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Abstract

Unsupervised Domain Adaptation (UDA) aims to solve
the problem of label scarcity of the target domain by trans-
ferring the knowledge from the label rich source domain.
Usually, the source domain consists of synthetic images
for which the annotation is easily obtained using the well
known computer graphics techniques. However, obtaining
annotation for real world images (target domain) require
lot of manual annotation effort and is very time consum-
ing because it requires per pixel annotation. To address
this problem we propose SegDA module to enhance trans-
fer performance of UDA methods by learning the maxi-
mum separable segment representation. This resolves the
problem of identifying visually similar classes like pedes-
trian/rider, sidewalk/road etc. We leveraged Equiangular
Tight Frame (ETF) classifier inspired from Neural Collapse
for maximal separation between segment classes. This
causes the source domain pixel representation to collapse
to a single vector forming a simplex vertices which are
aligned to the maximal separable ETF classifier. We use
this phenomenon to propose the novel architecture for do-
main adaptation of segment representation for target do-
main. Additionally, we proposed to estimate the noise
in labelling the target domain images and update the de-
coder for noise correction which encourages the discovery
of pixels for classes not identified in pseudo labels. We
have used four UDA benchmarks simulating synthetic-to-
real, daytime-to-nighttime, clear-to-adverse weather sce-
narios. Our proposed approach outperforms +2.2 mIoU on
GTA → Cityscapes, +2.0 mIoU on Synthia → Cityscapes,
+5.9 mIoU on Cityscapes → DarkZurich, +2.6 mIoU on
Cityscapes → ACDC.

1. Introduction
With the success of Convolutional Neural Networks

(CNN) [3, 23] and Vision Transformers [22, 57] based mod-
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Figure 1: The idea of our proposed framework is to not

only adapt the pixel representation in source domain to tar-

get domain but also make them aligned to the corresponding

segment representation (collapsed representation) which is

parallel to the classifier weight of corresponding classes and

hence ensures maximum separability.

els on the task of semantic segmentation, there is an in-

crease in interest in adopting the semantic segmentation

models in production for autonomous vehicles. However,

the success of these models has been shown on the syn-

thetic datasets since obtaining per pixel annotation of syn-

thetic datasets can be generated easily with computer graph-

ics [32, 33], but obtaining these for real world is very costly

since it requires lot of time for annotation of large num-

ber of images, in absence of which the deep neural net-

work will not able to generalize for every type of scenario.

There exists domain gaps between the synthetic and real

world images like illumination, weather, and camera qual-

ity [9, 45, 49]. To achieve the generalization on real images

without any labelled dataset, researchers resort to unsuper-

vised domain adaptation (UDA) techniques either through

network changes or data augmentation to source domain

(synthetic) to be able to transfer learned knowledge from

source domain to target domain environment.

Existing works leveraged adversarial learning [26, 27, 29,

40, 44, 53], self-supervised learning [19, 28, 39, 55, 62,

65, 66] to learn domain invariant representations. Some

minimizes this domain discrepancy at pixel level [13, 21,

49, 53], feature level [17, 25] or prediction level [29, 40,

41, 44]. Self-Supervised learning aims to mine the visual

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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knowledge from unlabelled images and pose the optimiza-

tion objective to make these visual cues to be as closer

to the ones in source domain, towards that some works

have adopted augmentations to source domain like rota-

tion [20], colorization [56], mixup [37] and random eras-

ing [61]. However, a common issue with these methods

is that their end-to-end network is very simple, relying ei-

ther only on the data augmentation or techniques like use

of variable dropout, teaching the network using supervision

from discriminator to generate the consistent prediction be-

tween source and target domain. However, this does not

resolve the problem of confusion between classes of similar

visual appearances like road/sidewalk or pedestrian/rider.

