
A. Models architectures
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Figure 8: Generator’s architecture. It is a UNet in which
Conv and ConvTranspose correspond respectively to 2D
convolution and 2D transpose convolution with a kernel size
of 4, a stride of 2, and a padding of 1. We set the slope co-
efficient of the leaky ReLU to 0.2 and the probability of
dropouts to 50%.
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Figure 9: Detector’s architecture. It is a UNet in which
Conv and ConvTranspose correspond respectively to 2D
convolution and 2D transpose convolution with a kernel size
of 4, a stride of 2, and a padding of 1. We set the slope co-
efficient of the leaky ReLU to 0.2 and the probability of
dropouts to 50%.

B. Additional results on models trained using
MSE

This section provides more results from models trained
using MSE as reconstruction loss.



B.1. Watermarks Detection
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Figure 10: Example of input/output pairs from the detector.
The model was trained using ↵ = 0.002 and MSE as re-
construction loss. The output is green in regions where the
watermark was detected and blue where it was not.

In the paper, models trained with the MSE were found,
on average, less accurate on deepfake detection than that
with SSIM. This claim is supported by the raw detections
in Figure 10, in which the watermarked image (b) exhibits
more undetected areas (i.e., not green) compared to that
from a model trained with SSIM (Figure 5 in the paper). Al-
though the undetected areas are not around the face in this
case, there may be other samples in which they are, causing
a miss-classification. Additionally, the detection of modi-
fied regions in the deepfake images (c and d) are smaller
compared to SSIM models, making them harder to classify
for our automatic detection method.

B.2. Robustness to Compression
In addition to raw detections, we analyze the robustness

against compression from models trained with MSE. The
results in Figure 11 are, for FS, very similar to that of the
paper (i.e., on models trained with SSIM). More precisely,

when using the compression module with high ↵ values (↵
= 0.005 and 0.007), the models are effectively made robust
to compression, reaching accuracies above 75% on high
compression qualities (> 75). Additionally, with a low ↵
value (↵ = 0.002), the model can detect the watermark,
but not modified regions, lowering the accuracy to around
50%. On the other hand, the results on FSh are very differ-
ent compared to that using SSIM. Indeed, the accuracy for
each model is close to 50%, even for high ↵ values. It again
confirms our conclusions in the paper that SSIM trains more
accurate models for our task than MSE.
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Figure 11: Balanced accuracy of Deepfake detection versus
the JPEG quality of our solution using SSIM as reconstruc-
tion loss with different values of ↵, and Faceshifter (a) or
Faceswap (b) as Deepfake generation models.



C. Additional watermarked images
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Figure 12: Images watermarked with a model trained using SSIM as reconstruction loss and different values of ↵. The first
row images are pristine ones, followed by 3 rows of watermarked images from a model trained without compression, then 3
others from a model trained with compression.
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Figure 13: Images watermarked with a model trained using MSE as reconstruction loss and different values of ↵. The first
row images are pristine ones, followed by 3 rows of watermarked images from a model trained without compression, then 3
others from a model trained with compression.



D. Additional watermark raw detecions
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Figure 14: Raw detections (heat-map) of faceswap images
from models trained using SSIM as reconstruction loss and
different ↵ values (0.002, 0.005, and 0.007). The first 3
columns are from models trained without compression, fol-
lowed by 3 columns from models trained with compression.
Each row correspond different encoding qualities during
testing, ranging from 0 to 100, with a last row of uncom-
pressed (RAW) images.
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Figure 15: Raw detections (heat-map) of faceswap images
from models trained using MSE as reconstruction loss and
different ↵ values (0.002, 0.005, and 0.007). The first 3
columns are from models trained without compression, fol-
lowed by 3 columns from models trained with compression.
Each row correspond different encoding qualities during
testing, ranging from 0 to 100, with a last row of uncom-
pressed (RAW) images.


