
APPENDIX
A. New Datasets

Besides the datasets from category “new datasets” in the
section 4.1.2, we also use:
CIFAR-10-DDPM-ema, we sample 2,000 images using a
pre-trained DDPM model3. As a real dataset, we employ
the images from the CIFAR-10 dataset [46].
Oxford-Flowers-64-DDPM-ema, we sample 2,000 images
using the pre-trained DDPM model from diffusers [90],
with the id “flowers-102-categories”. As a real dataset, we
employ the images from the diffuser dataset with the id
“huggan/flowers-102-categories”.
CelebaHQ-256-{DDPM, DDIM, PNDM, LDM}-ema,
we sample 2,000 images (for each metthod) using pre-
trained DDPM, DDIM, PNDM and LDM models from dif-
fusers [90], with the id “google/ddpm-ema-celebahq-256”
and “CompVis/ldm-celebahq-256”, respectively. As real
dataset, we employ the images from CelebaHQ dataset
[42] from kaggle4, which already provides the dimensions
256 × 256 pixels.
LSUN-Cat-{DDPM, DDIM, PNDM}-ema, we sample
2,000 images (for each method) using pre-trained DDPM,
DDIM and PNDM models from diffusers [90], with the id
“google/ddpm-ema-cat-256”. As a real dataset, we employ
the images from the original source5 [98]. We center-crop
them to 256 × 256 pixels.
LSUN-Church-{DDPM, DDIM, PNDM}-ema, we sam-
ple 2,000 images (for each method) using pre-trained
DDPM, DDIM and PNDM models from diffusers [90], with
the id “google/ddpm-ema-church-256”. As a real dataset,
we employ the images from the original source [98]. We
center-crop them to 256 × 256 pixels.
ImageNet-DiT, we sample 2,000 images using a pre-
trained DiT model from diffusers [90], with the id
“facebook/DiT-XL-2-256” [61]. As a real dataset, we em-
ploy the images from the original source [19]. We center-
crop them to 256 × 256 pixels.

B. Definition of LID

This section extends the explanation of LID in sec-
tion 3.1: Let Rm denote a continuous domain with a non-
negative distance function d. The continuous intrinsic di-
mensionality aims to measure the local intrinsic dimension-
ality of Rm based on the distribution of interpoint distances.
For a fixed point x, the distribution of distances can be rep-
resented as a random variable D on [0,+∞) with a proba-
bility density function fD and cumulative density function
FD.

3https://github.com/pesser/pytorch_diffusion
4https://www.kaggle.com/datasets/

denislukovnikov/celebahq256-images-only
5https://www.yf.io/p/lsun

When considering samples x drawn from continuous
probability distributions, the intrinsic dimensionality is de-
fined as follows [3]:

Definition 5.1 Intrinsic Dimensionality (ID). Given a sam-
ple x ∈ Rm, let D be a random variable denoting the dis-
tance from x to other data samples. If the cumulative distri-
bution F (d) of D is positive and continuously differentiable
at distance d > 0, the ID of x at distance d is given by:

IDD(d)
∆
= limϵ→0

logFD((1 + ϵ)d) − logFD(d)

log(1 + ϵ)
(5)

In practice, we are given a fixed number n of samples of
x, allowing us to compute their distances to x in ascending
order d1 ≤ d2 ≤ ⋅ ⋅ ⋅ ≤ dn−1, with a maximum distance be-
tween any two samples. As shown in [3], the log-likelihood
of IDD(d) for x is given as:
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The maximum likelihood estimate is then given by:
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with (7)
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ID2

D

n
) , (8)

meaning that the estimate is drawn from a normal distri-
bution with a mean of IDD and a variance that decreases
linearly with an increasing number of samples, while it in-
creases quadratically with IDD. The local ID is an estima-
tion of the intrinsic dimension based on the local neighbor-
hood of a point x, such as its k nearest neighbors, as shown
in equation (1).

C. Un/trained Feature Maps

In table 3, we show the comparative analysis if we cal-
culate the multiLID on untrained and trained feature maps.
To unveil differences, we use logistic regression (LR) as a
second binary classifier besides random forest (RF). On the
dataset Cifar-10 the untrained feature maps exhibits slightly
increasing detection accuracy. On the ImageNet dataset,
which has a hierarchical class structure and larger resolu-
tions is not that much difference to observe between trained
and untrained feature maps.