As shown in Figure 3 the ground truth label of sidewalk

is incorrectly predicted in the SOTA segmentation models

named DAFormer[15] and HRDA[16]. To solve this prob-

lem we propose the use Equiangular Tight Frame (ETF clas-

sifier inspired from Neural Collapse [30] ensuring the max-

imal separability between classes. The phenomenon states

that when the neural network trained towards zero loss, the

terminal layer features of each collapse to forming a ETF

simplex and the corresponding collapsed feature vectors for

each class is aligned with classifier weights. With the same

phenomenon, we adapt the image encoder of neural network

for target domain using the segment representation obtained

from the target domain (along with collapsed representa-

tion of source domain) and align it with the ETF classifier

weights (as shown in Figure 1). This helps to measure the

noise remains in the pixel decoder and apply the noise cor-

rection training for pixel decoder. We additionally intro-

duced the pixel discovery training for the possibility of pixel

belonging to the new class and keep on introducing them

via the pseudo labels obtained from the moving average

based teacher network. This complete setting enables us to

achieve the +2.2 mIoU on GTA → Cityscapes, +2.0 mIoU

on Synthia → Cityscapes, +5.9 mIoU on Cityscapes →
DarkZurich, +2.6 mIoU on Cityscapes → ACDC. The UDA

benchmark of DarkZurich and ACDC correspond to images

in nightitme and adverse weather conditions, achieving im-

provement in these UDA benchmarks proved the efficiency

of our approach.

2. Related Work
Unsupervised Domain Adaptation (UDA) aims to solve

the label scarcity problem for target domain with the suc-

cessful transfer of knowledge from label rich source do-

main. Some CycleGAN[64] based methods [13, 48] does

exactly the task of visual style transfer from source domain

to the target domain. These methods belong to a major cate-

gory of adversarial learning methods[26, 27, 29, 40, 44, 53],

which aims to learn the domain invariant representation

based on min max optimization strategy, where a feature

extractor is trained to fool a discriminator and thus helps

to obtain the adapted feature representations. However, as

shown in [60], this type of training is unstable leading to

suboptimal performance. This is followed by another line

works of training the segmentation network on target do-

main with pseudo label which can be pre-computed either

offline [53, 65] or updated online during training iterations

[15, 39]. Irrespective of the way of generating pseudo la-

bels, there is inevitable noise (due to underlying difference

in data distribution between domains) in the pseudo labels

which make the training noisy and leading to sub optimal

performance. Some adopted the use of high confidence

pseudo labels [66, 65], some conducted domain alignment

for reliable pseudo labels [58] and some works leverag-

ing uncertainty estimation [59] and efficient sampling [28].

Apart from the works mentioned above researchers also

adopted combining adversarial learning and self training

with specialized entropy minimization schemes[4, 44], se-

mantic prototype based contrastive learning method for

class alignment [51], visual pretraining [46], contrastive

learning between features using different saliency masks

[42]. Our proposed method is orthogonal to all the above

approaches and adds value on top of SOTA methods as

proved through qualitative and quantitative analysis over

four UDA benchamrks.

3. Methods

We start by introducing problem statement and the ba-

sic understanding of semantic segmentation along with the

corresponding loss functions in supervised setting and do-

main adaptation setting. Following this we described our

proposed model i.e. SegDA and the modelling of maximum

separable segments under the label noise implicit in pseudo

labels. Finally, we discussed the the utility of loss functions

in identifying the regions not highlighted in pseudo labels

and the corrected loss for segmentation under label noise.

Problem Statement: Given the source domain data con-

taining images XS = {xS
k }NS

k=1, labelled by YS = {ySk }NS

k=1

and the unlabelled target domain X T = {xT
k }NT

k=1, where

NS and NT are the number of images in source and target

domain respectively. The label map of source domain YS

contains C categories. The setting for domain adaptive se-

mantic segmentation requires to learn the function able to

map the unlabelled images X T to their semantic segmenta-

tion labels YT without the supervision of ground truth target

domain labels.

Semantic Segmentation: A neural network supervised

training on labelled images follows the existing works

[58, 66] and the supervised loss is formulated as:

LS
k = H(fθ(x

S
k ), y

S
k ), LS =

1

NS

NS∑
k=1

LS
k (1)
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H(ŷ, y) = −
H∑
i=1

W∑
i=1

C∑
i=1

yijc log ŷijc (2)

However, this setting can only be applied to source domain

where labelled data is accessible. For the target domain in

the absence of ground-truth labels, predictions from source

trained model on target domain does not show the simi-

lar performance as on the source domain because of un-

derlying difference in the dataset distribution like source

domain consists of synthetic images while the target do-

main contains the images from real world. This requires

to adapt the model trained on source domain to the un-

labelled target domain X T . Similar to [39, 63] we also

handled the problem of label scarcity with pseudo labels

ỸT = {Ỹ T
k ∈ {0, 1}H×W×C}k∈NT

by teacher network f̄θ
updated during training of student fθ with exponential mov-

ing average of weights of student network at each training

iteration[38, 60]. The loss function with pseudo labels is

given as follows:

