[39] PSCCNet[43] ObjectFormer[66]
C

as
ia

[1
8]

C
ol

um
bi

a[
48

]
C

ov
er

ag
e[

67
]

N
IS

T
16

[2
]

IM
D

20
[4

9]

Figure 3: Image Manipulation Localization Prediction Visualization - From top to bottom, we show examples from 5 benchmark evaluation datasets: Casia, Columbia, Coverage
Nist16, and IMD20 by 4 baseline IMDL models: MVSS-Net, Cat-Net, PSCC-Net, and ObjectFormer, trained on our proposed TrainFors dataset.

further fine-tuned the pre-trained model on the train-split of

the evaluation datasets. The training strategy of fine-tuned

models is similar to that of the pre-trained models. We com-

pare the pixel-level AUC and F1 scores of fine-tuned mod-

els on Tab. 3. All the fine-tuned models behaved similarly

to the results portrayed by the pre-trained models. The fine-

tuned PSCCNet model achieves the best localization perfor-

mance on Coverage, CASIAv1, and NIST16 datasets. The

fine-tuned Cat-Net and MVSS-Net models achieve the best

localization performance on Columbia and IMD20 datasets

respectively. It should be noted that the fine-tuned model

performance improves when we train them with the Effi-

cientNetV2 backbone network.

It is clearly evident from Tab. 2 and Tab. 3 that the per-

formance of pre-trained and fine-tuned models vary if the

backbone network is altered. The Objectformer perfor-

mance was on par with the other baseline models for using

a superior backbone pre-training model, but it was outper-

formed, when the backbone network was fixed. The evalu-

ated results reported in the baseline papers deteriorate when

pre-trained with a more generalized dataset, showcasing the

importance of a generalized TrainFors dataset.

4.6. Image Manipulation Detection
Similar to [43] and [66], we used the pre-trained models

for the image manipulation detection task and reported the

image-level AUC and F1 scores in Tab. 4 on four bench-

No Dis- Resize Resize Gau-BlurGau-BlurGau-NGau-NJPG-CompJPG-Comp
tortion (0.78X)(0.25X) (k=3) (k=15) (σ=3) (σ=15) (q=100) (q=50) Mixed

Columbia

Author-Specified Backbone

MVSS-Net[11] 61.1 60.9 60.9 59.8 58.7 57.8 56.4 59.3 59.5 56.3

Cat-Net[39] 56.3 56.2 56.2 55.4 54.8 53.2 52.7 55.6 55.7 52.6

PSCCNet[43] 58.7 58.6 58.6 57.9 57.2 56.5 55.6 57.8 57.9 56.4

ObjectFormer[66] 55.8 55.8 55.7 53.2 52.8 48.4 47.8 54.6 54.7 47.5

EfficientNetV2 [61] Backbone

MVSS-Net[11] 68.3 67.9 67.8 66.7 65.6 64.7 63.5 66.8 66.7 63.2

Cat-Net[39] 70.4 70.3 70.2 68.5 67.7 67.2 66.6 69.2 69.4 66.2
PSCCNet[43] 62.7 62.5 62.4 60.7 59.8 57.7 57.1 60.3 60.4 56.6

ObjectFormer[66] 55.8 55.8 55.7 53.2 52.8 48.4 47.8 54.6 54.7 47.5

NIST16

Author-Specified Backbone

MVSS-Net[11] 38.7 38.7 38.7 38.6 36.4 35.6 34.7 37.6 37.7 34.2

Cat-Net[39] 29.6 29.6 29.6 29.5 28.6 27.9 27.2 29.1 29.2 26.8

PSCCNet[43] 48.6 48.6 48.6 48.5 47.1 46.2 45.3 47.6 47.5 45.1

ObjectFormer[66] 48.7 48.7 48.6 48.5 46.4 45.7 44.9 48.6 48.6 44.7

EfficientNetV2 [61] Backbone

MVSS-Net[11] 42.1 42.1 42.0 41.9 40.2 39.8 39.3 41.9 41.9 39.1

Cat-Net[39] 37.2 37.2 37.1 36.9 35.1 34.7 33.8 37.1 37.2 33.6

PSCCNet[43] 52.6 52.5 52.4 51.7 50.9 50.1 49.6 51.8 51.8 49.4
ObjectFormer[66] 48.7 48.7 48.6 48.5 46.4 45.7 44.9 48.6 48.6 44.7

