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Abstract

The recent renaissance in generative models, driven pri-
marily by the advent of diffusion models and iterative im-
provement in GAN methods, has enabled many creative ap-
plications. However, each advancement is also accompa-
nied by a rise in the potential for misuse. In the arena of
the deepfake generation, this is a key societal issue. In par-
ticular, the ability to modify segments of videos using such
generative techniques creates a new paradigm of deepfakes
which are mostly real videos altered slightly to distort the
truth. This paradigm has been under-explored by the cur-
rent deepfake detection methods in the academic literature.
In this paper, we present a deepfake detection method that
can address this issue by performing deepfake prediction at
the frame and video levels. To facilitate testing our method,
we prepared a new benchmark dataset where videos have
both real and fake frame sequences with very subtle tran-
sitions. We provide a benchmark on the proposed dataset
with our detection method which utilizes the Vision Trans-
former based on Scaling and Shifting [38] to learn spatial
features, and a Timeseries Transformer to learn temporal
features of the videos to help facilitate the interpretation of
possible deepfakes. Extensive experiments on a variety of
deepfake generation methods show excellent results by the
proposed method on temporal segmentation and classical
video-level predictions as well. In particular, the paradigm
we address will form a powerful tool for the moderation of
deepfakes, where human oversight can be better targeted to
the parts of videos suspected of being deepfakes. All exper-
iments can be reproduced at: github.com/rgb91/temporal-
deepfake-segmentation.

*These authors contributed equally to this work.

1. Introduction

(a) Simplified illustration of sample videos from the newly intro-

duced benchmark dataset for temporal deepfake segment detection.
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(b) Comparison of our method with the classical deepfake detection.

Figure 1: (a) We propose a new deepfake benchmark dataset

consisting of videos with one or two manipulated segments,

represented in the two images respectively. Fake frames are

indicated by smaller red boxes and genuine video frames are

denoted by green borders. (b) Our proposed deepfake de-

tection method employs temporal segmentation to classify

video frames as real or fake and identify the intervals con-

taining the manipulated content. This is a departure from

the conventional binary classification of videos as either en-

tirely genuine or entirely manipulated.

Deep learning has made significant advances over the

last few years, with varying degrees of societal impact. The

advent of diffusion models as viable alternatives to hitherto

established generative models has revolutionized the do-

mains of textual/language learning, visual generation, and
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cross-modal transformations [54]. This, alongside other re-

cent advancements in generative AI such as GPT4 [6] has

also brought to attention the social repercussions of ad-

vanced AI systems capable of realistic content generation.

There exist many methods to tackle the deepfake detec-

tion problem formulated as a binary classification problem

[1, 5, 13]. A common pitfall of these methods is the inability

to generalize to unseen deepfake creation methods. How-

ever, there is a more pressing drawback in these studies that

we aim to highlight and address in this paper. Considering

the social impact of a deepfake video, we hypothesize that

rather than fabricating an entire fake video, a person with

malicious intent would alter smaller portions of a video to

misrepresent a person’s views, ideology and public image.

For example, an attacker can generate a few fake frames

to replace some real frames in a political speech, thus dis-

torting their political views which can lead to considerable

controversy and infamy.

The task of identifying deepfake alterations within a

longer video, known as deepfake video temporal segmen-

tation, is currently not well explored or understood. These

types of deepfakes pose a more difficult challenge for auto-

mated deepfake analysis compared to other types of deep-

fakes. Moreover, they also pose a greater threat to society

since the majority of the video may be legitimate, making

it appear more realistic and convincing. Additionally, these

deepfakes require significant manual oversight, especially

in the moderation of online content platforms, as identifying

the legitimacy of the entire video requires manual interpre-

tation. However, performing frame-level detection allows

the human moderator to save time by focusing only on the

fake segments.

Figure 1(a) demonstrates deepfake videos where the en-

tire video is not fake, but some of the real frames were re-

placed by fake frames. We present a benchmark dataset

with videos similar to those in Figure 1(a) to test our

method on the temporal deepfake segmentation problem. In

the temporal deepfake segmentation problem the detector

makes frame level predictions and calculates the start and

end of the fake sequences i.e. fake-segments. This differs

from classical deepfake detection where the detector makes

a video level prediction as demonstrated in Figure 1(b).

