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Figure 1: Identity consistent anonymization generated by FIVA (left). Anonymization, reconstruction attacks and defense

against reconstruction attacks (right). Reconstruction attacks allow for facial recognition to succeed as they manage to undo

the anonymization. This is preventable by applying a small amount of noise to the anonymized image pixels, causing the

reconstruction attack model to collapse.

Abstract

In this paper, we present a new approach for facial
anonymization in images and videos, abbreviated as FIVA.
Our proposed method is able to maintain the same face
anonymization consistently over frames with our suggested
identity-tracking and guarantees a strong difference from
the original face. FIVA allows for 0 true positives for a
false acceptance rate of 0.001. Our work considers the im-
portant security issue of reconstruction attacks and investi-
gates adversarial noise, uniform noise, and parameter noise
to disrupt reconstruction attacks. In this regard, we apply
different defense and protection methods against these pri-
vacy threats to demonstrate the scalability of FIVA. On top
of this, we also show that reconstruction attack models can
be used for detection of deep fakes. Last but not least, we
provide experimental results showing how FIVA can even
enable face swapping, which is purely trained on a single

target image.

1. Introduction
Privacy holds significant importance in various aspects

of society, and data collection and storage are no excep-

tions. The increasing demand and interest in data, cou-

pled with the implementation of recent regulations such as

the General Data Protection Regulation, have made data

anonymization a necessity. Numerous challenges arise

where identity information becomes irrelevant, while at-

tribute information remains crucial. Anonymization tech-

niques aim to obscure, remove, or replace identity infor-

mation with arbitrary pseudo-identities while preserving es-

sential attribute information. However, obscuring or remov-

ing identity information through direct manipulation of the

data distribution often results in the loss of significant at-

tributes. For instance, techniques like blurring faces or re-

placing them with black boxes eliminate vital details such as
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eye gaze, pose, and expressions. In contrast, replacement-

oriented methods focus on preserving key attributes while

altering the identities of individuals.

In this study, we particularly concentrate on

replacement-based approaches for anonymizing faces

in both images and videos. We propose a novel anonymiza-

tion method that utilizes target-oriented face-swapping

models such as FaceDancer [27] and SimSwap [5] in

conjunction with a model based on [9]. It is here worth

noting that our method can be implemented by using any

existing target-oriented face manipulation model (e.g.,

[5, 20, 27, 33]) that utilizes identity embeddings for facial

manipulation. These models ensure strong consistency

across video frames when the employed identity embedding

is stable. To both enable and enhance this consistency,

we introduce a simple and efficient method that not only

tracks identities but also samples fake identities. Thus,

our proposed method enables robust anonymization and

consistency across frames.

Furthermore, our research addresses an important as-

pect of security, specifically the vulnerability to reconstruc-

tion attacks, which has been under-investigated in facial

anonymization. In a reconstruction attack, an adversarial

model attempts to translate the anonymized face back to the

original identity. We hypothesize and provide compelling

evidence that anonymization models leave traces in the im-

ages that can be exploited for successful reconstruction at-

tacks. To mitigate and verify this threat, we investigate the

effectiveness of various noise types, including adversarial

noise, uniform noise, and parameter noise, while disrupt-

ing the reconstruction attack. Additionally, we present re-

sults demonstrating how a reconstruction attack model can

be utilized for deep fake detection.

Lastly, our contributions highlight that maximizing the

identity distance is detrimental to privacy. This is because,

state-of-the-art facial recognition models constrain embed-

dings to a hyper-sphere, which allows us to easily find the

original identity by negating one of the embeddings.

2. Related Work
In this work, we focus on the direct manipulation of iden-

tity information within the data, such as identity masking

and identity manipulation methods. Manipulating identity

involves masking or altering identity information to pre-

serve privacy. In the context of image and video faces, two

common masking approaches are blurring and obscuring

with black boxes. While these methods may ensure strong

privacy, they directly eliminate valuable information such as

eye gaze, potentially affecting the data distribution. Naively

training models on this distorted data may lead to the model

becoming dependent on the introduced distortions. There-

fore, an emerging approach is to leverage advancements in

generative models to replace the identity with realistic faces

[4, 9, 13, 19, 14, 21, 22, 26]. There exist various works,

such as those by Ma et al. [22], Li et al. [19], Li and Han

[21], and Ren et al. [26], that directly employ face modifi-

cation techniques. However, the current evaluations differ

significantly, and none of these works focus on realism in a

spatiotemporal context. Gafni et al. [9] utilize a face modi-

fication autoencoder network with a focus on spatiotempo-

ral consistency. Their approach operates consistently across

frames, generating a learned mask for occlusion awareness.