Table 5: Robustness Comparison of Pixel-level Manipulation Localization AUC(%)
with various distortions evaluated on Columbia[48] and NIST16[2] datasets, when
pretrained with author-specified backbone networks and EfficientNetV2 [61] back-
bone network respectively

mark evaluation datasets. We cannot evaluate the manip-

ulation detection results on the NIST16 dataset as it does

not have any pristine (negative) images (see Tab. 1). All

the previous research work reported the detection results

(AUC score only) on the Casia dataset only, but for a fair

comparison, we reported the results (both AUC and F1

scores) on all four datasets. With the author-specified back-

409



Pristine Manipulated Groundtruth MVSS-Net[11] Cat-Net[39] PSCCNet[43] ObjectFormer[66]

Figure 4: Image Manipulation False Alarm Predictions by 4 baseline models: MVSS-Net, Cat-Net, PSCC-Net, and ObjectFormer, trained on our proposed TrainFors dataset.

bone network pre-training, Objectformer achieved the best

performance, but with the EfficientNetV2 backbone net-

work, all the other baseline models outperformed Object-

former. PSCCNet gave the best manipulation detection per-

formance on the Coverage and Casia datasets and MVSS-

Net on Columbia and IMD20 datasets. For a fair evaluation

of the baseline models, we reported the image manipula-

tion localization and detection tasks separately. But for an

efficient IMDL task, manipulation detection should be per-

formed before manipulation localization and only the de-

tected images should be checked for the manipulated pixels.

4.7. Qualitative Analysis
We reported the manipulation predictions of the base-

line models, after training them with TrainFors dataset in

Fig. 3. The models can easily predict manipulated pixels if

large objects are tampered with in an image (eg, Casia and

IMD20). For copymove examples, if multiple similar ob-

jects are present in an image (eg, more than one panda in

Coverage), model prediction is not very accurate. MVSS-

Net showed promising predictions in this case. However, if

a single object is copymoved, almost all the baseline mod-

els can predict the tampered pixels, except Cat-Net (eg, sea-

lion copymoved in Nist16). The reason for Cat-Net’s poor

performance may be attributed to the fact that it was de-

signed for image splicing and may fail for other types of

manipulations. In removal images, a good blending method

can result in model failure. It can be concluded that the

baseline IMDL models’ performance changes when pre-

trained with the same training dataset and the same back-

bone pre-training network. Further discussion in the sup-

plementary material.

4.8. Robustness Evaluation
All the previous methods [72], [31], [43], [66] used dif-

ferent image distortion methods on raw images from the

NIST16[2] and/or Columbia[48] datasets, and evaluated the

robustness of the models. Similarly, we added the follow-

ing distortions to the manipulated images: Image scaling
with scales=0.78X, 0.25X, Gaussian Blurring with a ker-

nel size k=3, 15, added Gaussian Noise with a standard

deviation σ= 3, 15, and JPEG Compression with a qual-

ity factor q=50, 100. We also added a mix of these distor-

tions in the mixed column and the No Distortion column.

We compared the manipulation localization performance

(AUC scores) of the pre-trained models with all the base-

line methods on these distorted images and report the results

on Columbia and NIST16 datasets in Tab. 5. Cat-Net and

PSCCNet demonstrated the best robustness against various

image distortions, on the Columbia and NIST16 datasets re-

spectively, when the EfficientNetV2 backbone network was

used for pre-training. Image manipulation detection robust-

ness analysis is discussed in the supplementary material.

4.9. Runtime Analysis
We measured the runtime in terms of frames per sec-

ond (FPS) on the inference models and evaluated them on

NVIDIA GeForce RTX 2080 Ti GPU. Cat-Net is quite inef-

ficient with 4.2 FPS, when compared to 18.6 FPS in MVSS-

Net and 51.3 FPS in PSCCNet. Objectformer is much

slower than the other counterparts at 1.9 FPS.

