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Figure 1: Overall framework of the lightweight skeleton-based 3D-CNN for real-time action recognition. For each frame

in the video, we utilize a one-stage pose estimator to obtain the 2D keypoints. We then employ a tracking mechanism to

establish the identity of each person, and save it as coordinate triplets. For every tracked identity, we generate the joint

heatmap and stack it as input for our 3D-CNN model, which classifies the action performed by each tracked identity.

Abstract

Implementing skeleton-based action recognition in real-
world applications is a difficult task, because it involves
multiple modules such as person detection and pose esti-
maton. In terms of context, skeleton-based approach has
the strong advantage of robustness in understanding ac-
tual human actions. However, for most real-world videos
in the standard benchmark datasets, human poses are not
easy to detect, (i.e. only partially visible or occluded by
other objects), and existing pose estimators mostly fail to
detect the person during the falling motion. Thus, we pro-
pose a newly augmented human pose dataset to improve the
accuracy of pose extraction. Furthermore, we propose a
lightweight skeleton-based 3D-CNN action recognition net-
work that shows significant improvement on accuracy and
processing time over the baseline. Experimental results
show that the proposed skeleton-based method shows high
accuracy and efficiency in real world scenarios.

1. Introduction
The latest research developments in deep learning ac-

tion recognition are showing incredibly impressive perfor-

mance. However, its practical implementation in real-world

applications is challenging due to its computational heav-

iness. Deep learning models for action recognition often

require significant computational resources, which makes

them impractical for deployment on resource-constrained

devices or in real-time scenarios. This limitation hinders the

widespread adoption of deep learning-based action recogni-

tion systems in practical settings. In this paper, we explore

techniques such as efficient architectures, input representa-

tions, and model compression to develop lightweight mod-

els that maintain high performance while reducing compu-

tational requirements. By reducing the computational cost,

the practical usability of deep learning action recognition

systems can be greatly enhanced, which enables their seam-

less integration into various real-world applications.

Moreover, in real-world applications, falling motion [2]

has increasingly drawn healthcare industry demands for

automated vision systems among types of human actions.

Conventional fall detection methods typically rely on wear-

able sensors like smartwatches, necklaces, and smart-

phones. These devices employ 3D accelerometers to iden-

tify deviations in height orientation and velocity, which fa-

cilitates the detection of abnormal patterns associated with

falls. However, the attachment of these devices to individu-

als’ bodies is impractical. Alternatively, as the performance

of vision-based action recognition has improved, it has be-
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come feasible to detect falling motion directly from video

footages. In particular, vision-based systems that utilize 2D

or 3D skeletons as a simplified yet efficient representations

of human poses.

In this paper, our approach addresses the issue of heavy

computational requirements in deep learning action recog-

nition. Figure 1 shows our overall framework. Specifi-

cally, we introduce a lightweight skeleton-based 3D-CNN

action recognition network that is specifically designed for

real-world applications. By leveraging the power of 3D

convolutional neural networks (CNNs) and the simplicity

of skeleton-based representations, our proposed pipeline

achieves high accuracy in action recognition while signif-

icantly reducing the computational burden.

The core idea behind the skeleton-based approach is to

leverage sequences of human poses to identify human ac-

tions or motions. By utilizing this sequence of poses, the

method aims to accurately discern various human activi-

ties. However, prior works fail to recognize individuals

during falling motion, particularly in highly occluded en-

vironments. This issue arises primarily due to the lack

of falling motion examples in the human pose estimation

dataset, which hampers the ability of the model to pre-

dict persons accurately in such dynamic scenarios. Con-

sequently, the skeleton-based approach action recognition

model struggles to identify individuals in falling motion.

To address this challenge, we propose a human dataset as

a solution. This dataset aims to enhance the performance

of the person detection model by providing relevant falling

motion examples, which enables the model to better han-

dle dynamic scenarios and improve person recognition dur-

ing falling motion. Moreover, we develop a real-time fall

detection and action recognition method that effectively in-

corporates the proposed fall person detection dataset and

utilizes our lightweight 3D-CNN action recognition model

for the robust and timely detection of fall events and ac-

tivity monitoring. The lightweight model efficiently pro-

cesses the extracted pose keypoints, and the integration of

the lightweight action recognition model further optimizes

the performance of the system. This way ensures efficient

and accurate identification of human actions without com-

promising accuracy. The contribution of this paper is sum-

marized as follows.