However, there is no quantitative evaluation of the temporal

consistency, and the network is trained to push the identity

away while preserving attribute information, similar to the

training approach of the face-swapping method FaceDancer

[27]. DeepPrivacy and DeepPrivacy2 [14, 13] employ a U-

net-based model trained to inpaint a removed face, condi-

tioned on pose information to preserve pose consistency.

However, by completely removing the face, crucial infor-

mation such as expression and eye gaze is lost. Tempo-

ral consistency is also disregarded, resulting in the genera-

tion of a new face for frames that differ slightly. Çiftçi et
al. [4] utilize a face-swapping model, SimSwap [5], which

we evaluate in this work using our proposed method. There-

fore, our work complements theirs in this context.

Face-swapping techniques have emerged as a promising

approach for facial anonymization in recent years, serving

as the foundation for the direct manipulation of identity

information. Specifically, a target-oriented face-swapping

model is employed to facilitate the anonymization process.

face-swapping refers to the task of transferring a source

face or identity onto a target face. Target-oriented methods,

in particular, prove suitable for anonymization purposes as

they typically employ identity embeddings from an iden-

tity encoder to directly manipulate the identity within the

image [5, 20, 27, 33]. Working with these identity em-

beddings is efficient and straightforward. Source-oriented

approaches tend to struggle with lighting, textures and de-

mands an actual fake image, which is costly [2, 24, 25]. We

demonstrate an approach that can be attached to an existing

target-orient face-swapping model to allow for both image

and video anonymization.

3. Method

3.1. Network Architecture

FIVA comprises a target-oriented encoder-decoder gen-

erator, a pre-trained ArcFace model [8], and the Identity

Tracking Module (ITM) as illustrated in Figure 2. We here

note that any target-oriented face manipulation model can

be employed as the generator, for which ArcFace [8] pro-

vides identity conditioning information. ITM is for track-

ing and sampling fake identities. For clarity and separa-

tion from other target-oriented models investigated, we will

from here on denote the newly introduced model in this
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Figure 2: Overview of our anonymizing pipeline: the Identity Tracking Module (ITM) (left) and the implication of our

reconstruction attacks (right). Here, zid and za are the identity vector and the sampled fake identity vector, respectively.

ITM checks if an identity exists and returns a corresponding fake identity (Match). If not (No Match), as indicated by the

red arrows, we generate and/or save a fake identity and store the pair of vectors. We determine a match with the cosine

distance and a manually chosen threshold (See Algorithm 1). The generator G, in this case, could be any target-orient facial

manipulation model [27, 5, 33, 34, 20, 19, 9]. The reconstruction attack model R shown on the right is learned in a black-box

setting (No access to G). The model R learns to reverse the transformation performed by G, thus, allowing for successful

face recognition. By applying a small amount of noise to the anonymized image pixels, the reconstruction attacks can be

defended, thus, yielding failed face recognition.

work as FIVA.

Generator (G): Our generator model G is based on the

architecture presented in [9]. We apply several important

modifications to G, which are motivated by recent advance-

ments in the literature and the need to address certain miss-

ing details in [9]. First, the skip connection directly incor-

porates all feature maps from the encoder. Secondly, the

identity information is broadcasted and concatenated with

the bottleneck layer, preserving the spatial dimensions. The

fully connected layers in the bottleneck are directly applied

to the feature maps. Each encoder block utilizes a depth-

wise convolution with a stride of 2 to downsample the fea-

ture maps, while the decoder block employs the pixel shuf-

fle operation [31] for upsampling. Similar to [9], our model

generates an anonymized image, along with an automati-

cally learned mask, which is designed to blend seamlessly

with the target image (See supplementary material for a de-

tailed overview).