LT
k = H(fθ(x

T
k ), Ȳ

T
k ), LT =

1

NT

NT∑
k=1

LT
k (3)

But however the training with pseudo labels is noisy,

and hence in practice [11] we also account for only con-

fident predictions (greater than the threshold τh) to con-

tribute in the loss function. However, we additionally im-

plemented the noise estimation in the segmentation loss (de-

noted as Lcorr) for segment classes identified from pseudo

labels (denoted as C ′). To be able to discover the new seg-

ment classes not present in pseudo labels we consider the

pixels having fθ(x
T
k ) < τl (lower threshold) and ȳTk =

argmaxfθ(x
T
k ) > C ′ incorporated in the loss function Ldis.

Further, we ensure the maximum separability of each of the

segment using the feature collapse property of Neural Col-

lapse [30] and use the representation obtained from segment

decoder to adapt the pixel classifier to the target domain

representation (incorporated in the loss Ldapt). To avoid

forgetting the source domain, the collapsed segments repre-

sentation from source domain is plugged in Lmem along

with domain adaptation loss Ldapt. The end-to-end net-

work for domain adaptive semantic segmentation consists

of pixel level module, segment level module and joint clas-

sifier for both pixel and segment as shown in Figure 2. Only

pixel level module and classifier collectively called fθ is

the adapted semantic segmentation network and hence de-

ployed in production for inference after domain adaptation

training.

Pixel-Level Module outputs the d-dimensional representa-

tion for each pixel in an image of size H × W . It consists

of an encoder which generates the low resolution image fea-

ture map denoted as F ∈ RCE×H
S ×W

S where CE is the num-

ber of channels and S is the stride of the feature map. The

feature map F is then gradually up sampled by the pixel

decoder to output the d-dimensional pixel level feature map

Ed×H×W
pixel . Any existing pixel classification based segmen-

tation model[16, 15, 5, 3, 57] fits this module, but however

we described the encoder and pixel decoder outputs so as to

leverage these in obtaining the segment representation (us-

ing segment decoder) and the (pixel, segment) classification

using joint classifier.

Segment Level Module: To obtain the equivalent segment

representation we convert the Transformer decoder[43] with

N- positional embeddings as queries to the decoder with

text embeddings obtained from CLIP text encoder [31] as

queries. Specifically, the text embeddings are calculated for

C ′ segment labels identified from the pseudo labels. These

C ′ embeddings at each position as query is not trainable and

the image features F as key and values are used to generate

the segment representation SdS×C′
at the output of trans-

former decoder.

Joint Pixel and Segment Classifier: We proposed the neu-

ral collapse [30] inspired classifier capable of classifying

both pixels and segment to the segment classes. Recent

works have studied the practice of training DNN towards

zero loss, this reveals that the classifier weights and last

layer features collapse to form a geometric structure in the

form of Equiangular Tight Frame (ETF). Essentially, the

properties is stated as follows:

• (NC1) Variability Collapse: Last layer features of a

class collapse into within-class mean.

• (NC2) Convergence: The within class means of all

the classes converge to a vertices of a simplex ETF.

• (NC3) Classifier Convergence: Within-class means

aligned to their corresponding classifier weights and

hence classifier will also converge to form a simplex

ETF.

Neural collapse describes the optimal geometric structure

of the classifier, following [30] we pre-fixed this optimal-

ity by fixing the learnable classifier structure to the simplex

ETF. Therefore the segmentation network fθ is consists of

the pixel-level module denoted by fP
θ ∈ Rd×H×W and the

classifier WETF ∈ Rd×C . The classifier weights are then

initialized as per the simplex representation given as:

WETF =

√
C

C − 1
U(IK − 1

C
1C1

T
C) (4)

where WETF = [w1,w2,w3.......wC ] ∈ Rd×C , U ∈
Rd×C allows the rotation, and satisfies UTU = IC , IC is

an identity matrix and 1C is an all ones vector. This initial-

ization offers WETF to be maximally pairwise separable.