• Newly augmented dataset for human pose, which im-

proves the accuracy of pose estimation and thus results

in more accurate action recognition

• Lightweight action recognition architecture that runs in

real time in a multiperson environment

• State-of-the-art performance in fall detection

2. Related Works
2.1. Skeleton-based Action Recognition

Skeleton-based approaches heavily depend on pose ex-

traction. Action recognition is considered as a time series

problem; thus, early works utilized RNNs [10, 23]. In [10],

the input is represented as 3D poses and is divided into five

parts, while [23] directly uses joint locations of 3D poses

as input. Another stream of works uses CNN [9, 26] mod-

els, which directly transform the coordinates in a skeleton

sequence into a pseudoimage, typically a 2D input of shape

K × T , where K represents the number of joints and T is

the temporal length.

Although RNN and CNN utilized joint coordinates, they

did not explicitly exploit the structural topology of the

joints; thus, Graph Convolution Network [35, 20, 24, 8]

was introduced. GCN models such as ST-GCN [35] uti-

lized the extracted keypoint sequences as spatio-temporal

graphs. AS-GCN [20] employs multi-scale modeling and

additionally predicts the human pose. G3D [24] proposed a

novel graph convolution operator for capturing long range

joint relationship modeling. Shift-GCN [8] aimed to reduce

computational cost by proposing a shift graph operation.

However, in terms of multi-person, all GCNs method are

very heavy because they multiply the input for each person

detected. Therefore, a new approach using 3D-CNN, called

PoseConv3D [11], was adopted to address multi-person

scenarios without incurring additional computation costs.

The 3D-CNN for action recognition was initially applied

to RGB input, such as in SlowFast [13]. The SlowFast [13]

network captured spatial semantics and motion separately

by applying different spatio-temporal resolutions for the

two networks. However, the use of RGB input demands

a high number of channels, which makes the network com-

putationally heavy. In contrast, PoseConv3D [11] offers a

solution by representing the RGB input as stacks of joint

heatmaps generated from extracted 2D human poses, which

form 3D heatmap volumes as the input for 3D-CNN. This

approach efficiently handles multi-person scenarios without

burdening the network with excessive computation.

Furthermore, unlike 2D-CNN, 3D-CNN has the capabil-

ity to learn spatio-temporal features, as a result, skeleton-

based approaches using 3D-CNN outperforms GCN-based

approaches, which makes them a more effective and effi-

cient choice for action recognition tasks.

2.2. Vision-based Fall Detection

Vision-based fall detection can be categorized into two

main approaches: RGB-based and skeleton-based. In early

stages, RGB-based methods [7, 14, 15] learned human mo-

tion features by segmenting the subject from the back-

ground. This step helps isolate the human figure from the

background. After this initial step, the system then ana-
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lyzes the position and movements of the person to deter-

mine whether a fall has occurred or not. In some works

alternative techniques are employed to represent the input

video, for instance, [12] converts it into multiple dynamic

images, while [27] transforms RGB input into optical flow

images. Lu et al. [25] utilized 3D-CNN to extract 3D fea-

ture cubes. The input to the 3D-CNN is an image cube com-

posed of 16 frames segmented from the video sequence, and

the output is then used as input for LSTM models to classify

the motion.

On the other hand, skeleton-based fall detection, as

demonstrated in various studies [17, 21, 28], involves ex-

tracting 2D keypoints using a pose estimator model. These

keypoints are then used as input for the system. A com-

monly employed technique in this approach is to utilize

LSTM for handling the extracted keypoints sequences. Api-

cella et al. [4] incorporate additional techniques to enhance

accuracy. They used an additional CNN to generate se-

quences of keypoints that the pose estimator failed to ex-

tract, which further improved the overall accuracy.

2.3. Human Pose Dataset

Multi-person pose estimation has achieved significant

progress in the past few years, and a few popular benchmark

datasets are available. Most of these datasets [22, 3, 19]

annotate body keypoints for images in the wild. Pose-

Track [6] provides dense annotations of video sequences

with 15 body keypoints. Among these datasets, COCO [22]

has emerged as one of the most widely used and popular re-

source for body keypoint localization. It offers comprehen-

sive annotations of 17 keypoints for human bodies in chal-

lenging and uncontrolled conditions. These datasets collec-

tively play a crucial role in advancing the state-of-the-art

methods in multi-person pose estimation and continue to

foster the development of robust and accurate pose estima-

tion models.