4.10. Limitations
The biggest challenge for the IMDL researchers is failed

predictions and false alarms, see Fig. 4. The presence of

multiple objects can sometimes misguide the IMDL mod-

els to easily predict a pristine object as manipulated. Other

cases where an image is enhanced, without content modifi-

cation, may also lead to manipulation detection failures.

5. Conclusion
We introduced TrainFors, a large-scale training dataset

for the image manipulation detection and localization task.

We hope that TrainFors will be used as a benchmark train-

ing dataset for the IMDL task, similar to the benchmark

evaluation datasets. We performed extensive experiments

with the state-of-the-art baseline IMDL models and show-

cased fair comparisons under a similar training setup that

was not done by the IMDL community previously. The ex-

perimental results authenticate that the IMDL model perfor-

mance is dependent on the training data and the backbone

networks used for pre-training and fine-tuning. Along with

standardized training and evaluation datasets, standardized

evaluation metrics (both pixel-level and image-level AUC

and F1 scores) were used to fairly compare the IMDL mod-

els. We will release the dataset, which will be available to

the research community for future research on detecting and

localizing manipulated images.

410



6. Acknowledgement
This work is based on research sponsored by the De-

fense Advanced Research Projects Agency under agree-

ment number HR0011-21-C- 0164. The U.S. Government

is authorized to reproduce and distribute reprints for gov-

ernmental purposes notwithstanding any copyright notation

thereon. The views and conclusions contained herein are

those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements,

either expressed or implied, of the Defense Advanced Re-

search Projects Agency or the U.S. Government.

References
[1] Ieee’s signal processing society - cam-

era model identification, 2018. https:
//www.kaggle.com/competitions/
sp-society-camera-model-identification.

[2] Nimble challenge 2017 evaluation — nist.

https://www.nist.gov/itl/iad/mig/
nimble-challenge-2017-evaluation. (Ac-

cessed on 11/14/2020).

[3] Quentin Bammey, Tina Nikoukhah, Marina Gardella,

Rafael Grompone von Gioi, Miguel Colom, and Jean-Michel

Morel. Non-semantic evaluation of image forensics tools:

Methodology and database. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,

pages 3751–3760, 2022.

[4] Jawadul H Bappy, Amit K Roy-Chowdhury, Jason Bunk,

Lakshmanan Nataraj, and BS Manjunath. Exploiting spatial

structure for localizing manipulated image regions. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 4970–4979, 2017.

[5] Jawadul H Bappy, Cody Simons, Lakshmanan Nataraj, BS

Manjunath, and Amit K Roy-Chowdhury. Hybrid lstm and

encoder–decoder architecture for detection of image forg-

eries. IEEE Transactions on Image Processing, 28(7):3286–

3300, 2019.

[6] Belhassen Bayar and Matthew C Stamm. A deep learning

approach to universal image manipulation detection using

a new convolutional layer. In Proceedings of the 4th ACM
workshop on information hiding and multimedia security,

pages 5–10, 2016.

[7] Belhassen Bayar and Matthew C Stamm. Constrained con-

volutional neural networks: A new approach towards general

purpose image manipulation detection. IEEE Transactions
on Information Forensics and Security, 13(11):2691–2706,

2018.

[8] Xiuli Bi, Zhipeng Zhang, and Bin Xiao. Reality transform

adversarial generators for image splicing forgery detection

and localization. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 14294–14303,

2021.

[9] Luca Bondi, Luca Baroffio, David Güera, Paolo Bestagini,

Edward J Delp, and Stefano Tubaro. First steps toward cam-

era model identification with convolutional neural networks.

IEEE Signal Processing Letters, 24(3):259–263, 2016.

[10] Luca Bondi, Silvia Lameri, David Guera, Paolo Bestagini,

Edward J Delp, Stefano Tubaro, et al. Tampering detection

and localization through clustering of camera-based cnn fea-

tures. In CVPR Workshops, volume 2, 2017.

[11] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong

Li. Image manipulation detection by multi-view multi-scale

supervision. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14185–14193, 2021.

