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Abstract

Right for the right reasons (RRR) methods have been
proposed to mitigate the issues of shortcut learning in deep
learning models. During training, these methods guide the
models to learn patterns from signal information while ig-
noring noisy features. This work investigates the robustness
of image classification models to background sensitivity, re-
ferring to a model’s capability to accurately classify an im-
age without leveraging the shortcut learning between the
image background and the assigned input label. We pro-
pose a new approach, the Right for the Right Reasons Data
Augmentation (RRDA). This approach augments the image
foreground context with the context extracted from different
images, thereby stimulating the model to focus on signal
features rather than the context. Our experiments demon-
strate that RRDA can significantly improve the robustness
of image classification models, outperforming other RRR
methods, such as GradMask and ActDiff. We also evaluate
the impact of architectural choice on robustness, showing
that ViT is more robust than ResNet in handling background
sensitivity. Finally, we perform an interpretability analysis
to understand how models assign importance to signal and
context features during the inference process. This involves
computing the signal-to-noise ratio as the importance of the
signal divided by the importance of the context. Contrary to
our expectations, our findings suggest that a high signal-to-
noise ratio does not necessarily imply robustness. However,
they indicate that applying RRDA can help the models learn
to focus on signal features, leading to more interpretable
and robust models.

1. Introduction
Deep learning (DL) models have become state-of-

the-art in tasks such as natural language [10] and image

understanding [26]. However, the acceptance of these

models in high-stakes domain applications (e.g., healthcare

and legal systems) has been limited due to their lack of

interpretability and their bias towards spurious signals [7].
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Figure 1. Example of image classification failures. Debugging

DL models is important to diagnose model failures and help un-

derstand model decisions. Several works explore deep learning

model decisions with different types of input information. For ex-

ample, situation 1) shows that the model fails to classify a cow
when it is present on a background different than usual. In situa-

tion 2), a bullfrog is misclassified as a fox squirrel and a highway

as a dam. Unlike the first two examples, situation 3) presents an

example of an adversarial attack, demonstrating that after adding

noise to the input, the model fails drastically, even though it made

the correct decision on the original image. Situation 4) shows that

the model fails to classify an image correctly while maintaining

the same background but changing the object position. The main

figures of the plots were obtained from [14, 1, 9].

Investigations to understand the decisions of DL models

have uncovered several situations in which DL models can

fail. For instance, Szegedy et al. (2013) [23] found counter-

intuitive properties of DL models, demonstrating that the

addition of minimal noise to the model input can lead the

model to change its decision to an incorrect prediction. This

failure is known as an Adversarial Attack. While this ex-

poses potential issues with the robustness of DL models,

existing literature counters this criticism by arguing that the

data used in these attacks is artificially generated and falls

out-of-distribution. Despite these counterarguments, sev-

eral works demonstrate that DL models can fail drastically

even when dealing with natural images (Figure 1).

These cases suggest that DL models may make decisions
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Figure 2. a) Pipeline of Edge Analysis. Given an input image of class y, we first conduct an edge analysis that erases the image edge

of width W . We then compute the model’s inference to produce a triplet consisting of the model name, class, and predicted class. This

edge analysis is computed for all seven models, using an edge width ranging from 5 to 50 pixels. b) Results Obtained from Edge
Dependence Analysis. The results are grouped by dataset, namely ImageNet9 and Rival10. For each dataset, each column represents a

different challenge arranged in a sequence of increasing difficulty, starting with the original data and ending with the original data whose

background is from the next class. Within each column, each cell represents the accuracy obtained for a specific edge size, starting from 5

and ending at 50.

based on incorrect information, such as background infor-

mation or spurious correlations between contextual features

and the input label. As such, we need robust models that

make inferences based on the correct information, such

as signal features or information relevant to the problem

being solved. Several recent works have proposed new loss

functions to guide the model to focus on signal features

[17, 18, 24, 21, 16, 6], thereby using signal information

instead of contextual information in the inference process.