Discriminator: Our discriminator, follows the design

principles of discriminators used in FaceDancer [27], Hi-

fiFace [33], and StarGAN-v2 [6]. We employ the non-

saturated GAN loss [15, 16, 17] for training.

ArcFace: In order to encourage the generator to deviate

from the target image in terms of identity, we condition the

bottleneck layer with identity vectors extracted from Arc-

Face [8], which utilizes a ResNet100 backbone [11].

Reconstruction Attack Model (R): Our reconstruction

attack model, denoted as R, is a U-Net model. We choose

to use similar encoder and decoder blocks to the ones de-

scribed in [9]. The main difference is that the attack model

is not conditioned on any identity information and utilizes

several skip connections. See supplementary materials for

details.

3.2. Identity Tracking Module (ITM)

When performing live anonymization in the wild, we

need to keep track of the identities present in the video and

the conditional information used to anonymize. To solve

this, we simply use an Identity Tracking Module (ITM) that

checks if the detected face has been observed before (Figure

2). If it has not, we sample a fake identity based on Equa-

tion 1 as described in section 3.3. If it has been observed,

we skip the sampling and return the matching identity’s cor-

responding fake identity. Let zid be the embedded identity

vector, Tid is the stored previous identity vectors, Fid de-

fines the dictionary containing the stored fake identity vec-

tors za, t denotes the threshold, key pointer represents the

next key for adding new fake identities to Fid, and Vi is the

sampling function. The process for tracking and generating

new fake identities is then defined as shown in Algorithm 1.
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Algorithm 1: Identity tracking algorithm for using

consistent fake identities and generating new fake

identities.

1 ITM zid;

Input : Extracted identity vector zid
Output: Fake identity za

2 D = 1 - cosine similarity(zid, Tid)

3 idx = argmin(D)

4 d = D[idx]

5 if d < t then
6 return Fid[idx];

7 else
8 Tid.append(zid)

9 za = Vi(zid)

10 Fid[key pointer] = za
11 key pointer = key pointer + 1

12 return za;

13 end

3.3. Sample Fake Identities

For both our generator and target-oriented face-

swapping models, we need to sample fake vectors, on which

the models are conditioned. Considering those facial recog-

nition models such as ArcFace [8] and CosFace [32] are

trained to strengthen the cosine similarity between the same

identity images, which is constraining the embeddings to

a unit hypersphere, we can prove that the absolute oppo-

site of a vector zid is simply put −zid, see Equation 2 and

3. This means that we can guarantee a strong anonymiza-

tion (difference in identity) that facial recognition can not

match correctly. However, this is a double-edged sword in

which facial recognition guarantees a hit by searching for

the most similar identity to −zid. This means we need to

sample identity information that is far away from both zid
and −zid. This is done by preparing an anchor search space

Sa. In this regard, we extract average embeddings of iden-

tities in the VGGFace2 [3] train set. These are spherically

interpolated with a shifted version of itself, thus creating

an anchor search space of identity embeddings that all are a

mix of two people (A visualization in a 3-dimensional coor-

dinate system can be viewed in the supplementary material).

This step can be repeated to a desired size of the anchor

search space. We then search for an appropriate embedding

as follows:

za = Sa[argmin(|cos(zid,Sa)|+m)] , (1)

where za is a fake identity and m is a margin to constrain

the search result close to a specific distance. For instance,

a margin m of 0 would result in finding an embedding of a

cosine similarity of 0.

Cosine similarity cos(θ) is defined as follows

cos(θ) =
A ·B

||A||||B|| , (2)

where A and B ∈ RD, and the formula is constrained

between −1 and 1. Assuming we measure the cosine simi-

larity of A with itself, we obtain

cos(θ) =
A ·A

||A||||A|| = 1 , (3)

which is equal to 1, meaning exactly the same. There-

fore, if we compare A and −A we obtain cos(θ) = −1,

meaning exactly opposite.

3.4. Loss Functions

The loss function has two components: one is for the

face manipulation model and the other is for the reconstruc-

tion attack, described below.