Table 3: This table shows an ablation study when extracting
the features of an untrained and a trained ResNet18. To lift
the insights, we evaluated besides the random forest (RF),
also the logistic regression (LR) classifier.

dataset gen.
model

untrained trained
RF LR RF LR

Cifar-10 ddpm ema 1.0 0.67 1.0 0.77
ImageNet dit-xl-2 1.0 0.71 1.0 0.69

D. Variance of the Strength Assessment

In this section, we show additionally to the strength as-
sessment of the multiLID (see fig. 4), the variance over 5
runs per tile (see fig. 7). This ablation study of multiLID
shows the variance of the accuracy rates when using dif-
ferent numbers of samples and accumulating the features
(from previous to later layers). The maximum variance is
around 10−3 and becomes 0 when the number of samples is
larger than 800 per class.

E. Robustness via Data Augmentation

In this section, we extend the section 4.3 by evaluating
Gaussian blurring and JPEG compression on more datasets.

We extend the data augmentation evaluation from fig. 3
in the section 4.3 by using more datasets: i.e. CelbeaHQ
(fig. 8), LSUN-Cat (fig. 9), LSUN-Church (fig. 10), and
LSUN-Bedroom (fig. 11).

Furthermore, we extend our experiments by using a stan-
dardized augmented training procedure by mixing the two-
class degradation and using different parameters randomly.
Similar to [93], our images are randomly Gaussian blurred
with σ ∼ Uniform[0,3] and compressed with a quality ∼
Uniform{30,31, . . . ,100}. We conduct three independent
experiments: i) No augmentation: Trained and tested on
clean data. We report accuracy (ACC) as an evaluation met-
ric. ii) Moderate augmentation: Images are randomly Gaus-
sian blurred and compressed with the JPEG algorithm. The
augmentation probability is set to 0.5. iii) Strong augmen-
tation: Likewise previous augmentation, but with a proba-
bility greater than 0.1. We can observe in the table 4 that
with data augmentation our approach based on multiLID is
able to yield accurate detection results on all deterioration,
i.e. Gaussian blur and JPEG compression.

F. Limitation of Identification and Transferability

In this section, we extend the evaluation in section 4.5
by the datasets CelebaHQ (fig. 12), LSUN-Cat (fig. 13),
and LSUN-Church (fig. 14). Analogous to LSUN-Bedroom
(fig. 5), the other datasets also depict similar identification
and transfer capabilities. Finally, we add to the identifica-
tion of the Artifact dataset in the fig. 5 the transferability in
fig. 15.

G. Feature Importance

The feature importance6 helps us in understanding which
features have the most significant impact on the model’s
performance. More specifically, the importance is calcu-
lated based on how much each feature contributes to re-
ducing the impurity or error of the model. In the context
of random forest classifier [9], this method provides a fea-
ture importance score as a byproduct of its training pro-
cess. In this case, each selected ResNet18 layer ℓ repre-
sents a feature. Note that the sum over all layers is 1, i.e.
∑

8
ℓ=1 ∣fℓ∣ = 1. In our implementation, we use the Gini im-

portance, also known as mean decrease in impurity (MDI)
[55]. This method calculates each feature importance as the
sum of the number of splits across all trees that include the
feature, proportionally to the number of samples it splits. In
fig. 6, we display the feature importance of each extracted
ReLU layer from our ResNet18. We can confirm the obser-
vation from [30], that the first ReLU layer (the shallowest)
is the least significant, while the last ReLU layer (the deep-
est) is the most important across all our benchmark datasets.

Figure 6: Feature importance from our classifier. The fea-
tures are extracted per sample after each ReLU activation
from an untrained ResNet18. As it can be noticed, the last
layer plays a crucial role, in contrast to the first one.

6https://scikit-learn.org/stable/auto_examples/
ensemble/plot_forest_importances.html



Figure 7: Ablation study of the variance (see section D) multiLID detection accuracy by using different numbers of samples
and accumulating the features (from previous to later layers) and extending the strength evaluation in fig. 4. The variance
reaches confidently zero by increasing the number of training samples.