Problem Definition
Deepfake Temporal Segmentation task is defined as,

Given an input video identify temporal segments within
the video that are computer generated i.e. fakes. The output

of this task is a labeling of ‘real’ or ‘fake’ for each frame,

which we call a temporal segmentation map. We can frame

the classical deepfake detection problem as a special case

of the temporal segmentation task, in which ALL frames

are labeled either as ‘real’ or ‘fake’. With an emphasis on

the novel deepfake temporal segmentation task, this paper

makes the following contributions,

• We emphasize on the new threat of faking small parts

of a longer video to pass it off as real. Current de-

tection methods ignore this threat, since they assume

the entire video is real or fake. This can be addressed

through proposed temporal segmentation of videos.

This provides a new direction for future research.

• We curated a new dataset specifically for deepfake

temporal segmentation, which will be publicly avail-

able for researchers to evaluate their methods. Our

rigorous experiments establish benchmark results for

temporal segmentation of deepfakes, providing a base-

line for future work.

2. Related Work

Face Image Synthesis: Manipulation of face images has

always been a popular research topic in the media forensics

[66, 52] and biometrics domain. Synthesized digital faces

can be used to deceive humans as well as machines and

software. Prior to deepfakes, digitally manipulated faces

[56, 57, 30] were utilized mainly to fool biometric verifica-

tion and identification methods e.g., face recognition sys-

tems. Consequently, deepfake methods [27, 16, 15, 72]

started to generate very realistic fake videos of faces and

became much more popular as a result. This led to a series

of research works on developing a number of deepfake gen-

eration methods, categorized into mainly two types: Face

swapping [17, 33, 47] and Face reenactment [63, 61].

Deepfake generation methods have since improved sig-

nificantly by advancing existing methods and better soft-

ware integration, as in Deepfacelab [47]. This has helped

creators of deepfakes to create longer videos, including

seamlessly blending fake frames with real frames, which al-

lows one to have both real and fake video segments within

the same deepfake video. Through more recent develop-

ments in generative AI [54, 64, 45] we are at the brink of ex-

periencing even higher quality and more subtle deepfakes,

raising the need for updated research in this area.

Deepfake Detection: Initial works on deepfake detec-

tion methods [59, 51, 69, 46, 2] focused on detecting arti-

facts in deepfaked face images, such as irregular eye col-

ors, asymmetric blinking eyes, abnormal heart beats, ir-

regular lip, mouth and head movements [36, 60, 12, 42].

Some other earlier works tried to find higher-level variabil-

ity in the videos: erroneous blending after face swaps, or

identity-aware detection approach [68, 21, 34, 14]. Com-

pared to these earlier works, more recent studies [44, 50, 3,

73, 4] that are independent of artifact-based detection have

achieved astounding results in detecting fake videos from

most of the state-of-the-art datasets. Recently, more works

[8, 67, 70, 28, 43, 31, 26, 23, 71, 58] have given increased

attention towards generalizability of the detectors to detect

deepfakes from unseen methods.
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Temporal Segmentation: Although deepfake detection

methods have seen significant progress in recent years, only

a few studies [25, 11, 7, 24] have looked into the problem

of temporal segmentation task where in a long video only

one or more short segments is altered while the rest of the

frames are real. In this paper, we introduce a new, easily re-

producible dataset based on the FaceForensics++ [55] and

a method for not only detecting deepfake videos but also

segmenting the fake frame-segments within them. The pro-

posed approach can accurately identify one or more fake

segments in a deepfake video, which can mitigate the risks

associated with deepfakes that remain well-blended within

real frames in a video.

3. Methodology
We propose a two-stage method as shown in Figure 2.

The first stage employs a Vision Transformer (ViT) based

on Scaling and Shifting (SSF) [38] to extract the frame-level

features of the videos. Specifically, ViT learns a single vec-

tor representation for each frame and these feature vectors

are sequentially accumulated and windowed using the slid-

ing window technique. The TsT is an adaptation of the orig-

inal transformer encoder from [65]. TsT learns the tempo-

ral features from the learned ViT features and uses them for

classification. The feature vectors from stage 1 are sequen-

tially accumulated and windowed using the sliding window

technique. It is important to use sequentially windowed fea-

ture vectors as input to the TsT since we need the temporal

features to be learned for better temporal segmentation.