For any pair (c1, c2) of classifier WETF satisfies:

wT
c1wc2 =

C

C − 1
δc1,c2 −

1

C − 1
, ∀(c1, c2) ∈ [1, C] (5)
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Figure 2: UDA with proposed method SegDA. The source domain trained model is adapted to target domain using domain

adaptation loss Ldapt, memory loss Lmem to retain the source information, noise correction loss Lcorr and pixel discovery

loss Ldis. Overall SegDA enforces the noise correction in the pixel predictions made by an exponential moving average

(EMA) teacher, where the noise is estimated using the adapted representations for each segment class which corresponds to

the vector in a ETF Simplex, hence ensuring maximum separability.

During domain adaptation the source and target classes will

remain same and hence the classifier prototypes trained for

source domain and adapted for target domain. We utilize

the dot-regression (DR) loss [54] for source domain train-

ing with WETF instead of cross-entropy (CE) loss since CE

contains both the PUSH and PULL term, where PUSH term

separates the feature vector of a class with classifier proto-

types of different classes (but is inaccurate as highlighted in

[30]) there we live only with PULL term which bring closer

the feature vector of a class and the corresponding classifier

prototype. The DR loss is formulated as:

min
θP

L(fP
θi ,WETF ) =

1

2
(wT

cif
P
θi − 1)2 (6)

where wT
ci , is the classifier prototype corresponding to class

ci and θP are the parameters of pixel module. The feature

vector for each pixel is batch normalized using the batch

normalization layer as the last layer. The loss in equation 6

is summed over each batch input xi. The gradient of loss in

equation 6 (fP
θi

is considered as optimization variables as in

[7]) ∂L/∂fP
θi

= −(1 − cos∠(fP
θi
,wci))wci , which is ef-

fectively pulling the feature towards the classifier prototype

for class ci and hence converge to the simplex ETF classi-

fier weights WETF resulting in collapsed representation for

each class. The prediction score for all classes for a particu-

lar pixel representation is given as
〈
fP
θi
,wck

〉 ∀ck ∈ [1, C],

results in predicted feature map EC×H×W
pred . To be able to

domain adapt the classifier without forgetting the source

domain we maintain the memory for each class collapsed

features as the mean of all representations as per variability

collapse in NC1.

Mci =
1

Nci

Nci∑
i=1

fP
θi (7)

Nci denotes the number of samples (pixels) across all the

images in the training dataset. This results in memory

M = [Mc1 ,Mc2 , .......,MC ]. These memory vectors

along the target domain segment representations are then

used to adapt the classifier prototypes for each segment

without forgetting the source domain.

3.1. Segment Representation Adaptation

The feature for every pixel belonging to the correspond-

ing segment class collapse to within-class means, this col-

lapsed representation is effectively the segment represen-
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tation corresponding to each segment class, and hence the

memory representations we have obtained for the source do-

main in equation 9 are the segment representation for cor-

responding class in the source domain. These source rep-

resentations are aligned with the corresponding classifier

prototypes of WETF . We adapt the target domain segment

representations (obtained from segment level module) us-

ing these classifier prototypes. The idea of introducing the

segment module is to denoise the pixel decoder to obtain

pixel representation for target domain without forgetting the

source domain and eliminating the requirement of keeping

all source domain samples in the memory. For each of the

pseudo label class c ∈ [1, C ′] (identified in the input image

from target domain) their corresponding label representa-

tion from CLIP Text Encoder [31] is obtained and used as

query in the segment decoder as shown in Fig. 2. The do-

main adaptation loss for segment representation is formu-

lated as:

min
θe,θsd

Ldapt =
1

2
(wT

ciSci − 1)2, ∀ci ∈ [1, C ′] (8)

where θe, θsd are the parameters for encoder and segment

decoder respectively. This loss will be summed over each

batch containing sample xi from target domain images.

Since the training of encoder and segment decoder with tar-

get domain completely wipes out the source domain infor-

mation, we add the memory loss formulated as:

min
θP

Lmem =
1

2
(wT

ciMci − 1)2, ∀ci ∈ [1, C ′] (9)

where parameters θP comprises the encoder parameters θe
and pixel decoder parameters θpd.

