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Abstract

This paper addresses the challenge of Anomaly detection
(AD) in images by proposing a novel dimensionality reduc-
tion technique using pre-trained convolutional neural net-
work (CNN) with EfficientNet model. We introduce two tree
search methods with a greedy strategy for improved eigen-
component selection. We conducted three experiments to
evaluate our approach: examining components choice on
test set performance when intentionally overfitting, training
on one anomaly type and testing on others, and examin-
ing training with a minimal image set based on anomaly
types. Unlike traditional methods that emphasize variance,
our focus is on maximizing performance and understanding
component behavior in diverse settings. Results show our
technique outperforms both Principal Component Analysis
(PCA) and Negated PCA (NPCA), suggesting a promising
advancement in AD efficiency and effectiveness.

1. Introduction
Anomaly detection (AD) is a challenging task in ma-

chine learning with a wide range of applications, from fraud

detection in financial transactions to fault diagnosis in in-

dustrial systems. In recent years, deep learning approaches

have shown promising results in detecting anomalies from

images, particularly using pre-trained convolutional neural

networks (CNNs). However, one of the key challenges is

that CNNs can produce a large number of features, which

can lead to computational challenges, and the presence

of redundant information may not contribute the detection

task.

This work focuses on dimensionality reduction using

a multivariate Gaussian (MVG) model trained on image

features extracted from a pre-trained CNN, as proposed

in [12], on the well-established MVTec Anomaly Detec-

∗ Equal Contribution.

tion (MVTec-AD) dataset [2, 1]. Specifically, our inves-

tigation focuses on the potential of using eigendecompo-

sition combined with Sequential-Feature-Selection (SFS)

[6], employing a greedy tree search approach to choose

eigencomponents from the covariance matrix of a Gaus-

sian model. We introduce two types of eigencomponent

selection, namely Bottom-Up and Top-Down. The Bottom-

Up approach gradually adds eigencomponents that yield the

best performance, while the Top-Down approach gradually

removes eigencomponents that impact it negatively.

We test our algorithm on a hypothetical setting where

the eigencomponent selection has access to the test set of

anomalies, revealing that it is possible to significantly boost

a model’s performance with an embedding space surpris-

ingly small, thus unveiling substantial redundancy in the

pre-trained feature spaces. In contrast, generalization is not

easily achievable even in scenarios where the performance

improvement is seemingly easy.

Our contribution highlights the importance of dimen-

sionality reduction, and our proposed approach shows a

promising alternative to traditional dimensionality reduc-

tion techniques in the field of AD.

2. Methods

We build on top of Gaussian-AD [13]: a multivariate

Gaussian (MVG)-based model is built and a Greedy Eigen-

component Selection (GreedyES) is applied to directly op-

timize the AD performance. We show that this problem is

equivalent to applying Sequential-Feature-Selection (SFS)

[6] on the space of feature vectors transformed by a whiten-

ing operation, which we introduce as an intermediate step

in [13] to simplify the eigencomponent selection.

2.1. Multivariate Gaussian (MVG)

A data point I ∈ R
n is passed as an input to a backbone

neural network f ; then, global average pooling is applied to

the activations from its node N – the term “node”, instead

of “layer”, is used to match the concept of node as “a block

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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of layers” as in pytorch. This referred to as “feature ex-

tractor” fN : Rn → R
d, where d is the number of channels

outputted from N and x = fN (I) is a feature vector.

Assuming that the feature vectors extracted from a set

of normal data points Itrain follow an MVG distribution

N (μ,Σ), with mean μ and covariance matrix Σ, anoma-

lous data points are likely to lie far away from the mean of

this distribution, where the notion of distance is measured

with the Mahalanobis distance:

DM (x) =
√
(x− μ)TΣ−1(x− μ) (1)

Using the feature vectors Xtrain = { fN (I) | I ∈ Itrain },

the empirical mean vector μ̂ ∈ R
d is fitted with the Maxi-

mum Likelihood Estimator (MLE) μ̂ = 1
|Xtrain|

∑
x∈Xtrain

x,

and the empirical covariance matrix Σ̂ ∈ R
d×d is fitted us-

ing LeDoit-Wolf’s method [9]. This estimator ensures a

positive definite inverse covariance matrix Σ̂−1 by adding

a regularization term to the MLE while automatically se-

lecting the optimal regularization parameter based on the

number of observations and features in the dataset, achiev-

ing a balance between bias and variance.