3. Augmented Human Pose Dataset
In our work, we propose an augmented human pose

dataset by building upon an existing dataset, namely the AI

Hub senior abnormal behavior dataset [1], we exclusively

utilize videos depicting falling motion. Our approach in-

volves several key steps to enhance suitability of the dataset

for our specific objective.

To begin, we shorten the video duration from 3-10 min-

utes to 3-7 seconds, by focusing solely on capturing and

highlighting falling motions. This adjustment is made based

on the labels of the dataset, which allows us to extract rele-

vant segments effectively.

Next, we downsample the frame rate, which enables

clearer identification of pose differences between frames.

Although the original videos have a frame rate of 25 frames

per second (FPS), through empirical analysis, we determine

that sampling every 12th frame satisfactorily captures typ-

ical falling motions. We manually annotate the bounding

box around the person in each frame to facilitate the subse-

quent steps. This annotation is performed using the labeling

tool, LabelImg [32], which ensures accurate delineation of

the person’s region of interest. The frames, along with their

corresponding bounding box information, are then inputted

into a 2D pose estimator to produce estimated keypoints.

These estimated keypoints serve as the pseudo ground-truth

for our augmented dataset.

Finally, we combine our augmented dataset with the

COCO-pose [22] dataset, which results in a comprehensive

dataset comprising a total of 69,279 person images and 2D

keypoints information. By merging these datasets, we en-

hance the diversity and richness of the human pose dataset,

which ensures its suitability for robust human pose estima-

tion tasks for our action recognition model.

4. Proposed Method
In this section, we present the proposed method, which

aims to establish an efficient pipeline for action recognition

in real-world applications.

4.1. Overall Framework

Figure 1 shows our overall framework with two main

modules: pose estimation and action recognition. In this

section, we discuss both modules and the process of trans-

lating 2D keypoints into joint heatmaps, which serve as the

input to our 3D-CNN network.

4.1.1 Pose Estimation

Based on the findings presented in [11], the estimated

2D keypoints consistently outperform both sensor-collected

(NTU-60 [29]) and estimated 3D keypoints in action recog-

nition task. Accordingly, in our approach, we leverage a

top-down pose estimator to extract precise human 2D key-

points. We opt for a one-stage pose estimator to optimize

time efficiency because of our objective of constructing an

efficient pipeline for real-world applications. The pose es-

timator receives input frames and outputs bounding boxes

and coordinate-triplets, i.e. (x, y, score), of each keypoint.

We have a total of 17 coordinate-triplets for each person

based on COCO-keypoints. We train our model with the

augmented dataset.

4.1.2 Pseudo Joint Heatmap Generation

To build a lightweight action recognition network, we need

to reform the extracted 2D keypoints into joint heatmaps.

First, after we extract the human 2D keypoints, we sam-

ple 48 frames uniformly and discard the remaining frames.

Therefore, we have 48 coordinate-triplets (xk, yk, ck),
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Figure 2: Examples of generated heatmaps through the

frames. (a) is the RGB frame, while (b) is the generated

pseudo joint heatmap.

which will be used as input to generate generate the joint

heatmaps. As performed in [11], we generate Gaussian

maps that are centered at every joint location,

Jkij = ck · exp{− (i− xk)
2 + (j − yk)

2

2σ2
}, (1)

where (xk, yk) is the location, ck is the confidence score of

the k-th joint. σ controls the variance of Gaussian maps.

Moreover, to make it more efficient, we perform subject-

centered cropping. Given that the output of our one-stage

pose estimator includes the bounding box location, we crop

the frame based on the bounding box location and resize it

to match the size of the input spatial setting. In our method,

we use 56 × 56 as our spatial size. Examples of the gener-

ated joint heatmaps are shown in Figure 2.