3.2. Noise Estimation and Pixel Class Discovery

Training with memory loss and adaptation loss ensures

the encoder to retain the information for source domain

along with learning for target domain. However, pixel

decoder contains only the source domain information and

hence produces noisy pixel class distributions for target do-

main and hence it requires to denoise the pixel decoder. The

error can eb of two types: 1) the noise between the classes

c ∈ [1, C ′] identified from the pseudo labels and 2) the noise

due to incorrect prediction where the actual ground truth be-

longs to class category outside C ′. For (1) we estimate the

noise transition matrix for each segment class c ∈ [1, C ′]
identified from the pseudo labels. For (2) we propose a

new loss which facilitates the discovery of pixels belong to

class category c ∈ [C ′ + 1, C]. For each of segment masks

identified from the pseudo labels we cropped the C ′ im-

ages from the predicted segments in each image. We obtain

the noisy segment representation Sd×C′
noisy from the cropped

images for target domain using CLIP Image Encoder [31],

where d is the embedding dimension. Effectively the noise

transition matrix is given as N = STSnoisy ∈ RC′×C′
,

where dS = d. For the pseudo labels obtained from the

mean teacher we use the max across class scores to predict

the best class if it is greater than high threshold τh given

as, argmaxck
〈eck > τh〉 ∀eck ∈ EC×H×W

pred effectively re-

sulting in C ′ classes forming different segments in a given

image xk denoted by ỹTk ∈ {0, 1}H×W×C′
. For these C ′

classes the student predictions is denoted as Est,C′ . Only

the predictions belong to C ′ classes (from the student)

can be noise corrected hence Est,C′ is noise corrected as

(N · Est,C′ ), and the corrected loss is formulated as:

Lcorr = −
∑

k∈NT

H(N · Est,C′ , ỹTk ) ∀c ∈ [1, C ′] (10)

We want to ensure the discovery of pixels belonging to the

classes outside C ′ and hence we consider the pixel scores

from teacher eck < τl (lower threshold) and the one-hot

pseudo label is ỹok = argmaxck(eck) > C ′. The threshold

τh = 0.8 and τl = 0.2 in our case. The pixel discovery loss

is then formulated as:

Ldis = −
∑

k∈NT

H(Est \ ỹTk , ỹok) ∀c ∈ [C ′ + 1, C] (11)

where Est \ Ỹ T
k denotes the student predictions outside the

C ′ classes.

3.3. Overall Optimization Scheme

After training the pixel level module for source domain

governed by loss given in equation 6, the source trained

pixel module is then adapted to target domain governed by

loss functions given in equation 8, 9, 10 and 11. The com-

bined loss is given as:

min
θP ,θsd

Ldapt + Lmem + Lcorr + Ldis (12)

The teacher network φP (pixel module) is implemented as

an EMA teacher [38]. Its weights are the exponential mov-

ing average (EMA) of the weights of the (student) network

θP .

φP,t+1 ← αφP,t + (1− α)θP,t (13)

where t is the training step. The EMA teacher effectively

an ensemble of student models at different training steps,

which is a most widely used learning strategy in semi-

supervised setting [10, 14, 36, 38] and UDA [1, 15, 16, 39].

As the training grows the teacher is updated from student θP
obtaining more context of what could be the stable pseudo

labels based on the noise correction loss and the segment

adaptation resulting in increased domain adapted perfor-

mance on target domain.
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4. Experiments
Datasets: We study the domain adaptation setting

considering various realistic scenarios for street scenes

i.e. synthetic-to-real, clear-to-adverse weather, and day-

to-nighttime. There are public datasets available for both

synthetic as well as realistic environments. For synthetic

dataset, we use GTA [32] containing 24,966 training im-

ages (1914×1052 pixels) and Synthia [33] containing 9,400

images (1280 × 760 pixels). For clear weather, we use

Cityscapes (CS) [6] consisting of 2,975 and 500 images

(2048 × 1024 pixels) for training and validation respec-

tively. For nighttime we use DarkZurich [34] with 2,416

and 151 images (19201080 pixels) for training and test re-

spectively. For adverse weather (fog, night, rain, and snow)

we use ACDC [35] containing 1,600, 406 and 2,000 im-

ages (1920 × 1080 pixels) for training, validation and test

respectively. The training resolution as per the used UDA

pixel level module (half-resolution for DAFormer [15] and

full resolution for HRDA [16]).