At inference time, the parameters μ̂ and Σ̂ are plugged

into Equation 1, the Mahalanobis distance DM (·) is used

as anomaly score (higher means “more anomalous”), and

a binary decision (“is the image normal or anomalous?”) is

made based on a threshold. As further explained in Sec. 4.3,

a threshold selection-free performance metric is used in this

work, therefore we do not focus on the threshold-setting as-

pect.

2.2. Whitening

As Σ̂ is a real symmetric matrix, it can be decomposed as

Σ̂ = QΛQT , where Q is an orthogonal matrix with column

qi being the i-th eigenvector of Σ̂, and Λ is the diagonal ma-

trix with the element Λii = λi being the i-th eigenvalue of

Σ̂. Since the regularization of Σ̂ ensures that its eigenval-

ues are real and positive, the whitening matrix Λ−
1
2QT –

inverse square root taken elementwise since Λ is diagonal –

can be used to build white feature vectors

R
d � w(x) =

(
Λ−

1
2QT

)
(x− μ̂) , (2)

and Equation 1 can be computed as its Euclidean norm

DM (x) = ‖w(fN (I)) ‖2 (3)

(details in Appendix A).

2.3. Greedy Eigencomponent Selection (GreedyES)

Notice that the entry wi (the i-th entry of the white vec-

tor w) corresponds to the projection of the centered feature

vector (x − μ̂) onto the eigenvector qi (scaled by λ
− 1

2
i ), so

applying feature selection on w is equivalent to choosing

Figure 1: Greedy Bottom Up algorithm as tree search. Start-

ing with an empty set, the algorithm iteratively adds the

component with the best performance (function g) when

combined withe the current selection until it reaches the size

k. The red path represents the chosen path at each step.

eigencomponents from the set Q = {q1, . . . , qd} (eigenval-

ues omitted for simplicity). Consider Qk ⊆ Q, such that

|Qk| = k, and g, a performance metric (higher is better).

Our framework consists of finding the optimal subset

Q∗k = argmax
Qk⊆Q

g(Qk) (4)

that maximizes the performance metric g – which is chosen

to be the Area Under the Receiver Operating Characteristic

curve (AUROC) (details in Sec. 4.3).

Equation 4 is a combinatorial problem with a search

space of size d-choose-k. To make this problem amenable,

we propose to approximate it with a greedy algorithm anal-

ogous to Sequential-Feature-Selection (SFS) [6] iteratively

building Q∗k one eigencomponent at a time while locally op-

timizing g. In the space of white vectors w, our approach is

indeed an SFS, but we coin it “Greedy Eigencomponent Se-

lection (GreedyES)” to remind it is equivalent to truncating

the eigendecomposition of Σ̂−1 to k components.

GreedyES can be carried out in two ways: starting with

an empty set then adding them one by one, which we call

the “Bottom-Up” variant (i.e. Forward-SFS, Algorithm 1,

illustrated in Fig. 1), or starting with the set of all eigen-

components then removing them one by one, which we call

the “Top-Down” variant (i.e. Backward-SFS, Algorithm 2).

Note that Equation 2 makes it simple to simulate Q′ ⊆ Q
by choosing the entries from w (details in Appendix A).

3. Related Work
Gaussian-AD [13] originally used Principal Component

Analysis (PCA) to truncate Σ̂ (i.e. dimensionality reduc-

tion in the feature space of w) and introduced Negated PCA
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Algorithm 1 Greedy Bottom Up

Require: d = |Q| > 0 and 1 ≤ k ≤ d
1: procedure GREEDYBOTTOMUP(Q, k, g)

2: Qin ← ∅ # set of eigenvectors IN the model

3: Qout ← Q # set of eigenvectors OUT of the model

4: while |Qin| < k do
5: q∗ ← argmaxq∈Qout g

(
Qin ∪ {q})

6: Qin ← Qin ∪ {q∗}
7: Qout ← Qout \ {q∗}

(NPCA). While the former retains the k eigencomponents qi
from Σ̂ with the largest variance λ2

i (a.k.a. principal com-

ponents), the latter retains those with the smallest λ2
i . Using

our formulation, NPCA with k dimensions corresponds to

truncating w to w1:k = (w1, . . . , wk)
T

, and PCA corre-

sponds to wd−k+1:d. Deep Feature Selection [10] general-

ized the notion of decomposing w based on λ2
i by defining

the subvectors1w1:m2
, wm2:m1

, and wm1:d, where m1 and

m2 are breakpoints heuristically computed based on λ2
i .