Stage Lightweight-AR Output Sizes T ×H ×W

Data Layer uniform 48, 56× 56 48× 56× 56

Stem Layer conv1 1× 7× 7, 8 48× 56× 56

Res2

⎡
⎢⎢⎣
1× 1× 1, 8

1× 3× 3, 8

1× 1× 1, 48

⎤
⎥⎥⎦ ×3 48× 56× 56

Res3

⎡
⎢⎢⎣
1× 1× 1, 16

1× 3× 4, 16

1× 1× 1, 64

⎤
⎥⎥⎦ ×4 48× 28× 28

Res4

⎡
⎢⎢⎣
3× 1× 1, 48

1× 3× 3, 48

1× 1× 1, 128

⎤
⎥⎥⎦ ×6 48× 14× 14

Res5

⎡
⎢⎢⎣
3× 1× 1, 64

1× 3× 3, 64

1× 1× 1, 256

⎤
⎥⎥⎦ ×3 48× 7× 7

GAP, FC # of Classes

Table 1: Lightweight action recognition network. The di-

mensions of the kernels are denoted by T ×H ×W,C for

temporal, spatial (height and width), and the channel size.

GAP and FC denotes the global average pooling and fully

connected, respectively.

4.1.3 Lightweight Action Recognition

The overall architecture of our model is shown in Figure 3.

The input to the action recognition network is obtained by

stacking the joint heatmaps along the temporal dimension

with the size of K × T ×H ×W where K is the number

of joints, T is the temporal dimension, and H , W are the

height and width of the frame, respectively. The detailed

network structure is listed in Table 1, which is a temporally

strided 3D-CNN modified from the slow pathway of [13].

Considering that our goal is to integrate this model into our

real-time system, we need the model to be as light as pos-

sible to accelerate the processing time while maintaining

accuracy.

To this end, we use 48 input frames to accelerate the

inference process. Subsequently, we reduce the width-

channels from 64 to 8 and the spatial size from 224 to 56.

This reduction is sufficient, given that our input consists of

joint heatmap sequences, which do not require the same size

as RGB frames. Our experiments show that this reduction

can significantly reduce training time by up to 50% while

still maintaining high performance, despite the lighter back-

bone.
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Figure 3: Architecture of the lightweight 3D-CNN action recognition. The input into our action recognition model is stacked

joint heatmaps, which have the size K × T × H × W , where K is the number of joints, T is the number of frames in our

method we use 48 frames, H and W is the height and width of the frame, respectively.

Figure 4: Knowledge distillation pipeline.

4.2. Real-Time Fall Detection and Action Recogni-
tion System

For each frame captured by the camera, our process starts

with the pose estimation model, which extracts 2D key-

points and bounding boxes for each detected person. These

output bounding boxes are then used as inputs for the track-

ing module [34], which ensures smooth and continuous

tracking of each person across frames.

After the identities of individuals are established, we

gather the keypoints for each person over a consecutive se-

quence of 48 frames, which results in a data structure of

K × T (where K represents the number of keypoints, and

T denotes the temporal length of 48 frames). This con-

catenated information is then fed into our action recogni-

tion model. With all the necessary data in place, our action

recognition model performs action classification for each

individual. We show examples of the results of our pro-

posed inference frames in Figure 5.

Furthermore, in real-time inference for single-person

scenario, we achieve an average FPS of 26 Hz. For multi-

person scenarios, we achieved an average FPS of 13 Hz,

which further showcase the efficiency and feasibility of our

approach for real-world applications.

4.3. Knowledge Distillation

In order to accelerate the inference processing time, we

employ the knowledge distillation framework shown in Fig-

ure 4. In this approach, the lightweight 3D-CNN model

with 4 residual layers acts as the “Teacher,” while a smaller

network that has 3 residual layers and a different extracted

pose serves as the “Student”. We employ response-based

knowledge [16] which focus on the output of the teacher

model, such that the student will mimic its prediction. By

leveraging this knowledge distillation technique, we aim to

transfer the knowledge from the Teacher to the Student net-

work. This way enables the latter to achieve comparable

performance while being more computationally efficient.

5. Experimental Results

In this section, we present the experimental results of our

proposed method. First, we validate whether our model can

effectively distinguish falling motion from other daily ac-

tivity motions. Second, we conduct a comprehensive com-

parison between our action recognition model and pipeline

with the baseline method.

5.1. Implementation Details

In this work, we utilize YOLOv8-pose as our pose es-

timator. This is mainly due to its state-of-the-art real-time

object detection capabilities. We first, train YOLOv8-pose

with our proposed augmented human pose dataset. Then,

we extract the 2D keypoints of each dataset with the trained
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Figure 5: Example frames of the proposed multi-person fall detection and action recognition system.