Structure Details: We adopt the pixel level module fol-

lowing recent SOTA UDA setting [15, 50, 63] based on

DAFormer network [15] consists of a MiT-B5 encoder

[15, 52] pretrained on ImageNet-1k [8]. Following HRDA

[16] we used the context aware feature fusion decoder

(from DAFormer embedding dimension 768) and for scale

attention decoder we use SegFormer MLP decoder [52]

with an embedding dimension of 768 matching the dimen-

sion of Segment Decoder (Transformer Decoder [43] as in

DETR[2]) and CLIP Image Encoder [31]. Specifically, to

compare SegDA on various setting we used DAFormer[15],

HRDA[16] and a DeepLabV2 [3] (with a ResNet-101 [12]

backbone).

Implementation Details: We train our network on Titan

RTX GPU for 40K training iterations and a batch size of

2. We adopted the multi-resolution training strategy from

HRDA [16]. We adopted ADAMW [24] optimizer with a

learning rate of 6× 10−5 for encoder and 6× 10−4 for the

decoder with linear learning rate warmup. The applicable

strategies like DACS [39] data augmentation, Rare Class

Sampling [15], and ImageNet Feature Distance [15] is used

as it is along with corresponding set of parameters from

the respective UDA methods. For EMA teacher update we

have used α = 0.999. Following the setting [15, 16] we

also adopted color augmentation (brightness, contrast, sat-

uration, hue, and blur) during source domain training. We

used mean intersection-over-union (mIoU) as the metric to

evaluate our UDA method.

Reproducibility: Our code is based on Pytorch [18] and

will be publicly available to reproduce all the results.

4.1. Comparisons with State-of-the-art Methods

To facilitate the comparison of SegDA with various

SOTA methods, we first evaluated SegDA with different ex-

Network UDA Method w/o SegDA w/ SegDA Diff.

DeepLabV2 [3] Entropy Min. [44] 44.3 49.2 +4.9

DeepLabV2 [3] DACS [39] 53.9 56.5 +2.6

DeepLabV2 [3] DAFormer [15] 56.0 59.8 +3.8

DeepLabV2 [3] HRDA [16] 63.0 64.3 +1.3

DAFormer [15] DAFormer [15] 68.3 70.8 +2.5

DAFormer [15] HRDA [16] 73.8 76.0 +2.2

Table 1: Performance (mIoU in %) comparison of different

UDA methods with and without SegDA on GTA → CS

isting network architectures and UDA methods for domain

adaptive semantic segmentation on GTA → CS. As shown

in Table 1, with SegDA all the network architectures and

UDA methods perform consistently better (ranging from

+1.3 upto +4.9 mIoU) than without SegDA counterparts.

This implies that the proposed domain adaptive framework

SegDA not only benefit the CNN based architectures (like

DeepLabV2 [3]) but able to perform better with Trans-

former based architectures as well like DAFormer [15].

As expected the performance improvement with advanced

transformer architectures is less since the base performance

of UDA w/o SegDA is already high in these cases.

Going forward, we evaluate the performance of SegDA

with the highest performing UDA method HRDA [16] for

further comparison with SOTA methods on different UDA

scenarios namely: synthetic-to-real (GTA → CS and SYN-

THIA → CS), clear-to-adverse weather (CS → ACDC)

and day-to-nighttime (CS → DarkZurich). The quantita-

tive comparison among different SOTA methods has been

shown in Table 2, and the qualitative comparison is shown

(in Figure 3) in the form of a visual difference between

the image, ground truth, two latest SOTA transformer based

methods [15, 16] and the proposed method SegDA. Summa-

rizing results from Table 2 SegDA outperforms both CNN

based and Transformer based architectures including the re-

cent transformer based SOTA methods namely, DAFormer

[15] and HRDA [16]. It improves the state-of-the-art

performance by +2.2 mIoU on GTA → Cityscapes(CS),

+2.0 mIoU on SYNTHIA → Cityscapes, +5.9 mIoU on

Cityscapes → DarkZurich, +2.6 mIoU on Cityscapes →
ACDC. Moreover, SegDA performs better than SOTA on

class-wise IoU as well on most of the classes. Specifically,

it outperforms for all the classes in GTA → Cityscapes ex-

cept on Wall which is a general class and mostly been oc-

cluded with different objects. Similarly, the performance

per class on Cityscapes → ACDC outperforms the SOTA

performance on each class, this proves the performance gain

owning to ETF classifier and noise correction which han-

dles the noise and separability even in the presence of ad-

verse weather. Across UDA benchmarks, the classes that

are on most advantage with SegDA are Fence, Pole, Traf-
fic Light, Terrain and Rider. ETF classifier and noise cor-
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Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Synthetic-to-Real: GTA→Cityscapes