3.1. Model architecture

3.1.1 Vision Transformer (ViT) and Scaling and Shift-
ing (SSF)

ViTs have achieved state-of-the-art results on several im-

age classification benchmarks, demonstrating their effec-

tiveness as an alternative to convolutional neural networks

(CNNs). The employed ViT model first partitions the input

image I ∈ �H×W×C into a set of smaller patches of size

N × N where H , W , C and N correspond to the height,

width, number of channels of the image, and the height and

width of each patch, respectively. Each patch is then repre-

sented by a d-dimensional feature vector, which is obtained

by flattening the patch into a vector of size N2C and apply-

ing a linear projection to reduce its dimensionality. Next, to

allow the model to learn the spatial relationships between

the patches, positional encodings are added to the patch em-

beddings. The resulting patch embeddings are concatenated

together to form a sequence, and a learnable class embed-

ding that represents the classification output is prepended to

the sequence which is then input through a series of trans-

former layers. Each transformer layer consists of a multi-

head self-attention mechanism, which allows the model to

attend to different parts of the input patches, a multi-layer

perceptron (MLP), and a layer normalization (Fig. 4). Fi-

nally, a classification head is attached at the end of the

transformer layers, which produces a probability distribu-

tion over the target classes.

Recently, there has been an upsurge in the use of

parameter-efficient fine-tuning methods [38, 9] to fine-tune

only a smaller subset of parameters in large pre-trained

models such as ViTs, leading to better performance in

downstream tasks compared to conventional end-to-end

fine-tuning and linear probing. We use one such method,

called SSF [38] to fine-tune the pre-trained ViT model used

in our pipeline (Fig. 2). SSF attempts to alleviate the distri-

bution mismatch between the pre-trained task and the down-

stream deep fake feature extraction task by modulating deep

features. Specifically, during the fine-tuning phase, the orig-

inal network parameters are frozen, and SSF parameters are

introduced at each operation to learn a linear transformation

of the features, as shown in Fig. 4.

As done in the original work, we too insert SSF parame-

ters after each operation including multi-head self-attention,

MLP, layer normalization, etc. Specifically, given the input

x ∈ �N2+1 × d, the output y ∈ �N2+1 × d (also the input

to the next operation) is calculated by

y = γ · x+ β (1)

where γ ∈ �d and β ∈ �d are the scale and shift parame-

ters, respectively.

3.1.2 Timeseries Transformer (TsT)

Architecture and training. The employed TsT is an

adaptation of the sequence to sequence transformer in [65].

The transformer architecture is designed to learn and clas-

sify from sequential data instead of generating another se-

quence. It is composed of multiple transformer blocks and

an MLP head. Each transformer block has a multi-head at-

tention mechanism and a feed-forward block as shown in

Figure 4(c).

Our method generates frame-level predictions for the in-

put videos, which may contain some noisy predictions. To

address this issue, we used a simple smoothing technique

based on majority voting over a sliding window of size 15.

It takes a majority vote from the predictions of the frames

within the window around a particular frame. By smooth-

ing out the noisy predictions, our approach improves per-

formance, as demonstrated in Table 6.

Data processing. For the TsT, we accumulated the

feature vectors from the ViT sequentially for each video and

split them into overlapping windows of size W . That is, we

have features of W sequential frames in one window.
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Figure 2: Our proposed detection method’s model architecture comprises two main blocks: the Vision Transformer (ViT)

and the Timeseries Transformer (TsT). The ViT fine-tunes a pre-trained model for deepfake detection using the Scaling and

Shifting (SSF) method, learning spatial features. On the other hand, the TsT focuses on temporal features. The ViT’s spatial

features are sequentially accumulated and split into overlapping windows before inputting into the TsT.
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Figure 3: Samples from temporal dataset where segments were carefully selected (hand-crafted) through manual inspection.

In this illustration, we focus specifically on where the transitions takes place. This alteration from real to fake frames and

vice versa are subtle. The videos start with a real sequence and subtly changes to a fake sequence before going back to real

sequence, and they can easily deceive human inspection.

3.2. Temporal Deepfake Segment Benchmark

Nearly all deepfake related studies have assumed that all

the frames in deepfake videos are from one class, i.e. ei-

ther fake or real. However, it is possible to have both types

of frames within one video. With sophisticated deepfake

generation methods such as Neural Textures [62], Deep-

facelab [47] etc., it is possible to create fake segments that

blend masterfully with the neighboring real segments within

a video. This makes it very hard even for experienced hu-

man eyes to detect and to separate the fake segments from

the real ones. Hence, it is important to explore automated

temporal segmentation of deepfake videos.