Face Manipulation Loss: A combination of different

losses is employed to train the generator model, such as

IFSR Lifsr introduced in [27], a cosine distance loss La,

L1 pixel-wise reconstruction loss, and L1 mask loss in [9].

IFSR calculates the cosine distance between entire feature

maps within an identity encoder to regularize the model to

retent attribute information such as expression, pose, light-

ing and make-up. We modify IFSR slightly, instead of using

a feature map for each residual block, we use a feature map

for each resolution scale, and completely omit the proposed

margins by setting them to 0. For identity manipulation, we

choose to train it counterfactual, similar to [9]. We use the

cosine distance as:

La = 2 + cos(I(Xt), I(Xa)) + cos(I(Xt), I(Xâ)) , (4)

where cos(.) denotes the cosine similarity, Xt is the

target image, Xa is the anonymized face, Xâ is the

anonymized face blended with the target face and I(.) is

the pretrained ArcFace [8].

Reconstruction Attack Loss: To perform a reconstruc-

tion attack against a target-oriented face-swapping and/or

anonymization model, we train a U-Net architecture to re-

construct the original image. The reconstruction attack

model was trained using an L1 pixel-wise reconstruction

loss, an identity loss, the same version of the IFSR loss

Lifsr from [27], and an adversarial loss. The reconstruc-

tion loss is as follows:

Lr = ||Xt −R(Xc)|| , (5)

where Xc is the anonymized/swapped target image, Xt

defines the unaltered target image of Xc, and R(.) repre-

sents the reconstruction attack model. The identity loss is

used to further enforce the original identity information:
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Li = 1− cos(I(Xt), I(R(Xc))) , (6)

where cos(.) denotes the cosine similarity. Once the re-

construction attack model is trained, we evaluate its capabil-

ities in conjunction with the reconstruction attack vulnera-

bility of the face-swapping model. In this case, we (1) sam-

ple a fake identity vector (see Section 3.3) for the attacked

face-swapping model, (2) perform anonymization, (3) re-

construct the original identity with the reconstruction attack

model, and finally (4) try to retrieve the original identity

in the dataset using a separate identity embedding model,

CosFace [32].

3.5. Evaluation

Temporal Consistency: Ideally, when performing

anonymization on video, should the new identity be con-

sistent over time. To gauge the identity consistency tem-

porally, we first extract the face from N frames from M
videos. Secondly, we extract the identity vector for each

frame using CosFace [32]. Finally, we calculate the pair-

wise cosine distance between all frames and measure the

mean standard deviation of these distances:

Mσ
tc =

1

M

M∑
√√√√ 1

N2

N∑
i=1

N∑
j=1

(Di,j − μ)2 , (7)

where D is the pair-wise cosine distance matrix and μ
is the mean distance of D. We also report the mean of the

mean distances in D, denoted as Mμ
tc. This lets us represent

the mean variation of the anonymized face when the identity

is the same as the input for the anonymization algorithm.

Anonymization: We follow previous works [9, 23, 19,

28] for evaluating how well our method manages to hide

the identity of the target in contrast to other approaches. In

most of the face-swapping algorithms [5, 20, 27, 33, 34] and

reconstruction attack approaches, the identity performance

is evaluated using the percentage of successful retrieval of

the original source identity. We here rather report the per-

centage of successful retrieval of the target identity, where

the goal is to negate the recapturing of the identity. Another

difference is that successful retrieval of the target identity

is not necessarily successful in a practical setting. More

specifically, we follow common practices from recognition

tasks and reject the retrieved identity as a success if and only

if the closest identity is the target identity with a distance

that is still larger than a practical threshold. In this case, the

threshold is 0.63 for a false acceptance rate of 0.001.

Adversarial Defense: The theory for why reconstruc-

tion works is because it learns a function in the image that

the anonymization model “applies”. Therefore, we inves-

tigate potential approaches that could disrupt that function.

For defending against reconstruction attacks we investigate

adversarial attacks, more specifically, the fast gradient sign

attack [10], against the reconstruction attack model, stan-

dard uniform noise, and Gaussian noise applied to the pa-

rameters of the model.