YOLOv8-pose. We also train the baseline method [11] us-

ing the same dataset to ensure a fair comparison.

Our model and the baseline model [11] are trained for

250 epochs to ensure sufficient convergence and learning.

We run our inference on a single RTX 4090 GPU.

5.2. Evaluation on Fall Detection

We evaluate our methods on two benchmark datasets for

fall detection and compared them with previous fall detec-

tion methods. In addition, we perform another experiment

using the AI Hub dataset to compare the performance of our

network with the baseline method.

5.2.1 Datasets

UR Fall Detection (URFD) Dataset [18] contains 70

videos: 30 videos of falling motion from 2 different cam-

era angles and 40 videos of activities of daily living. For

training and testing, we use a random dataset split with an

80:20 ratio for each class.

Multiple Cameras Fall (Multicam) Dataset [5] con-

tains 24 scenarios captured by 8 cameras, which results in

Model Accuracy Specificity Sensitivity

Lin et al. [21] 92.00 - -

Hasan et al. [17] - 96.00 99.00

Marcos et al. [27] 95.00 92.00 100.00

Salimi et al. [28] 98.90 - 100.00

Ours 100.00 100.00 100.00

Table 2: Comparison of results on the URFD dataset [18].

192 videos, including a total of 9 action classes. We sep-

arate action sequences in each video to generate a total of

1,304 videos. Considering that no official data split is given,

we split the dataset by cross-view split: Camera #1 through

#7 as the training set and camera #8 as the test set.

AI Hub Senior Abnormal Behavior Dataset [1] con-

tains a total of 9,400 videos of 3 human actions. The actor

is assumed to be elderly and the action classes are threefold:

fall down, wander, and dementia. We discard the dementia

class, and only use the falling and wander data.
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Model Accuracy Specificity Sensitivity

Feng et al. [15] - 93.50 91.60

Fan et al. [12] - 97.90 97.10

Marcos et al. [27] - 96.20 98.07
Hasan et al. [17] 97.38 96.00 98.00

Lu et al. [25] 99.07 99.56 86.21

Ours 99.39 100.00 96.15

Table 3: Comparison of results on the Multicam dataset [5].

Model Accuracy Specificity Sensitivity

PoseConv3D [11] 97.56 97.72 97.26
Ours 99.02 100.00 97.26

Table 4: Comparison of results on the AI Hub dataset [1].

5.2.2 Evaluation Metrics

Fall detection is a binary classification task, and we adhere

to the evaluation protocol from prior work [2]. Accuracy
is the proportion of correctly detected falls and non-fall be-

haviors. Sensitivity is the proportion of correctly detected

falls in all fall events. Specificity is the proportion of cor-

rectly detected non-fall behaviors in all the non-fall events.

All metrics are represented in % in this paper.

5.2.3 Comparison with the State-of-the-Art

We begin to evaluate the performance of our fall detection

by conducting experiments using a benchmark fall detection

dataset. The outcomes are summarized in Table 2, where

we compare our method on the URFD dataset [18] against

other existing approaches. Impressively, our proposed sys-

tem outperforms all other methods by achieving 100% for

all evaluation metrics.

Furthermore, we evaluate our method on the Multicam

dataset [5], and the results are presented in Table 3. Again,

our proposed system exhibits superior performance to pre-

vious works. These comprehensive evaluations affirm the

effectiveness of our proposed model in accurately distin-

guishing falling motion, which surpasses the performance

of existing approaches by a significant margin. The prior

works’ results in Table 2 and Table 3 are obtained from their

original papers.

Moreover, we compare our model with the baseline

method [11] using the AI Hub dataset [1]. The results, as

presented in Table 4, show that our pipeline has improved

accuracy compared with the baseline method [11].

5.3. Evaluation on Action Recognition

To analyze the performance and provide a fair compari-

son with benchmark algorithms, we first follow the training

and evaluation protocols used in the baseline method.

5.3.1 Datasets

5 action combined dataset is a compilation of various

datasets merged together to be employed in our action

recognition system. In total we have a total of 6,231 videos.

We define 5 action classes: Falling, Sit Down, Stand Up,

Walking, and Laydown. The details of the video sources of

each class are shown in Table 5. We subsequently divide

this dataset into training and test sets using an 80:20 ratio

for each class to facilitate training.