In the Gaussian-AD framework, authors of [12, 13] em-

ployed various EfficientNet models, whereas in our work

we used EfficientNetB0. For comparative purposes, we il-

lustrate the results of a different backbone EfficientNetB4

(see Sec. C) presented in the mentioned papers and refer to

the framework as Gaussian AD* to mark the use of a differ-

ent backbone.

Other pixel-wise MVG-based works have used other di-

mension reductions. Patch Distribution Modeling Frame-

work (PaDiM) [4] uses a random feature selection directly

on the feature space of x = f(I) (notation is imprecise

but the models are, indeed, conceptually analogous). Semi-

orthogonal [8] generalized this idea using random orthogo-

nal projection matrices – the former can be seen as a special

case of the latter by using only binary entries. These two

strategies provide faster training because they do not require

decomposing Σ̂, and they correspond, in fact, to using a ran-

dom matrix as the left operand in Equation 2 – and so can

(N)PCA, by zeroing the first or last rows of that matrix.

We propose a more general framework where the choice

of wi is unrestricted and, therefore, untangled from the no-

tion of variance (λ2
i ) inherited from PCA. Besides, the hy-

perparameter k, commonly expressed by the ratio of re-

tained variance
(∑

λ∈Λ′ λ2
)
/
(∑

λ∈Λ λ2
)
, where Λ′ ⊆

Λ = {λ1, . . . , λd}, has been given little attention to in

these previous works – [7] proposed alternatives to select

k with un/semi-supervised heuristics. In contrast, our ex-

periments thoroughly consider all the possible values of

k ∈ {1, . . . , d} for (N)PCA and GreedyES.

Our results show that the constraints imposed by

(N)PCA (first or last eigencomponents) largely inhibit the

1[10] terms “subspaces”, but we extrapolate the idea with our notation.

Algorithm 2 Greedy Top Down

Require: d = |Q| > 0 and 1 ≤ k ≤ d
1: procedure GREEDYTOPDOWN(Q, k, g)

2: Qin ← Q # set of eigenvectors IN the model

3: Qout ← ∅ # set of eigenvectors OUT of the model

4: while |Qin| > k do
5: q∗ ← argmaxq∈Qin g

(
Qin \ {q})

6: Qin ← Qin \ {q∗}
7: Qout ← Qout ∪ {q∗}

full potential of dimensionality reduction; while Semi-

orthogonal [8] theorizes that the smallest eigenvalues yield

optimal AD performance, our results contradict this as-

sumption, suggesting the variance-performance entangle-

ment is spurious – thus we recommend that dimensionality

reduction should not be indexed by the retained variance.

Finally, it is worth noting that PatchCore [14] – formerly

State of the art (SOTA) on MVTec-AD (see Sec. 4.1 and

Sec. C) – also uses random linear projections as an interme-

diate step to reduce the execution time of the coreset algo-

rithm. However, as the reduced memory bank comes out of

it, the dimension reduction is not further used, which could

be a research direction to be explored in future work.

GreedyES should not be confused with Incremental PCA

(IPCA). While IPCA is useful for reducing computational

complexity in processing large datasets, our approach is de-

signed to excel at highlighting anomalous images by select-

ing eigencomponents of Σ̂ (all of them are computed).

4. Experimental setup

We establish a general setup to study GreedyES then use

three different data splits (Sec. 4.4) for the execution and

evaluation, which change the meaning of the results, so dis-

cussions are presented separately.

GreedyES is analyzed across the major nodes of an Effi-

cientNet backbone and across all categories in MVTec-AD.

In a given scenario (fixed category and node), all the pos-

sible values of k ∈ {1 , . . . , d} are evaluated using both

greedy modes (Bottom-Up and Top-Down), and results are

plotted as k-vs-AUROC curves, with the reduced number

of dimensions k on the X-axis and its respective AUROC

on the evaluation data set on the Y-axis. Note that the base-

line (no dimensionality reduction) corresponds to the right-

most point on these curves (k = d). The graphs from all

scenarios are documented in the Appendix, while we show

representative cases in the main text.