3.6. Reconstruction Attacks as Deep Fake Detectors

Since the reconstruction attack model is trained to take a

manipulated face image as input and perform an alteration

in the image itself to restore the original identity, we investi-

gate the cases when the input is not manipulated by a target-

oriented face-swapping model. Since our hypothesis states

that the reconstruction attack model learns a function in

the image that the anonymization model or face-swapping

model leaves behind, we expect that images that have not

been manipulated cannot be changed by the reconstruction

attack model. This claim is supported by the experimental

results shown in Section 4. Because of this behavior, we can

use the reconstruction attack model as a deep fake detector.

This can be easily done by measuring the cosine distance

between identity embeddings of the input image and out-

put image, similar to Eq. 6. A high distance value would

indicate a deep fake, while a low distance does not.

4. Results
Implementation Details: FIVA is trained on the dataset

VGGFace2 [3]. All faces are aligned with five-point land-

marks extracted with RetinaFace [7]. The alignment is per-

formed to match the input into ArcFace [8]. We used the

Adam [18] optimizer with β1 = 0.5, β2 = 0.99, a learning

rate of 0.0001, and exponential learning rate decay of 0.97
every 100K steps. The target (Xt) face is distorted dur-

ing training with random rotation of 10 degrees and small

random zooms are applied before being fed to FIVA. The

input Xt of ArcFace remains undistorted. Image resolution

is 256× 256.

4.1. Quantitative Results

Exhaustive experiments are conducted to demonstrate

the effectiveness of our proposed FIVA model together with

target-oriented face-swapping models. Table 1 contains

quantitative results on the dataset FaceForensic++ [29].

This table not only compares FIVA with previous works,

but also acts as an ablative benchmark for highlighting the

effectiveness of our proposed anchor sampling and ITM

modules. The metrics evaluated are identity retrieval (ID),

negated identity retrieval (¬ID), reconstruction attack iden-

tity retrieval (RA), and temporal consistency (See Section

3.5). As shown in Table 1, both FIVA, SimSwap [5], and

FaceDancer [27] achive the lowest ID scores and thus allow

for strong anonymity of faces.

Our proposed method of sampling fake identities shows

that we can avoid identity leakage by searching for −zid.
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Table 1: Quantitative experiments on FaceForen-

sics++ [29]. Evaluated with identity retrieval (ID),

negated identity retrieval (¬ID, searching for a match with

−zid), and reconstruction attack (RA) identity retrieval.

Temporal identity consistency Mtc calculated using

10 frames per video. The divide in the table separates

inpainting-based methods from target-oriented ones. The

× indicates that RA is not applicable to the corresponding

method. +Sampling means we used the anchor sampling

method to assign anonymized identities (See Equation

1), while +ITM indicates both the anchor sampling and

tracking (See Algorithm 1 and Figure 2). The ↓ indicates

lower is better.

Method ID↓ ¬ID↓ RA↓ Mμ
tc↓ Mσ

tc↓
Real Data - - - 0.150 0.074

CIAGAN [23] 0.035 0.000 × 0.521 0.220

CIAGAN [23] + ITM 0.030 0.000 × 0.300 0.151

DeepPrivacy [14] 0.004 0.000 × 0.359 0.184

CFA-Net [22] 0.012 N/A N/A N/A N/A

SimSwap [5] + Sampling 0.002 0.000 0.994 0.607 0.345

SimSwap [5] + ITM 0.002 0.000 0.994 0.084 0.051

FaceDancer [27] + Sampling 0.000 0.000 0.999 0.556 0.314

FaceDancer [27] + ITM 0.000 0.000 0.999 0.186 0.141

FIVA 0.000 0.966 0.998 0.227 0.101

FIVA + Sampling 0.000 0.000 0.996 0.550 0.310

FIVA + ITM 0.000 0.000 0.996 0.075 0.041

Recalling that FIVA was trained counterfactually and can,

in theory, anonymize without any sampling, Table 1 shows

a successful identity retrieval rate (−zid) of 96.6% (¬ID)

even if anchor sampling is not employed. Note that Sim-

Swap and FaceDancer are primarily designed as face-

swapping approaches and both require an additional sam-

pling process. Our proposed ITM approach allows for

strong temporal consistency in all the target-oriented meth-

ods, as shown in Table 1 where the Mtc scores drop once

ITM is added to SimSwap [5], FaceDancer [27], and FIVA.