[12] Hak-Yeol Choi, Han-Ul Jang, Dongkyu Kim, Jeongho Son,

Seung-Min Mun, Sunghee Choi, and Heung-Kyu Lee. De-

tecting composite image manipulation based on deep neu-

ral networks. In 2017 International Conference on Systems,
Signals and Image Processing (IWSSIP), pages 1–5. IEEE,

2017.

[13] Davide Cozzolino, Giovanni Poggi, and Luisa Verdo-

liva. Efficient dense-field copy–move forgery detection.

IEEE Transactions on Information Forensics and Security,

10(11):2284–2297, 2015.

[14] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva.

Splicebuster: A new blind image splicing detector. In 2015
IEEE International Workshop on Information Forensics and
Security (WIFS), pages 1–6. IEEE, 2015.

[15] Davide Cozzolino and Luisa Verdoliva. Noiseprint: a cnn-

based camera model fingerprint. IEEE Transactions on In-
formation Forensics and Security, 15:144–159, 2019.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[17] Helisa Dhamo, Azade Farshad, Iro Laina, Nassir Navab,

Gregory D Hager, Federico Tombari, and Christian Rup-

precht. Semantic image manipulation using scene graphs.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 5213–5222, 2020.

[18] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tam-

pering detection evaluation database. In 2013 IEEE China
Summit and International Conference on Signal and Infor-
mation Processing, pages 422–426. IEEE, 2013.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[20] Yu Fan, Philippe Carré, and Christine Fernandez-Maloigne.

Image splicing detection with local illumination estimation.

In 2015 IEEE international conference on Image processing
(ICIP), pages 2940–2944. IEEE, 2015.

[21] Pasquale Ferrara, Tiziano Bianchi, Alessia De Rosa, and

Alessandro Piva. Image forgery localization via fine-grained

analysis of cfa artifacts. IEEE Transactions on Information
Forensics and Security, 7(5):1566–1577, 2012.

[22] Jessica Fridrich and Jan Kodovsky. Rich models for steganal-

ysis of digital images. IEEE Transactions on information
Forensics and Security, 7(3):868–882, 2012.

[23] Chiara Galdi, Frank Hartung, and Jean-Luc Dugelay.

Socrates: A database of realistic data for source camera

411



recognition on smartphones. In ICPRAM, pages 648–655,

2019.

[24] Thomas Gloe and Rainer Böhme. The’dresden image

database’for benchmarking digital image forensics. In Pro-
ceedings of the 2010 ACM symposium on applied computing,

pages 1584–1590, 2010.

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

[26] Benjamin Hadwiger and Christian Riess. The forchheim im-

age database for camera identification in the wild. In Pat-
tern Recognition. ICPR International Workshops and Chal-
lenges: Virtual Event, January 10–15, 2021, Proceedings,
Part VI, pages 500–515. Springer, 2021.

[27] Jong Goo Han, Tae Hee Park, Yong Ho Moon, and Il Kyu

Eom. Efficient markov feature extraction method for image

splicing detection using maximization and threshold expan-

sion. Journal of Electronic Imaging, 25(2):023031, 2016.

[28] Jing Hao, Zhixin Zhang, Shicai Yang, Di Xie, and Shiliang

Pu. Transforensics: image forgery localization with dense

self-attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15055–15064, 2021.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[30] János Horváth, Sriram Baireddy, Hanxiang Hao, Daniel Mas

Montserrat, and Edward J Delp. Manipulation detection in

satellite images using vision transformer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1032–1041, 2021.

[31] Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak

Chaudhuri, Zhenheng Yang, and Ram Nevatia. Span: spa-

tial pyramid attention network for image manipulation local-

ization. In European Conference on Computer Vision, pages

312–328. Springer, 2020.

[32] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[33] Minyoung Huh, Andrew Liu, Andrew Owens, and Alexei A

Efros. Fighting fake news: Image splice detection via

learned self-consistency. In Proceedings of the European
conference on computer vision (ECCV), pages 101–117,

2018.

[34] Ashraful Islam, Chengjiang Long, Arslan Basharat, and An-

thony Hoogs. Doa-gan: Dual-order attentive generative ad-

versarial network for image copy-move forgery detection

and localization. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages

4676–4685, 2020.