5.3.2 Comparison with the Baseline

The proposed method is evaluated with the combined

dataset and the baseline method [11]. Table 6 shows the

quantitative results, which demonstrate that our augmented

human pose dataset significantly improves the accuracy of

the action recognition model. It highlights the dependence

of skeleton-based approaches on the pose estimator. De-

spite having 4 times fewer trainable parameters and a pro-

cessing time 10 times faster, the accuracy of our model re-

mains on par with that of the baseline method trained with

our pipeline.

Finally, we show the qualitative results1 of our method

on multiple datasets in Figure 5. These results show that

our method performs well, able to detect falling motion and

classify other action classes correctly.

5.3.3 Knowledge Distillation Result

For performance comparison, we first train the teacher

model (4 residual layers trained with extracted keypoints

from YOLOv8l-pose) and the student model (3 residual lay-

ers trained with extracted keypoints from YOLOv8m-pose)

separately. Then, we train the student using the knowl-

edge distillation technique. As shown in Table 7, the FPS

of the student model is higher than that of the teacher

model. Moreover, the standalone student model, which is

not trained using KD techniques, exhibits lower accuracy.

5.4. Ablation Study on Pose Extraction

In skeleton-based approaches, choosing the right pose

estimator is important; consequently, for a real-time sys-

tem, a fast and precise pose estimator is needed. We com-

pare the speed between the two-stage pose estimator HR-

Net [31] that is used in the baseline method [11] and one-

stage YOLOv8-pose as shown in Table 8. Using an one-

stage pose estimator has a faster processing time while also

having a better accuracy.

1Video results available at https://youtu.be/6zWSdxvnigg

2185



Dataset Falling Sit down Stand up Walking Lay down Total

NTU RGB+D [29] 948 948 948 - - 2,844

NW-UCLA [33] - 148 149 173 - 470

URFD [18] 60 - - - - 60

Multicam dataset [5] 200 208 232 264 216 1,120

AI Hub [1] 559 - - 1,178 - 1,737

Total 1,767 1,304 1,329 1,615 216 6,231

Table 5: Source details of the 5 action combined dataset.

Action Recognition Pose Estimator Human Pose Accuracy Parameters Action Proc. Time

Model Model Dataset (%) (M) (milliseconds)

PoseConv3D [11] HRNet [31] COCO-pose only [22] 88.06 2.0 392.50

PoseConv3D [11] YOLOv8-pose Augmented Pose Dataset 98.26 2.0 392.50

Ours YOLOv8-pose Augmented Pose Dataset 97.93 0.5 40.00

Table 6: Comparison of results on the 5 action combined dataset. The first row represents the baseline method with its own

pipeline. It involves extracting the dataset using Faster-RCNN [30] as the detector and HRNet [31] as the pose estimator.

Both are trained on the COCO-person dataset [22]. In the second row, the baseline method is trained with our pipeline, which

utilizes YOLOv8-pose trained on our augmented human pose dataset.

Model Accuracy Parameters (M) Avg. FPS

Teacher 97.93 0.5 26.40

Student 87.67 0.1 29.23

Knowledge
89.59 0.1 31.40

Distillation

Table 7: Comparison of knowledge distillation on the 5 ac-

tion combined dataset.

6. Limitations
There are a couple of limitations of this work. First,

the speed of is directly affected by the number of persons

present in the frames, which leads to slower processing time

with an increasing number of individuals. Second, although

our network performs well for small classes, it may be un-

suitable for systems with a higher number of classes.

7. Conclusion
In this paper, we developed a solution to the limitations

of existing skeleton-based action recognition for detecting

falling motion in real-time. In addition to the newly aug-

mented human pose dataset, we proposed a skeleton-based

3D-CNN lightweight network with less parameters. On top

of those, we developed an efficient real-time multi-person

fall detection and activity recognition system. The result

showed significantly improved performance in terms of ac-

curacy and speed.

Model
Person Pose

Total
Detection Estimator

Faster-RCNN + HRNet 66.7 87.0 153.7

YOLOv8-pose - 20.0 20.0

Table 8: Pose estimator speed comparison (in microsec-

onds).

Future work includes implementing the proposed system

on the actual embedded platform for practical application.

Due to the difference between the development environ-

ment and GPU on desktop computers and embedded plat-

forms, a lot of engineering tasks are expected to be com-

pleted to make this happen.
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