Our setup does not focus on model selection, but on ob-

serving the behavior of GreedyES across scenarios, so the

reader is encouraged to see the Appendices. For instance,

we do not seek to answer “Which is the best node?” – it has

been observed [13, 10, 4, 14] that mid-depth (nor shallow-
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est nor deepest) nodes tend to yield best performance – our

results, however, contradict this observation. Considering

multiple backbone nodes, which are independent Gaussian-

AD models, provides insights about the backbone itself.

Similarly, we do not show cross-category average perfor-

mance, but rather per-category performances because they

are all independent AD tasks. While the former provides a

literature-comparable summary metric, our focus is to iden-

tify phenomena that generalize across different data.

4.1. Dataset

We use the MVTec Anomaly Detection (MVTec-AD)

dataset [2, 1]. It comprises 15 categories with 3629 nor-

mal images for training and 1725 images for testing. Each

category is used independently as 15 independent datasets,

with its training set containing only defectless (normal) im-

ages , while its test set contains both normal and anomalous

images, which are from a variety of defects, such as surface

scratches, dents, distorted or missing object parts, etc (de-

tails in Table 1 in the Appendix J). The defects were manu-

ally generated to produce realistic anomalies as they would

occur in real-world industrial inspection scenarios. Image

samples are deliberately not shown for the sake of space2.

4.2. Feature extractor

Like DFS [10], EfficientNet [15] is used as backbone

for the feature extraction. Specifically, we use Efficient-

NetB0 pre-trained on classification on ImageNet3. We

analyze the nine main nodes from EfficientNetB0, which

are sequentially named from “f0” to “f8”4(short for

“features.N”, which is torchvision’s notation for Effi-

cientNet’s major nodes). The vectors’ size d usually ranges

from 10s to 100s, reaching up to ∼1000 in the deepest node

(f8). Our backbone choice is mostly based on previous

works (for comparability) and due to EfficientNets having

many (nine) major nodes, so the transition from shallow to

deep nodes is smoother than, for instance, ResNet [11].

4.3. Performance Metric

We use the Area Under the Receiver Operating Charac-

teristic curve (AUROC) [5] both as the g function and as

evaluation metric. The AUROC score is a widely used met-

ric for AD and conveniently threshold selection-free, un-

like binary classification metrics like the accuracy. It mea-

sures the probability that the anomaly score assigned to an

anomalous instance is higher than that assigned to a normal

instance. An AUROC of 0.5 indicates random guessing, and

an AUROC of 1 indicates perfect discrimination.

In practice, using the True Positive Rate (TPR) and the

False Positive Rate (FPR) as functions of the threshold T ,

2Examples can be found at www.mvtec.com.
3EfficientNet B0 Weights.IMAGENET1K V1 from torchvision.
4Other authors have named them from 1 to 9.

AUROC =

∫ 1

0

tpr(fpr−1(x)) dx , (5)

where fpr : T �→ FPR and tpr : T �→ TPR. Other per-

formance metrics have been omitted for the sake of clarity

since, as shown in the results, models with 100% AUROC

score (i.e. perfect discrimination) can be achieved.

4.4. Data split

Let Wtest = {w(fN (I)) | I ∈ Itest } be the set of white

vectors (Equation 2) from the test set Itest from MVTec-AD

– not the set used for evaluation! While the train set is fully

(and only) used to compute μ̂ and Σ̂, the set Itest is further

split in two: Wgreedy and Weval. The set Wgreedy is used to

execute GreedyES, in the function g (Algorithms 1 and 2),

and the set Weval is used to evaluate the models (reported

values in the results). Note that AUROC requires Wgreedy

and Weval to contain both normal and anomalous instances.

A fully unsupervised scenario assumes no access to anoma-

lous samples, but our focus is to gain insights into the MVG

model.

5. Experiment 1: test set overfit
5.1. Experiment 1 Setup

We set Wgreedy = Weval = Wtest, which is an inten-

tional overfit of the evaluation set. The goal here is not to

learn, but rather analyze the potential missed by (N)PCA

due to its constraints related to the eigencomponents’ vari-

ances λ2
i . Despite this setup being unrealistic, it is useful for

diagnostic purpose because one can measure GreedyES’s

potential compared to PCA, NPCA [12], and DFS [10].

Furthermore, additional analyses also reveal interesting in-

sights into the feature extractor itself.