3.2.1 Dataset

The existing deepfake datasets contain videos where all the

frames in a video are from one class: ‘real’ or ‘fake’. To

the best of our knowledge, there are currently no publicly

available datasets crafted specially for the temporal seg-

mentation task. Therefore, we created the first benchmark

dataset with videos that contain fake and real frames to test

temporal segmentation. The dataset was created from a re-

sampled subset from the original FaceForensics++ (FF++)

dataset [55]. There are five face manipulation techniques

within FF++ which we refer to as sub-datasets in our pa-

per. Each sub-dataset has 1, 000 videos in total. These

five sub-datasets are prepared based on five different deep-

fake generation methods: Deepfakes (DF) [17], FaceShifter

(FSh) [33], Face2Face (F2F) [63], NeuralTextures (NT)

[61], FaceSwap (FS) [32]. Since the distribution of any

copy of the original dataset is limited, we will publish the

code and necessary files to regenerate the temporal dataset

instead of publishing the videos.

Our dataset comes in two main parts: 1) videos with

hand-crafted fake segments and 2) videos with randomly
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chosen fake segments.

Hand-crafted fake-segments: Since transitioning from

real to fake frames and vice versa can cause heavy temporal

artifacts, it makes the videos unrealistic if the transition is

not subtle. Only videos of Neural Textures and Face2Face
were used to create this part of the dataset, as these meth-

ods provide the opportunity for a seamless transition. We

manually selected the fake segments to make sure that the

changes in sequences are most realistic. Some samples of

the NT videos are visualized in Figure 3. The subtlety of

the alteration even fools the careful human eyes. There are

100 videos in each sub-dataset (NT and F2F) where each

video contains one fake segment.

Randomly chosen fake-segments: This part contains

all the five subdatasets from FF++. Each sub-dataset con-

tains randomly selected 100 videos. We have 500 videos in

total with one fake segment, and another 500 videos with

two fake segments. For videos with one fake segment, we

have selected a random starting point in the first half of the

video and a random choice from 125, 150, and 175 frames

for the length of the fake segment. A similar strategy is also

selected for videos with two fake segments. Here, the first

fake segment starts at a random position within the first 125
frames and the second fake segment starts at a random po-

sition within the first 75 frames in the second half of the

video. The lengths of the fake segments here are randomly

chosen.

On average, 24.3% of frames were fake in the videos

with one fake segment and the ratio is 41.1% for videos with

two fake segments. Average length (number of frames) of a

video is 633.9. Detailed break-down of these ratio and the

length of the videos for each deepfake generation method in

the dataset are reported in Table 7.

Model F2F NT
trained on IoU AUC IoU AUC

Deepfakes (DF, ours) 0.948 0.964 0.684 0.744

Face Shifter (FSh, ours) 0.943 0.962 0.637 0.699

Face2Face (F2F, ours) 0.980 0.987 0.738 0.794

Neural Textures (NT, ours) 0.943 0.970 0.931 0.960
Face Swap (FS, ours) 0.954 0.969 0.553 0.607

FF++ (CADDM [19]) 0.942 0.989 0.756 0.943

FF++ (ours) 0.970 0.984 0.930 0.953

Table 1: Results for temporal segmentation on the proposed

temporal dataset with hand-crafted fake-segments. Each

row indicates results from a model trained on a specific

training sub-dataset; we have trained models with Face-

Forensics++ (FF++) and the five sub-datasets within FF++.

We compare our results with CADDM[19], as shown in the

second last row. The last row presents the results for the

model trained on the full FF++ dataset. The columns repre-

sent the data we have tested our models on; we have tested

the models on the two sub-datasets from the hand-crafted

temporal segments: NT and F2F. We report IoU and AUC

metrics, where the best value in a column is represented in

bold, and the second-best value is represented in italic.

3.2.2 Evaluation: Intersection over Union (IoU)

Intersection over Union (IoU) is proposed to evaluate the

temporal segmentation map. This metric is most commonly

used to evaluate the fit of object detection bounding boxes

[53, 49]. 1-D variations of IoU has been adopted for time

series segment analysis, which we will be utilizing.