[35] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[36] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[37] Vladimir V Kniaz, Vladimir Knyaz, and Fabio Remondino.

The point where reality meets fantasy: Mixed adversarial

generators for image splice detection. Advances in Neural
Information Processing Systems, 32, 2019.

[38] Neal Krawetz and Hacker Factor Solutions. A picture’s

worth. Hacker Factor Solutions, 6(2):2, 2007.

[39] Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, and

Heung-Kyu Lee. Cat-net: Compression artifact tracing net-

work for detection and localization of image splicing. In

Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 375–384, 2021.

[40] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS

Torr. Manigan: Text-guided image manipulation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7880–7889, 2020.

[41] Ce Li, Qiang Ma, Limei Xiao, Ming Li, and Aihua Zhang.

Image splicing detection based on markov features in qdct

domain. Neurocomputing, 228:29–36, 2017.

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014.

[43] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu.

Pscc-net: Progressive spatio-channel correlation network

for image manipulation detection and localization. arXiv
preprint arXiv:2103.10596, 2021.

[44] Siwei Lyu, Xunyu Pan, and Xing Zhang. Exposing region

splicing forgeries with blind local noise estimation. Interna-
tional journal of computer vision, 110(2):202–221, 2014.

[45] Babak Mahdian and Stanislav Saic. Using noise inconsisten-

cies for blind image forensics. Image and Vision Computing,

27(10):1497–1503, 2009.

[46] Gaël Mahfoudi, Badr Tajini, Florent Retraint, Frederic

Morain-Nicolier, Jean Luc Dugelay, and PIC Marc. Defacto:

image and face manipulation dataset. In 2019 27Th european
signal processing conference (EUSIPCO), pages 1–5. IEEE,

2019.

[47] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[48] Tian-Tsong Ng, Jessie Hsu, and Shih-Fu Chang. Columbia

image splicing detection evaluation dataset. DVMM lab.
Columbia Univ CalPhotos Digit Libr, 2009.

[49] Adam Novozamsky, Babak Mahdian, and Stanislav Saic.

Imd2020: A large-scale annotated dataset tailored for detect-

ing manipulated images. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision
Workshops, pages 71–80, 2020.

[50] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli

Shechtman, Alexei Efros, and Richard Zhang. Swapping au-

toencoder for deep image manipulation. Advances in Neural
Information Processing Systems, 33:7198–7211, 2020.

[51] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages

2536–2544, 2016.

412



[52] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chun-

yuan Li, Andrew Stevens, and Lawrence Carin. Variational

autoencoder for deep learning of images, labels and cap-

tions. Advances in neural information processing systems,

29, 2016.

[53] Yuan Rao and Jiangqun Ni. A deep learning approach to

detection of splicing and copy-move forgeries in images. In

2016 IEEE international workshop on information forensics
and security (WIFS), pages 1–6. IEEE, 2016.

[54] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. Advances in neural information process-
ing systems, 28, 2015.

[55] Viktor Reshniak, Jeremy Trageser, and Clayton G Web-

ster. A nonlocal feature-driven exemplar-based approach

for image inpainting. SIAM Journal on Imaging Sciences,

13(4):2140–2168, 2020.

[56] Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAl-

mageed, Iacopo Masi, and Prem Natarajan. Recurrent convo-

lutional strategies for face manipulation detection in videos.

Interfaces (GUI), 3(1):80–87, 2019.

[57] Ekraam Sabir, Soumyaroop Nandi, Wael Abd-Almageed,

and Prem Natarajan. Biofors: A large biomedical image

forensics dataset. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10963–10973,

2021.

[58] Ronald Salloum, Yuzhuo Ren, and C-C Jay Kuo. Image

splicing localization using a multi-task fully convolutional

network (mfcn). Journal of Visual Communication and Im-
age Representation, 51:201–209, 2018.

[59] Dasara Shullani, Marco Fontani, Massimo Iuliani, Omar Al

Shaya, and Alessandro Piva. Vision: a video and image

dataset for source identification. EURASIP Journal on In-
formation Security, 2017(1):1–16, 2017.