In Experiment 2 (Sec. 6) and Experiment 3 (Sec. 7),

Wgreedy and Weval do not have anomalous images in com-

mon so the generalization power of our proposed frame-

work can be compared to the achievable performances re-

vealed by Experiment 1. In particular, we focus Experiment

2 and Experiment 3 on the nodes from f5 up to f8 because

they can reach 100% AUROC and show more stable behav-

ior.

5.2. Experiment 1 Results

Fig. 2 shows a selection of k-vs-AUROC curves from

representative cases in Experiment 1 – all scenarios are doc-

umented in Fig. 6 (Appendix B). GreedyES (Bottom-Up

and Top-Down) is compared with PCA and NPCA. Notice

that at the point where k = d (i.e. no dimension reduction)

all the lines merge because they simplify to the same model.

Fig. 3 shows a summary plot with the node index on the

X-axis and the best AUROC achieved by that node on the

Y-axis – each graph corresponds to picking a row (category)
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(a) { bottle, cable } × { f1, f2 }

(b) { pill, screw } × { f6, f7 }

Figure 2: Experiment 1: selection of representative k-vs-

AUROC curves. All scenarios in Fig. 6 (Appendix B).

from Fig. 6 (Appendix B) and extracting the maximum AU-

ROC for each curve. Only Bottom-Up is shown because it

shares similar results with the Top-Down. Additionally, we

compare it with the results achieved in [10]5. Since [10]

proposes several subspace decompositions (i.e. several di-

5We thank the authors for having shared their results data with us.

mension reductions), we selected the alternative “[Φ2,Φ3]”
– which is equivalent to NPCA with a heuristic choice of

k – because it achieves the best results in most scenarios.

We also show the results when no dimension reduction is

applied. This helps us grasp how this “ideal” GreedyES

compares to others.

5.3. Experiment 1 Discussion

Our analysis suggests that it is possible to (sometimes

greatly) enhance the performance of the MVG model by

cherry-picking eigencomponents from Σ̂ – it is Further-

more, we find that deeper layers require fewer components

to achieve high-performance (details in Appendix G).

Most scenarios using Bottom-Up exhibit a monotonic in-

crease in performance until reaching a saturation level, after

which they exhibit diminishing performance. This behav-

ior is further analyzed in Appendix F, where we split the

k-vs-AUROC curves in three regimes (i.e. “phases”): rise,

plateau, and drop. Some scenarios, however, show an edge

case behavior with a rise followed directly by a drop of per-

formance (e.g. categories “metal nut”, “pill”, and “screw”

with f8, and category grid with the last four nodes).

It’s clear that (N)PCA – even at optimal k – are gen-

erally much bellow the achievable performance demon-

strated by GreedyES (see Fig. 2). High performance can

be achieved using only 30-40 components, and even nearly-

perfect class discrimination (100% AUROC) with less than

ten components (see categories “bottle”, “carpet”, “hazel-

nut”, “leather”, “toothbrush”, “tile”, “wood” in the Ap-

pendix F). In other words, it is possible to encode the nor-

mality of a semantic class in very small embeddings (com-

pared to d), underscoring the importance of dimension re-

duction for deep layers of the network, where the number

of dimensions can be substantial (100s or even 1000s).

Fig. 3 shows that – except for category “grid” – deeper

layers tend to be more informative for AD than shallower

ones, being capable of achieving perfect score (or very close

to it). This finding contradicts previous conclusions be-

cause, when using (N)PCA or no dimension reduction, the

deepest layers tend to show a drop in performance (e.g. cate-

gories “capsule”, “pill”, “screw”, “toothbrush”), which was

believed to be due to a bias towards the pre-training task.

Bottom-Up vs. Top-Down Bottom-Up and Top-Down,

behave similarly in most scenarios. However, Bottom-Up

tends to achieve better results with longer plateaus, there-

fore successfully avoiding spurious eigencomponents. Fi-

nally, some exceptional cases were observed and pointed

out in Appendix B.

5.4. Additional analyses

Experiment 1 shows that the features learned by the

CNN f can be used to build surprisingly small (yet effec-
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Figure 3: Experiment 1: best AUROC out of all values of k per node. The curve ”phi23” refers to the results from [10] with

the alternative ”[Φ2,Φ3]”.

tive) embeddings to detect anomalies in images. In Fig. 2b,

for example, GreedyES reaches 100% AUROC with < 30
eigencomponents out of ∼ 300 while the best (N)PCA

reaches < 85% AUROC. Therefore, more detailed analy-

ses of this experiment are presented in Appendix H and in

Appendix I.