Let the ground truth map be GTmap =
{RRRRRRFFFRR...} and predicted segmentation

map be Pmap = {RRRRRRFFFRR...}. Both are 1-D

vectors of equal length with a predicted Boolean class (R
or F ) for each frame in the video.

IoU =
Intersection

Union
=

|GTmap ∩ Pmap|
|GTmap ∪ Pmap| (2)

IoU falls in the range [0, 1]; where the greater the value,

the better the predicted segment map. Although the theoret-

ical lower bound of IoU is zero, in practice it is useful to un-

derstand how a random guessing algorithm will be scored.

For a random guessing algorithm with probability p = 0.5
for each class in a binary classification problem, we have

IoU = 1/3. This will be the random guessing baseline for

IoU in our context.

4. Results
4.1. Experimental settings

Dataset. Based on the recent deepfake detection

methods we have used FaceForensics++ [55] (FF++, see

Section 3.2.1) for training our models. Among the 1, 000 in
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Model DF FSh F2F NT FS FF++ (Average)

trained One seg Two seg One seg Two seg One seg Two seg One seg Two seg One seg Two seg One seg Two seg

on IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC IoU AUC

DF (ours) 0.987 0.986 0.975 0.984 0.926 0.917 0.886 0.923 0.963 0.96 0.937 0.959 0.748 0.729 0.603 0.723 0.954 0.956 0.920 0.954 0.915 0.912 0.860 0.910

FSh (ours) 0.957 0.963 0.933 0.958 0.972 0.984 0.961 0.980 0.971 0.969 0.947 0.966 0.764 0.748 0.628 0.745 0.966 0.968 0.938 0.965 0.926 0.928 0.878 0.924

F2F (ours) 0.970 0.976 0.959 0.976 0.971 0.978 0.954 0.972 0.982 0.986 0.974 0.984 0.840 0.836 0.739 0.832 0.983 0.985 0.966 0.981 0.950 0.953 0.918 0.950

NT (ours) 0.971 0.985 0.961 0.980 0.969 0.983 0.958 0.979 0.963 0.980 0.955 0.977 0.949 0.974 0.933 0.966 0.946 0.970 0.932 0.965 0.960 0.979 0.949 0.974

FS (ours) 0.941 0.935 0.898 0.932 0.963 0.962 0.931 0.955 0.970 0.970 0.950 0.969 0.679 0.679 0.514 0.642 0.981 0.987 0.967 0.983 0.904 0.901 0.842 0.898

FF++
(CADDM)

0.966 0.987 0.957 0.987 0.943 0.981 0.903 0.977 0.935 0.971 0.891 0.971 0.745 0.883 0.598 0.874 0.974 0.986 0.970 0.986 0.913 0.962 0.864 0.869

FF++
(ours)

0.974 0.988 0.962 0.982 0.974 0.989 0.962 0.982 0.975 0.988 0.965 0.983 0.959 0.972 0.938 0.967 0.975 0.988 0.955 0.978 0.971 0.985 0.957 0.979

Table 2: Results for temporal segmentation on the proposed benchmark temporal deepfake dataset with randomly chosen
fake-segments. Structure of this table is similar to of Table 1. For each test sub-dataset we have tested separately for videos

with one fake-segment and two fake-segments from our proposed benchmark dataset (see section 3.2).

each sub-dataset within FF++, we have used 800 for train-

ing and validation, and we tested on the remaining 200. We

have experimented with the videos with compression level

‘c23’ and all the frames were used in the training and test-

ing, i.e., no frames were skipped.

To evaluate the temporal segmentation performance, we

have used our proposed novel benchmark dataset (see Sec-

tion 3.2) for testing the temporal segmentation performance.

This dataset is generated based on the original FF++ dataset,

where each video contains both real and fake segments.

There are 5 sub-datasets within the temporal dataset, the

same as the original FF++, each having 100 videos with an

average of 633.9 frames per video, 24.3% fake frames for

videos with one fake segment, and 41.1% fake frames for

videos with two fake segments. We also experimented with

other popular datasets: FF++, CelebDF[37], DFDC[18] and

WildDeepFakes[74]. These datasets were used to compare

our method’s performance in terms of traditional deepfake

detection experiments: classical (same-dataset) deepfake

detection and generalizability (cross-dataset).