ADVENT [44] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

DACS [39] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

ProDA [55] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

DAFormer [15] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

HRDA [16] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

SegDA+ HRDA 97.7 80.1 91.4 61.6 56.9 59.8 66.1 71.4 91.8 51.6 94.5 79.9 56.2 94.7 85.5 90.4 80.5 64.5 68.5 76.0

Synthetic-to-Real: Synthia→Cityscapes

ADVENT [44] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 – 84.1 57.9 23.8 73.3 – 36.4 – 14.2 33.0 41.2

DACS [39] 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 – 90.8 67.6 38.3 82.9 – 38.9 – 28.5 47.6 48.3

ProDA [55] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 – 84.4 74.2 24.3 88.2 – 51.1 – 40.5 45.6 55.5

DAFormer [15] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9

HRDA [16] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8

SegDA+ HRDA 87.2 50.7 89.4 49.6 8.2 59.6 66.8 63.6 88.2 - 94.6 81.0 58.9 90.2 - 64.7 - 67.1 64.9 67.8

Day-to-Nighttime: Cityscapes→DarkZurich

ADVENT [44] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7

MGCDA [34] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5

DANNet [47] 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3

DAFormer [15] 93.5 65.5 73.3 39.4 19.2 53.3 44.1 44.0 59.5 34.5 66.6 53.4 52.7 82.1 52.7 9.5 89.3 50.5 38.5 53.8

HRDA [16] 90.4 56.3 72.0 39.5 19.5 57.8 52.7 43.1 59.3 29.1 70.5 60.0 58.6 84.0 75.5 11.2 90.5 51.6 40.9 55.9

SegDA+ HRDA 94.8 75.2 84.1 55.3 28.7 62.1 52.7 52.7 59.3 46.9 70.5 65.4 61.8 84.1 75.6 18.5 91.3 52.7 44.3 61.8

Clear-to-Adverse-Weather: Cityscapes→ACDC

ADVENT [44] 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.2 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7

MGCDA [34] 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7

DANNet [47] 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0

DAFormer [15] 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4

HRDA [16] 88.3 57.9 88.1 55.2 36.7 56.3 62.9 65.3 74.2 57.7 85.9 68.8 45.7 88.5 76.4 82.4 87.7 52.7 60.4 68.0

SegDA+ HRDA 90.8 67.4 89.3 55.3 40.5 57.2 62.9 68.5 76.4 61.9 87.1 71.4 49.5 89.8 76.5 86.8 89.2 56.9 63.3 70.6

Table 2: Semantic Segmentation performance (mIoU in %) for four UDA benchmarks

Image Ground Truth DAFormer[15] HRDA [16] SegDA + HRDA

Figure 3: Qualitative comparison of SegDA with previous methods on GTA→CS (row 1 and 2), CS→ACDC (row 3), and

CS→DarkZurich (row 4)

rection enforces the representation learned for these classes

to be separable from commonly occurring classes, since

they are dependent on context clues, HRDA models that

better and ETF classifier helps to separate them from the

most of the co-occurring classes. Most of the classes like

Road, Building and Vegetation are showing the least im-

provements since they are pretty much general and hence

easiest to identify therefore their IoU scores are already high

by SOTA methods and hence very little improvement. The

classes like Bus and Vegetation are not discoverable satis-
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factorily on Cityscapes → DarkZurich because of the night-

time, it is not able to identify the green color for vegetation

and color of vehicle as compared to black color which is

present everywhere.