The ratio of retained variance(∑
λ∈Λ′ λ2

)
/
(∑

λ∈Λ λ2
)
, where Λ′ ⊆ Λ =

{λ1, . . . , λd}, in an (N)PCA-decomposed subspace is

commonly used as a reference signal for the dimension

reduction parametrization, but Appendix H reveals that

there is no connection between eigencomponent-wise

variance λ2
i and its AD suitability. Otherwise said, the

eigencomponents with the largest or smallest variance do

not discriminate normal from anomalous data better than

one another, contradicting the core premise of (N)PCA.

Appendix I shows two simulations investigating the na-

ture of the three regimes observed with the Bottom-Up al-

gorithm: rise, plateau, drop (details in Appendix F). Re-

sults suggest that the eigencomponents in the plateau are

redundant with the most useful ones, and eigencomponents

in the drop regime have spurious features provoking a per-

formance to drop faster than noise, so they likely assign

higher activations to normal images (the opposite of what

is expected), which has also been observed in [3].

These analyses explain why (N)PCA require a larger k
to achieve their best score and it is yet systematically lower

than GreedyES’s: the constraint imposed to select eigen-

components based on their variance results in selecting spu-

rious ones from the drop regime (Appendix F). On the other

hand, NPCA consistently outperforms PCA, suggesting in-

deed some – as we show, not-enough – correlation between

eigencomponent variance and AD performance.

6. Experiment 2: per anomaly type

6.1. Experiment 2 Setup

Experiment 2 consists of segregating the anomaly types

in Wgreedy and Weval. Unlike the Experiments 1 and 3, here

the candidates are ranked (function g) based on a single

anomaly type. The evaluation, however, encompasses all

the other anomaly types, while both Wgreedy and Weval use

all the normal images from the test set. This experiment

enables us to assess how well GreedyES generalizes from

a single anomaly type, providing insights into its ability to

extrapolate the learned patterns.

4115



6.2. Experiment 2 Results

(a) capsule, f6

(b) wood, f7

Figure 4: Experiment 2: selection of representative k-vs-

AUROC curves. All scenarios in Fig. 9 (Appendix D).

Fig. 4 shows a selection of k-vs-AUROC curves from

representative cases in Experiment 2 – all scenarios are doc-

umented in Fig. 9 (Appendix D). All the data splits for

a given category (named after the anomaly type used in

Wgreedy) are compared with the respective curve from Ex-

periment 1 – note that each curve has a different Weval. The

results from nodes from f0 up to f4 have been omitted be-

cause their achievable performances (see Experiment 1 in

Sec. 5) are generally worse.

6.3. Experiment 2 Discussion

In Fig. 4a, we observe that Experiment 1 outperforms

all the curves based on a single anomaly type in both modes

(Bottom-Up and Top-Down). In other words, the GreedyES

struggles to generalize well to unseen anomalies. Besides,

its adaptability across diverse categories lacks consistency.

While Experiment 1 shows it is possible to obtain a per-

fect classifier with less than 30 eigencomponents – and

adding up to other 70 eigencomponents does not hurt the

performance – none of the single-anomaly-type runs were

capable of ever reaching such performance. As shown in

Appendix D, most scenarios have this behavior with more

or less cross-anomaly type variability (e.g. category “cap-

sule” has a stronger dependency on the anomaly type than

the category “cable”).

Fig. 4b shows a more stable behavior in the sense that

all the anomaly types have nearly the same curve. Still,

GreedyES runs in Experiment 2 are comparable and more

often better than (N)PCA, which comes without surprise

due to the supervision used in the former. However, even

in such cases, it generally fails to achieve the same level of

performance seen in Experiment 1.

Bottom-Up vs. Top-Down Bottom-Up often reaches bet-

ter maximum performance with lower k, while Top-Down

is more stable at keeping the baseline performance (no di-

mension reduction) and shows a less variable behavior. Cat-

egories “carpet” and “zipper” (node f7 in particular) are

good examples of such contrast. Other examples include

categories “hazelnut”, “leather”, “transistor”, and “wood”.