For face extraction and alignment, we have used

DLIB[29], and aligned face images were resized to

224× 224 for all frames in the train and test sets.

Settings. Vision Transformer (ViT) and Shift and
Scaling (SSF). A simple set of preprocessing steps

including extraction of the frames and cropping the face

region is done as data preparation for ViT. We use the

ViT-B/16[20] architecture as the backbone for our ViT

model and trained it using four A100 GPUs with a batch

size of 64 for 80 epochs. The optimization algorithm used

was ‘AdamW’ with a weight decay of 0.05. A warm-up

strategy was applied for the learning rate, starting with

1e−7 for the first five epochs and then increasing linearly to

1e−3. The dropout probability was set to 0.1, and the input

image size was set to 224× 224. To improve performance,

an exponential moving average was used with a decay

rate of 0.99992 together with automatic mixed precision.

The model was initialized with pre-trained weights on

Imagenet-21K-SSF.

Timeseries settings. The dimension of the feature

vector for each frame from the ViT was 768. After widow-

ing these vectors as shown in Figure 2 the input dimension

for the Timeseries Transformer (TsT) was (W, 768). In our

experiments, we used W = 5 however it is also possible

to use different values for W . There are a total of 8 trans-

former blocks in the TsT, with an 8-headed attention con-

nection. Each attention-head’s dimension is 512. After the

transformer blocks, we have a one-dimensional global av-

erage pool prior to the MLP head. We have used batch size

of 64, ‘categorical cross-entropy’ as the loss and ‘Adam’ as

the optimizer with 1e−4 learning rate for training the TsT.

We use an early stopping technique with patience of 10 to

speed up the training procedure.

4.2. Temporal segmentation analysis

We have used our proposed benchmark dataset to test

our method for the temporal segmentation problem, where

we try to classify deepfake videos at the frame-level instead

of video-level. The metrics we use to measure the per-

formance for temporal segmentation are Intersection over

Union (IoU) and Area under the ROC Curve (AUC). The

baseline IoU (for random guessing of the class of a frame)

is 1/3 as shown in Section 3.2.2. We have trained six sep-

arate models on six training sets: FaceForensics++ (FF++)

and the five sub-datasets within FF++ i.e. Deepfakes (DF),

Face-Shifter (FSh), Face2Face (F2F), Neural Textures (NT)

and FaceSwap (FS). Similarly, we report the results for each

model on the six test sets (FF++ and its five sub-datasets) in

Tables 1 and 2. We compare our results with the CADDM

[19] where we have used the original implementation and

model weights published by the authors with a slight modi-

fication to compute frame-level AUC and IoU values.
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DF FSh F2F NT FS FF++ C-DF DFDC WDF

DF 0.993 0.965 0.975 0.830 0.967 0.946 0.590 0.558 0.631

FSh 0.980 0.990 0.978 0.848 0.980 0.955 0.609 0.535 0.619

F2F 0.990 0.993 0.990 0.917 0.993 0.977 0.670 0.603 0.676

NT 0.973 0.967 0.967 0.965 0.960 0.967 0.715 0.626 0.693

FS 0.960 0.975 0.982 0.770 0.995 0.936 0.584 0.512 0.611

FF++ 0.985 0.983 0.983 0.967 0.983 0.982 0.790 0.667 0.703

Table 3: Results (in AUC) for video level classification.

Similar to Tables 1 and 2, each row represents models

trained on specific training data and the columns constitute

the test data. Along with FF++ and its sub-datasets we have

tested each model on other datasets such as CelebDF (C-

DF), DFDC, and WildDeepFakes (WDF).

As seen, each model does very well when it was tested

on the test-set from the same dataset as it was trained on,

hence the results on the diagonals are either the best or the

second-best in every column while the second-best results

are only lower in the range from 0.001 to 0.009. As ex-

pected, the model trained on the whole FF++ is the overall

best-performing model. In Table 1 and 2 we can see that

our detection method outperforms the latest state-of-the-art,

CADDM [19] method in the temporal segmentation task.