These methods are referred to in the literature as Right for

the Right Reasons (RRR). These loss functions generally

use second-order gradient optimization [5] and incorporate

a right reasons factor into the loss function. The right

reasons factor encourage the model to use the signal

information in decision-making. Equation 1 presents a

generic loss function for RRR training. This generic loss

function consists of a Right answer factor to guide the

model to decide correctly and a Right reason factor to

instruct the model to focus on signal information. The

terms λ1 and λ2 are parameters to weigh the contributions

of both factors, where λ1 + λ2 does not necessarily sum up

to 1.

L(θ,X, y,A) = λ1Right answer(θ,X, y)

+λ2Right reason(θ,X, y,A).
(1)

Though RRR has shown promising results, these meth-

ods have not been evaluated on a large-scale benchmark and

generally use interpretability methods in the Right reason
term, making them vulnerable to interpretability fairness. In

this work, we take a data-centric approach, and instead of

changing how the model learns, we alter the data it learns

from. We propose the Right Reasons Data Augmentation

concept, which aims to augment input data context infor-

mation with real, class-different context information. We

hypothesize that if the model learns to classify the same

signal with different contextual information, it will focus

on the signal rather than the context and will be invariant to

contextual features instead of deciding based on them.
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2. Related works

2.1. Interpretability

Velez and Kim define interpretability in machine learn-

ing systems as the ability to explain or present in under-

standable terms to a human [3]. However, due to the high-

dimensional nature and large number of composite layers

in deep learning, interpreting its decisions can be challeng-

ing. Several methods have been proposed to mitigate this

issue. One of the first methods proposed to obtain model

interpretability was Saliency [20]. Given an input vector

x, model f , and a class of interest c, it computes inter-

pretability (also known as attribution maps) through the

gradient of the class output with respect to the input vec-

tor (i.e., ∇fc(x)). GradCam [19] differs from Saliency by

computing interpretability maps through the partial deriva-

tives of the model output with respect to specific layer fea-

ture maps (∂y
c

Ak ). It then computes each feature map im-

portance αk by summing its derivatives and computing a

general weight sum using αk as the weight for feature map

k. Afterward, GradCam applies the ReLU [13] function on

the weight sum result to produce the model interpretability.

Although Saliency and GradCam strive to produce model

interpretability maps, they have received criticism for their

formalism. To mitigate the lack of formalism from inter-

pretability methods, Sundararajan et al. (2017) [22] pro-

posed the Integrated Gradients (IG) method using an ax-

iomatic approach. Given an input vector x, a baseline vector

x
′
, and a model f , IG computes f decision interpretability

by cumulating the gradient of all points on the straight line

between x and x
′
.

2.2. Right for the Right Reasons Approach

Deep learning models can identify patterns even when

dataset labels are shuffled [27]. These models typically

have many layers and employ non-linear activation func-

tions, making the interpretability of their decision-making

process hard. The interpretability methods discussed so

far have demonstrated how to acquire model interpretabil-

ity and highlight important and non-important features used

during model inference. After obtaining the model’s inter-

pretability, we can verify whether the model uses the same

features that a domain specialist would. This verification

could reveal a scenario where the model makes the correct

decision by relying on context or spurious features, which a

domain specialist would not use. Right for the Right Rea-

sons (RRR) methods aim to mitigate this issue by optimiz-

ing the model during its learning process to ignore non-

important features, thereby focusing on signal features.

As far as we know, Right for the Right Reasons [17]

is the first method proposing a unique loss function that

compels the model to ignore non-important features in

the input vector, thus making the model RRR. Equations

2-3 present the RRR optimization loss. Given an input

vector x, target class c, and a binary mask indicating the

non-important (1) and important features (0), the RRR loss

function computes the standard crossentropy and adds

a right reasons factor (RRF) to penalize the importance

of non-important features. The RRF is created by the

weighted sum between binary mask A and the partial

derivatives of log output with respect to input vector x.

As A only has 1 in non-important features, the model will

learn to assign less importance to these features.