[60] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,

2019.

[61] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models

and faster training. In International conference on machine
learning, pages 10096–10106. PMLR, 2021.

[62] Tiberio Uricchio, Lamberto Ballan, Irene Roberto Caldelli,

et al. Localization of jpeg double compression through multi-

domain convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, pages 53–59, 2017.

[63] Yael Vinker, Eliahu Horwitz, Nir Zabari, and Yedid

Hoshen. Deep single image manipulation. arXiv preprint
arXiv:2007.01289, 2020.

[64] Jane Wakefield. Deepfake presidents used in russia-ukraine

war. BBC News.

[65] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, et al. Deep high-resolution repre-

sentation learning for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 43(10):3349–

3364, 2020.

[66] Junke Wang, Zuxuan Wu, Jingjing Chen, Xintong Han, Ab-

hinav Shrivastava, Ser-Nam Lim, and Yu-Gang Jiang. Ob-

jectformer for image manipulation detection and localiza-

tion. arXiv preprint arXiv:2203.14681, 2022.

[67] Bihan Wen, Ye Zhu, Ramanathan Subramanian, Tian-Tsong

Ng, Xuanjing Shen, and Stefan Winkler. Coverage—a novel

database for copy-move forgery detection. In 2016 IEEE
International Conference on Image Processing (ICIP), pages

161–165. IEEE, 2016.

[68] Haiwei Wu, Jiantao Zhou, Jinyu Tian, and Jun Liu. Robust

image forgery detection over online social network shared

images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13440–

13449, 2022.

[69] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Deep

matching and validation network: An end-to-end solution

to constrained image splicing localization and detection. In

Proceedings of the 25th ACM international conference on
Multimedia, pages 1480–1502, 2017.

[70] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Buster-

net: Detecting copy-move image forgery with source/target

localization. In Proceedings of the European conference on
computer vision (ECCV), pages 168–184, 2018.

[71] Yue Wu, Wael Abd-Almageed, and Prem Natarajan. Image

copy-move forgery detection via an end-to-end deep neural

network. In 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 1907–1915. IEEE, 2018.

[72] Yue Wu, Wael AbdAlmageed, and Premkumar Natarajan.

Mantra-net: Manipulation tracing network for detection and

localization of image forgeries with anomalous features. In

Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9543–9552, 2019.

[73] Qiuwei Yang, Fei Peng, Jiao-Ting Li, and Min Long. Image

tamper detection based on noise estimation and lacunarity

texture. Multimedia Tools and Applications, 75(17):10201–

10211, 2016.

[74] Qihang Yu, Jianming Zhang, He Zhang, Yilin Wang, Zhe

Lin, Ning Xu, Yutong Bai, and Alan Yuille. Mask guided

matting via progressive refinement network. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1154–1163, 2021.

[75] Zhongping Zhang, Yixuan Zhang, Zheng Zhou, and Jiebo

Luo. Boundary-based image forgery detection by fast shal-

low cnn. In 2018 24th International Conference on Pattern
Recognition (ICPR), pages 2658–2663. IEEE, 2018.

[76] Peng Zhou, Bor-Chun Chen, Xintong Han, Mahyar Najibi,

Abhinav Shrivastava, Ser-Nam Lim, and Larry Davis. Gen-

erate, segment, and refine: Towards generic manipulation

segmentation. In Proceedings of the AAAI conference on ar-
tificial intelligence, volume 34, pages 13058–13065, 2020.

[77] Peng Zhou, Xintong Han, Vlad I Morariu, and Larry S Davis.

Learning rich features for image manipulation detection. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1053–1061, 2018.

[78] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

413



international conference on computer vision, pages 2223–

2232, 2017.

[79] Xinshan Zhu, Yongjun Qian, Xianfeng Zhao, Biao Sun, and

Ya Sun. A deep learning approach to patch-based image in-

painting forensics. Signal Processing: Image Communica-
tion, 67:90–99, 2018.

[80] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang

Wang, and Jifeng Dai. Deformable detr: Deformable trans-

formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

414