Next, we compare the performance of FIVA, Sim-

Swap [5], and FaceDancer [27] as anonymizer (utilizing

ITM for tracking and anchor sampling) with previous work

of the LFW benchmark [12] in Table 2. The used facial

recognition model differs here, however, we claim that the

comparison is still valid as we use a more powerful model,

CosFace [32], for identity retrieval. Table 2 further demon-

strates the effectiveness of both FIVA and ITM in providing

robust anonymization.

Finally, we claim that FIVA and other target-orient ap-

proaches leave a trace in the image that allows for an ad-

versarial network to learn to reconstruct the original iden-

tity. This is highlighted by the lower scores in column 3 in

Table 1. To strengthen this claim and demonstrate poten-

tial approaches, we show in Table 3 that a disrupting noise

can collapse the output of the reconstruction attack model.

Table 2: Quantitative identity retrieval experiments on

LFW [12]. CFA-Net [22] and Gafni et al. [9] demonstrate

the true positive rate for a false acceptance rate of 0.001 us-

ing FaceNet [30] as the facial recognition model. We evalu-

ate the remaining methods with CosFace and a threshold of

0.63 (Cosine distance), for a false acceptance rate of 0.001.

The ↓ indicates lower is better.

Method ID↓
Gafni et al. [9] 0.035

CIAGAN [23] 0.034

CFA-Net [22] 0.012

DeepPrivacy [14] 0.002

FaceDancer [27] + ITM 0.002

SimSwap [5] + ITM 0.001

FIVA + ITM 0.000

Furthermore, in Figure 3 we investigate how many pixels

are needed to disrupt the reconstruction attack model. As

shown in Figure 3, for FIVA, 47% noised pixels yielded the

best disruption of the reconstruction attack model, but as

little as 10% causes a severe collapse of the reconstruction

attack model. Figure 4 provides qualitative results of the re-

construction attack, different defenses, and anonymization

using FIVA.

4.2. Reconstruction Attack as Deepfake Detection

The success of reconstructing the original identity from

target-oriented face-swapping or anonymization approaches

raises the question of what happens if one inputs an image

that is not manipulated. We notice that the reconstruction at-

tack model does not really change anything at all with these

Table 3: Defense against reconstruction attack in FIVA ,

evaluated on FaceForensics++ [29]. Adversarial Defense

in the form of a fast sign gradient method. Noise Defense

just adds regular uniform noise to the image. Parameter

Noise means adding a small Gaussian noise to the param-

eters. We report the fraction of successful retrievals of the

original identity after applying the reconstruction attack. ε
highlights how much the noise was scaled. The ↓ indicates

lower is better. Black-box means it does not need access to

the reconstruction attack model.

Method ε ID↓ Black-box

Parameter Noise 0.10 0.442 yes
Adversarial Defense 0.15 0.002 no

Noise Defense 0.15 0.004 yes
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Figure 3: Identity retrieval success rate of the reconstruc-

tion attack, depending on the number of noisy pixels. This

graph demonstrates the identity retrieval success rate for

FIVA while using the uniform noise. The blue dashed line

points out the % which prevents reconstruction attacks best

(0.0025).

images. As demonstrated in Figure 5, a potential approach

for deep fake detection is simply measuring the cosine dis-

tance of the CosFace embeddings between the input image

X and the output image ′X . We note that a threshold of 0.6

would reach a false positive of almost 0. One drawback is

that the reconstruction attack model is as of now not model

agnostic.

4.3. Face-swapping using FIVA

Since FIVA is trained to drive the identity away using

the cosine distance (Eq. 4), we hypothesize that FIVA can

also perform face-swapping even if it is not the main goal.

Table 4 shows quantitative comparisons with the state-of-

the-art face-swapping methods on the dataset FaceForen-

Figure 4: Qualitative results of reconstruction attack, differ-

ent defenses and anonymization using FIVA.