7. Experiment 3: fixed number of images
7.1. Experiment 3 Setup

Instead of basing the choice of components on the whole

test set (Experiment 1) or on a single anomaly type (Exper-

iment 2), we now randomly select images from all anomaly

types given a fixed minimum number of anomalous images

in Wgreedy. The data split is repeated with 5 seeds such that

Wgreedy has at least 15 anomalous images (equal number of

images per anomaly type) and the remaining anomalous im-

ages go to Weval; both Wgreedy and Weval use all the normal

images from Wtest. More details in Table 1 in Appendix J.

7.2. Experiment 3 Results

Fig. 5 shows a selection of k-vs-AUROC curves from

representative cases in Experiment 3 – all scenarios are doc-

umented in Fig. 10 (Appendix E). Each curve corresponds

to a seed, and their cross-seed mean curve and the curve

from Experiment 1 are plotted together for reference. The

results from nodes from f0 up to f4 have been omitted be-

cause their achievable performances (see Experiment 1 in

Sec. 5) are generally worse.

7.3. Experiment 3 Discussion

Compared to Experiment 2, Experiment 3 shows slightly

better results with less variance across runs of a same sce-

nario, which is expected because Wgreedy is not biased to-

wards a single anomaly type – two counter examples are

worth noting: categories “pill” and “transistor”. Still, a sim-

ilar pattern often arises: while the curve from Experiment 1

reaches 100% AUROC, the others fail to avoid bad compo-

nents.

Fig. 5b shows a noticeable pattern in Experiment 3.

While Experiment 1 reveals a rather important margin for

improvement (relative to the baseline without dimension re-

duction), the ability to generalize with reduced amount of

data is very limited, and the discrepancy is usually bigger
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(a) capsule, f8

(b) metal nut, f7

Figure 5: Experiment 3: selection of representative k-vs-

AUROC curves. All scenarios in Fig. 10 (Appendix E).

for with the Bottom-Up mode. Again, the GreedyES fails

to avoid bad components, although performances are gen-

erally better than (N)PCA, which (again) is not surprising

because the latter have no supervision at all. Other no-

ticeable examples include categories “capsule”, “carpet”,

“metal nut”, “pill”, and “screw”.

Fig. 5a shows an encouraging example where the

Bottom-Up approach is more successful. Most runs

achieved substantial performance improvement relative to

the baseline (no dimension reduction) with low variability.

Category “carpet” with node f6 and category “leather” with

node f5 also represent well such behavior.

In cases where the baseline typically has more than 95%,

this is often the case as well. Although the relative improve-

ment is not as prominent (baseline is already high), the di-

mensionality reduction – at nearly-constant performance –

is considerable, revealing that removing just the redundancy

is easier. Some examples include categories “cable” and

“zipper” with nodes from f6 to f8, and categories “carpet”

and “hazelnut” with node f8.

Bottom-Up vs. Top-Down The same pattern observed in

Experiment 2 is seen here: Bottom-Up is more embedding-

size-efficient, while Top-Down manages to only keep the

baseline performance (no dimension reduction). In Exper-

iment 3, however, the two modes do not differ as much,

making the Top-Down a safer choice. Examples of this can

be seen in categories “capsule” and “hazelnut” (nodes from

f6 to f8).

8. Conclusion
The paper presents three experiments evaluating a novel

dimension reduction strategy for Anomaly detection (AD)

combining multivariate Gaussian (MVG)-based models

with eigendecomposition of the covariance matrix and a

greedy tree search algorithm.

The first experiment intentionally overfits the test set, re-

vealing it is possible to achieves higher performance with

smaller embeddings than previous approaches like Princi-

pal Component Analysis (PCA) and Negated PCA (NPCA).

However, the second and third experiments, exploring its

generalization capacity, reveal that the algorithm struggles

to generalize well, and identifying spurious discrimina-

tory features remains challenging. We hypothesize that the

struggles observed in Experiment 2 and Experiment 3 can

be mitigated by using a different criteria to select eigencom-

ponents (i.e. a different g in Sec. 2) as in [7].

Our analysis shows contradictions with previous the-

ories; in particular, it was observed that the per-

eigencomponent variance (λ2
i ) does not correlate with its

suitability for anomaly detection. Finally, it must be noted

that our conclusions are limited to EfficientNet – although

experiments were carried over multiple datasets and nodes

– and future work could explore more recent architectures

like ResNext [16].
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