However, the results of the other five models give us

some important findings. Of the five sub-datasets in FF++,

three were made with a face swapping technique (DF, FSh

and FS) and the other two were made with face reenactment

(F2F and NT). We can see that the models trained in F2F

and NT perform better than the other three models. Since

face reenactment deepfakes are devoid of strong artifacts

compared to face swapping deepfakes, models trained on

face reenactment methods tend to generalize well to other

methods. Similarly, models trained on the face swapping

methods do not generalize well to face re-enactment test

data as seen on the ‘F2F’ and ‘NT’ columns in both Table

1 and 2. Overall, out of the five subdatasets of FF++, NT is

the best one to train a detection model if others are unavail-

able.

Also, our method does significantly better with these two

sub-datasets compared to CADDM [19] which indicates the

necessity to learn temporal features to predict the transition

between real and fake segments more effectively.

4.3. Video-level classification and Generalizability

The classical approach to deepfake detection has always

been to predict the class (real or fake) of a deepfake video

i.e. to make video-level predictions. We performed ex-

periments on the test data from the original datasets and

reported the results in Table 3 using AUC as the metric.

We also measure our models’ performance on test data

from datasets outside of FF++: CelebDF (C-DF), DFDC,

Method CelebDF FF++ NT

Xception[10] 0.653 0.997 0.842

SRM[40] 0.659 0.969 0.943
SPSL[39] 0.724 0.969 0.805

MADD[70] 0.674 0.998 –

SLADD[8] 0.797 0.984 –

CADDM[19] 0.931 0.998 0.837

Ours (ViT+TsT) 0.790 0.982 0.967

Table 4: Comparison with other state-of-the-art methods in

terms of video-level AUC. Models were trained on FF++

and evaluated on CelebDF, FF++ and NT. Results for the

other methods were taken from their own paper or github

repository page. NT is the most challenging deepfake gen-

eration technique in terms of both temporal segmentation

and video level detection. Our method significantly outper-

forms recent methods in detecting NT fakes while perform-

ing competitively on other datasets.

Length
(seconds)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

IoU 0.961 0.962 0.962 0.963 0.963 0.965 0.965 0.967 0.967 0.969

AUC 0.963 0.976 0.979 0.982 0.982 0.984 0.984 0.985 0.984 0.985

Table 5: IoU and AUC of the our proposed method across

different lengths of deepfake segments. Our approach is

largely robust to variation in the length of injected deepfake

segment.

and WildDeepFakes (WDF). Results for the sub-datasets of

FF++ (DF, FSh, F2F, NT and FS) follow the results of the

temporal analysis where the diagonal values are the best or

the second-best in a column, i.e. models when tested on

data from the same sub-dataset generally perform very well.

And, similar to the previous results (i.e. temporal segmenta-

tion), we see that models trained on face re-enactment data

(F2F and NT) perform better than other sub-dataset-models

when tested on unseen data, i.e. these two models general-

ize well in comparison with other models. However, we see

the best results from tests on CelebDF, DFDC, and Wild-

DeepFakes from the model trained on the full FF++ dataset.

It is also noticeable that the AUC scores for DFDC and

WildDeepFakes are lower compared to CelebDF. While

CelebDF is a dataset with videos made solely by the face

swapping technique, DFDC is a combination of multiple

methods such as face swapping (Deepfake Autoencoder and

Morphable-mask), Neural talking-heads and GAN-based

methods. WildDeepFakes dataset contains videos from the

Internet which may contain videos generated using a vari-

ety of methods. Some of these methods are totally unseen

due to their absence in the FF++ dataset.

We further evaluate and compare our results with the

latest state-of-the-art methods in Table 4 using the model

trained on FF++ and tested on FF++, CelebDF, and NT. Our
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detection method outperforms the state-of-the-art methods

in detecting videos generated by the NT method which

is the most difficult method in FF++. Our method also

performs very competitively with the most recent state-of-

the-art deepfake detection methods [19, 8, 70] and out-

performs most methods in video-level predictions in both

same-dataset and cross-dataset scenarios. Our method com-

prehensively exceeds the performance of several state-of-

the-art methods such as Xception [55], SRM [40], SPSL

[39], MADD [70] and others (not included in Table 4)

[48, 35, 41] in generalizability (i.e. cross-dataset/CelebDF).

These results demonstrate that our method can also be used

with high confidence for traditional deepfake detection and

for unseen data (i.e. video-level) alongside temporal seg-

mentation despite not being optimized for this objective.