Figure 8: Data augmentation on the CelebaHQ models. Robustness (see section E) of Gaussian blurring (top row) and JPEG
compression (bottom row). In both cases the data augmentation is necessary to improve the detectors’ accuracy.

Figure 9: Robustness (see section E) against Gaussian blurring (top row) and JPEG compression (bottom row) on the LSUN-
Cat datasets. In both cases the data augmentation is necessary to improve the detectors’ accuracy.



Figure 10: Robustness (see section E) against Gaussian blurring (top row) and JPEG compression (bottom row) on the
LSUN-Church datasets. In both cases the data augmentation is necessary to improve the detectors’ accuracy.

Figure 11: Robustness (see section E) against Gaussian blurring (top row) and JPEG compression (bottom row) on the
LSUN-Bedroom datasets. In both cases the data augmentation is necessary to improve the detectors’ accuracy.



Table 4: Data augmentation (Gaussian blurring and JPEG compression inspired from [93]) on different datasets. To evaluate
the multiLID, we use as measurement the accuracy (ACC). While the classifier trained and evaluated on clean data shows
accurate detection results, the accuracy drops by using Gaussian-blurred or JPEG-compressed data on the classifier trained
on clean data. Further details in the section E.

dataset model size
multiLID (ACC)

clean blur+JPEG (0.5) blur+JPEG (0.1)
clean robust clean robust

CiFake 32 1.0 0.696 1.0 0.638 1.0
ArtiFact 200 1.0 0.598 1.0 0.569 1.0
SD-v2.1 vs. LAION-5B 768 1.0 0.714 1.0 0.641 1.0
DiffusionDB vs. LAION-5B 512 1.0 0.644 1.0 0.657 1.0
DiffusionDB vs. SAC 512 1.0 0.602 1.0 0.672 1.0
Cifar-10 DDPM ema 32 1.0 0.602 1.0 0.567 1.0
Oxford Flowers 102 DDPM ema 64 1.0 0.592 1.0 0.524 1.0
CelebaHQ-256 DDPM ema 256 1.0 0.551 1.0 0.584 1.0

DDIM ema 256 1.0 0.576 1.0 0.531 1.0
PNDM ema 256 1.0 0.654 1.0 0.562 1.0
LDM 256 1.0 0.644 1.0 0.594 1.0

LSUN-Cat DDPM ema 256 1.0 0.651 1.0 0.602 1.0
DDIM ema 256 1.0 0.586 1.0 0.510 1.0
PNDM ema 256 1.0 0.580 1.0 0.600 1.0

LSUN-Church DDPM ema 256 1.0 0.564 1.0 0.584 1.0
DDIM ema 256 1.0 0.662 1.0 0.618 1.0
PNDM ema 256 1.0 0.656 1.0 0.634 1.0

LSUN-Bedroom DDPM ema 256 1.0 0.600 1.0 0.549 1.0
DDIM ema 256 1.0 0.644 1.0 0.594 1.0
PNDM ema 256 1.0 0.590 1.0 0.537 1.0
ADM 256 1.0 0.584 1.0 0.600 1.0
LDM 256 1.0 0.614 1.0 0.656 1.0
SD-v2.1 256 1.0 0.622 1.0 0.656 1.0
VQD 256 1.0 0.576 1.0 0.542 1.0



(a) Identification. (b) Transferability.

Figure 12: Identficiation and transferability on the CelebaHQ datasets described in section 4.1. Analogous to the experiments
on the LSUN-Bedroom in section 4.5, the identification is accurate while the transferability is rather low.

(a) Identification. (b) Transferability.

Figure 13: Identficiation and transferability on the LSUN-Cat datasets described in section 4.1. Analogous to the experiments
on the LSUN-Bedroom in section 4.5, the identification is accurate while the transferability is rather low.



(a) Identification. (b) Transferability.

Figure 14: Identficiation and transferability on the LSUN-Church datasets described in section 4.1. Analogous to the experi-
ments on the LSUN-Bedroom in section 4.5, the identification is accurate while the transferability is rater low.

Figure 15: Limitation of the transferability. As described in section F, our experiment based on the ArtiFact consists of 8
clean datasets, 6 GAN, and 6 DM-generated images. The transferability is low, while the identification (see fig. 5) between
clean and synthetic images is accurate.