Figure 5: Cosine distance distributions between the input

(X) and output (′X) identity vectors of the reconstruction

attack for genuine images (Real samples) and manipulated

images (Fake samples).

sics++ [29]. We follow the same evaluation protocols in

[5, 20, 27, 33] and obtain that FIVA reaches state-of-the-art

performance for the identity transfer (ID). This concludes

that target-oriented face-swapping methods can actually be

trained in a counterfactual way, which eliminates the need

for sampling pairs of faces during training. However, we

note that FIVA naturally tends to keep attributes such as

gender, ethnicity, and face shape as shown in Figure 6. Con-

sequently, the obtained swapped faces are not perceptually

convincing for humans but rather are for facial recognition

models. This feature is useful for the task of anonymiza-

tion, and further addresses ethical questions in regard to

deep fakes in the context of anonymization. We elaborate

more on this matter in the supplementary materials.

Table 4: Quantitative face-swapping comparisons on Face-

Forensics++ [29]. The ↓ indicates lower is better, while ↑
indicates higher is better.

Method ID↑ Pose↓
FaceSwap [1] 54.19 2.51

FaceShifter [20] 97.38 2.96

MegaFS [35] 90.83 2.64

FaceController [34] 98.27 2.65

HifiFace [33] 98.48 2.63

SimSwap [5] 92.83 1.53
FaceDancer [27] 98.84 2.04

FIVA (Ours) 99.25 2.16
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Figure 6: Face swapping results using FIVA.

4.4. Qualitative Results

For qualitative evaluation, we compare the output of

FIVA with previous works, as shown in Figures 7 and 8.

In-depth comparisons are performed with the already avail-

able models such as Gafni et al. [9], CIAGAN [23], CFA-

NET [22], and DeepPrivacy [14]. Images in Figures 7 and 8

clearly show that CFA-NET struggles with maintaining the

color and eye-gaze, whereas CIAGAN has issues with the

resolution of the image and returns rather low-quality out-

puts. DeepPrivacy often produces artifacts while struggling

with eye-gaze and facial expression. Gafni et al. [9] together

with CFA-NET and FIVA, is the only approach that demon-

strates successful results on video. In this particular frame,

the change is arguably small. CFA-NET does use similar

identity control as target-oriented face-swapping and FIVA,

which means that they need to manually assign identity em-

bedding for each face in a video, restricting their use for in-

the-wild anonymization. This problem is solved by our con-

tribution ITM, whcih can be directly applied to their work.

Gafni et al. [9] train their model in a counterfactual fashion,

and produce stable videos without the need to track iden-

tities. This is true for FIVA as well, however, as pointed

out in section 3.3, a maximized cosine distance allows fa-

cial recognition to find the identity by searching for −zid.

We visualize and discuss this further in the supplementary

Figure 7: Qualitative comparison between Gafni et al.

[9], CIAGAN [23], CFA-NET [22], DeepPrivacy [14], and

FIVA.

material. For video results, we refer to the supplementary

material.

Figure 8: Qualitative temporal comparison between CIA-

GAN [23], DeepPrivacy [14] and FIVA. Note we used ITM

for tracking the identity in CIAGAN. Video results demon-

strating this can be found in the supplementary material.

5. Conclusion

In this work, we introduce a new facial anonymization

framework FIVA, which together with our proposed identity

sampling and identity tracking, reaches state-of-art perfor-

mance for facial anonymization for both video and images.

We also show that target-oriented models are very easy to

attack and, thus, introduce adversarial models that can com-

pletely undo the masked identity in the frame. To the best

of our knowledge, this potential security issue has so far not

been addressed. We furthermore demonstrate that regard-

less of what the attack model looks for in the image, it can

be disrupted by noise. We expect this to become a cat-and-

mouse game where attack models can learn to ignore the

noise, thus making anonymization more challenging. The

attack model can also be used as deep fake detector, since

the model does not change anything in the image when the

input has not been manipulated. Last but not least, FIVA is

also capable of face-swapping, reaching state-of-the-art per-

formance for identity transfer, thus demonstrating its excel-

lent control over identity information. Interestingly it does

so, while keeping the changes to a minimum.
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