4.4. Varying Lengths of Fake Segments

Our proposed method is effective in identifying even

short segments of deepfake that can significantly alter the

message conveyed by a video. To evaluate the performance

of our method, we conducted experiments on a test set com-

prising 100 videos with varying lengths of fake segments,

and the results are presented in Table 5 and Figure 5. Specif-

ically, we create fake segments with durations ranging from

0.2 seconds to 19 seconds, with an increase of 0.2 seconds,

and calculate the average IoU and AUC over the 100 videos.

The increment of 0.2 seconds is the average duration of two

phonemes in English [22], which we assume to be the unit

duration for a fake segment. In particular, we did not use

the smoothing of noisy frames in this experiment.

Our method achieves high accuracy in detecting very

short fake-segments with a duration of less than 1.0 second,

yielding an AUC value of over 0.91. Furthermore, as the

length of the fake segment increases, our method performs

even better in terms of AUC and IoU. This experiment pro-

vides evidence that our proposed method can identify even

the slightest alterations in very short fake-segments, high-

lighting its effectiveness in detecting deepfake videos.

4.5. Ablation study

We conducted experiments to evaluate the effectiveness

of our proposed method without TsT and the smoothing

algorithm for both temporal segmentation detection and

video-level detection. The model was trained on the full

FF++ training data and tested on the proposed temporal

segmentation benchmark dataset and FF++ test set for tem-

poral segmentation and video-level detection, respectively.

We used a MLP head on the ViT to classify frames for the

experiment where the TsT was not included. Our ablated

model achieved great results in both test sets, which are re-

ported in Table 6. To provide a better comparison, we also

reported the results from the full model with the TsT and

smoothing algorithm. While we observe that the ViT al-

Model
trained on

Temporal Evaluation (IoU) Video level (AUC)
ViT ViT+TsT ViT+TsT+Smooth. ViT ViT+TsT

DF 0.960 0.967 (+0.007) 0.974 (+0.014) 0.973 0.985 (+0.012)

FSh 0.960 0.967 (+0.007) 0.974 (+0.014) 0.973 0.983 (+0.010)

F2F 0.956 0.968 (+0.012) 0.975 (+0.019) 0.973 0.983 (+0.010)

NT 0.933 0.948 (+0.015) 0.959 (+0.026) 0.965 0.967 (+0.002)

FS 0.951 0.965 (+0.014) 0.975 (+0.024) 0.973 0.983 (+0.010)

FF++ 0.952 0.964 (+0.012) 0.971 (+0.019) 0.971 0.982 (+0.011)

Table 6: Ablation study on temporal segmentation of

deepfakes and video-level classification. For temporal

evaluation, results (IoU) from three experiments are re-

ported: from Vision Transformer (ViT) only, with Time-

series Transformer (TsT) and also including smoothing.

Video level evaluation (in AUC) is reported for ViT, and

ViT with TsT. Changes in the results are reported in bold

and are in parentheses.

ready performs very well, a significant improvement can be

seen in both temporal and video-level performance with the

inclusion of the TsT and the smoothing algorithm.

Another ablation study is on varying window sizes for

the TsT. In TsT we use a sliding window technique to accu-

mulated features of multiple frames within a window so that

the TsT can learn temporal features. We have experimented

with varying window sizes in terms of number of frames,

accompanying with varying overlap values in the sliding

window method. Based on the results from these exper-

iments on both frame-level and video-level predictions as

reported in Tables 11 and 12 we have selected the window

size of 5 frames with ovelap of 4 frames to be the optimal

parameters.

5. Discussion

While most methods tackle deepfake detection at the

video-level, we propose a robust and generalizable method

that can produce results at the frame, segment and entire

video level. This allows maximal flexibility in analyzing

content for the presence of deepfakes and additionally pro-

vides comparison points for future research along these re-

lated but separate evaluation protocols.

Our method is based on supervised pretraining of the im-

age encoder, which limits computational requirements in

two forms. First, the image encoder is trained indepen-

dently on individual video frames with frame-level super-

vision, nullifying the need to learn temporal relationships

between frames. Second, a large part of the backbone is

frozen and initialized using readily available weights from

ImageNet, considerably reducing the computational cost of

obtaining a deepfake related representation in the encoder.

The proposed method achieves robust IoU metrics across

the proposed single and multi-segment deepfakes, while

maintaining competitive performance on video-level deep-

fake detection and generalized deepfake detection.
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