Qualitative Comparison: In Figure 3, the visual illustra-

tion of segmentation results shown to facilitate the compar-

ison of the proposed method SegDA + HRDA over other

two SOTA methods DAFormer[15] and HRDA[16] along

with the corresponding ground truth for the image. Row 1

and 2 indicates segmentation results on GTA → CS, row 3

and 4 correspond to CS → ACDC and CS → DarkZurich

respectively. The results highlighted by white dash boxes

are the one captured correctly by SegDA as compared to

other methods. Like n row 1, the SegDA is able to detect

the car correctly while HRDA highlight the car along with

traffic sign (blue along with yellow color). Also, we see that

SegDA is able to identify the traffic sign correctly in row 2.

All the segmentation results show the clear boundaries for

the classes like pole, fence, sidewalk etc. This is because

of the ETF classifier making the pixel representation to be

maximally separable and noise correction further enhances

the consistency at the pixel level.

Table 3: Ablation Study of SegDA with DAFormer[15] on

GTA → CS

ETF Classifier Color Aug EMA Teacher Noise Correction mIoU

1 - - - - 68.3

2 � � � � 70.8

3 - � � � 68.6

4 � - � � 70.6

5 � � - � 69.4

6 � � � - 66.8

4.2. Ablation Studies

In this section we present the analysis (in Table 3) of each

of the individual components present in training of SegDA

with DAFormer [15] (due to faster training) on GTA →
CS. Training SegDA end-to-end with DAFormer [15](row

2) achieves +2.5 mIoU better than DAFormer alone (row

1). Further ablations in row 3-6 remove one component at

each row indicated by ’-’, first we remove the ETF Classi-

fier structure instead used the single layer MLP in place of

that this setting reduces the performance by -2.2 mIoU re-

sulting in almost the same performance as with DAFormer

as the segment representations obtained from Transformer

is not adapted and hence the noise handling is itself noisy

which leads to EMA teacher being noisy and hence no

advantage. Ablation with color augmentation reduces the

performance only by -0.2 mIoU which is insignificant and

hence not as much important as ETF classifier. Other com-

ponents like Noise Correction (along with discovery) and

EMA Teacher shows the performance reduction of -4.0

Table 4: Relative comparison of UDA GTA →
CS and Supervised Training on CS. Rel. indicates

mIoUUDA/mIoUSuperv.

mIoUUDA mIoUSuperv. Rel.

DAFormer 68.3 77.6 88.0%

SegDA + DAFormer 70.8 77.8 91.0%

Improvement +2.5 +0.2 +3.0%

mIoU and -1.4 mIoU respectively. Indicating the highest

importance of Noise correction if ETF classifier is present

without which the domain adaptation is not satisfactorily

since it guides how to discover the pixels for new classes

and correct the confidence score of existing pixel predic-

tions. The EMA teacher ablation confirms the stability of

pseudo labels. With latest model in place of EMA Teacher

the resultant domain adaptation reduces by -1.4 mIoU be-

cause of fluctuating predictions of pixels from one model to

another and hence averaging makes the prediction consis-

tently confident.

Supervised Training: We compared the supervised and

UDA performance of DAFormer with and without SegDA

in Table 4. For SegDA with DAFormer on supervised

setting the still the pseudo labels are generated and using

EMA teacher and noise corrected towards the loss correc-

tion along with segement representation adaptation. This

setting leads to very little improvement of +0.2 mIoU over

the DAFormer alone. For UDA however the imporvement

is +2.5 mIoU indicating the usefulness of segment represen-

tation adaption, ETF classifier, noise correction and EMA

Teacher for daomin adaptation and generating stable pseudo

labels. To quantify this relative improvement of eaach net-

work setting for UDA and Supervised training we calcu-

lated Rel. as mIoUUDA/mIoUSuperv. indicated in last col-

umn of Table 4 indicating the DAFormer results in 88%

improvement on UDA and 91% with SegDA applied over

DAFormer. Overall there is 3% improvement by an addi-

tion of SegDA over DAFormer.

5. Conclusion
We proposed the UDA method SegDA, which is able to

maximally separate the visually correlated classes with the

method of noise correction in the pseudo labels as well as

pixel discovery to the classes not present in the pseudo la-

bels. Our method outperforms (on existing SOTA) by +2.2

mIoU on GTA → Cityscapes, +2.0 mIoU on Synthia →
Cityscapes, +5.9 mIoU on Cityscapes → DarkZurich, +2.6

mIoU on Cityscapes → ACDC.
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