Lc = −
C∑

c=1

yclog(ŷc); (2)

Lrrr(θ,X, y,A) = Lc + λ1(Ad · ∂

∂xd

C∑

c=1

log(ŷc))
2

+λ2

∑

i

θ2i .

(3)

While RRR compels each output category to use less

information on non-important features, it does not consider

the relationship between different categories’ outputs.

GradMask [21], presented in equation 4, proposes a distinct

loss function for the model to learn the difference between

the outputs of two distinct categories due to important

features rather than non-important ones. To learn this,

its RRF computes the partial derivatives of the difference

between two categories’ output concerning input vector x,

multiplies it by A segmentation mask, and thus adds the

non-important feature importance as well as a loss signal.

L = Lc + ‖∂‖ŷ1 − ŷ0‖
∂x

·A‖. (4)

RRR and GradMask use second-order derivatives to

compel the model to ignore non-important input features.

This operation is costly since it requires two backward

passes in the model. Furthermore, forcing the model to

have a zero value in some gradient positions does not

guarantee that this feature is not important. It can be

a minimum, maximum, or saddle point. ActDiff [24]

proposes a different approach by optimizing the model to

produce the same features representation when the input

has only important features and when it includes both

important and non-important features, as shown in equation

5. Given an input vector x and fl as the sub-model with

the first l feature layers, ActDiff compels the model to

learn the same representation for the input vector with only

important features (i.e., x � (1 − A)) and the input vector

with all features (i.e., x).

L = Lc + λact‖fl(x� (1−A))− fl(x)‖2. (5)

In general, the right for the right reasons method pro-

poses a novel loss function by adding a right reasons factor

to the standard loss function. However, an analysis of its
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right reasons factor reveals that minimizing it does not en-

sure that the model will be fair and robust. For instance,

with ActDiff, the model may learn to produce a low-norm

representation vector, making the right reasons factor small

enough not to impact the loss, while in RRR and GradMask,

producing low sensitivity (derivatives close to zero) does

not guarantee that it does not impact the model decision.

3. Right for the Right Reasons - A Data-
Centric Perspective

Right for the Right Reasons (RRR) is a property of

models relating to their robustness, fairness, and reliability.

RRR models are trained to extract pertinent patterns from

the input signal and make inferences based on meaningful

signals rather than spurious correlations. According to the

Cambridge Dictionary, context is the situation within which

something exists or happens, and that can help explain it1.

Thus, context should not be the primary focus, but rather

it should assist in understanding the primary focus. Issues

with data can lead models to learn shortcuts from context in-

formation [7], correlating context information with the in-

put label and resulting in an unfair model. Several works

[17, 18, 21, 16, 6, 24] propose new optimization loss func-

tions for the model to learn to ignore non-signal informa-

tion. Consequently, after the training process, models will

learn to extract patterns related to the signal. In this work,

we take a different approach by proposing a data-centric

perspective to achieve RRR. We argue that if a model is

trained on Right Reasons Data (RRD), it will inherently be

RRR. In the following sections, we present the concept of

Right for the Right Reasons Data (RRRD) and discuss how

to transform raw data into right reasons data.

RRRD assumes an input data vector x =
[x1, x2, . . . , xn] that comprises both class-informative

(signal) and context-informative features. We argue that
if, after training a model f with a dataset D, it correlates
a set of context-informative features C with label y, this
is likely because D is context-biased, and the context C
only appears in input samples with label y. Therefore, D
cannot be considered an RRRD dataset because its context

information alone is enough for the model to discrimi-

nate between samples. Next, we present the definitions

necessary to understand this concept. These definitions

assume the existence of an oracle O that is robust, fair, and

trustworthy.

Definition 3.1 Given an input vector I of category c, a
subset of features, denoted as IC, is defined as ’class-
informative’ if it is sufficient for the model O to classify I
as category c.

1https://dictionary.cambridge.org/us/dictionary/english/context

Definition 3.2 Given an input vector I of category c, a
subset of features, denoted as C, is defined as ’context-
informative’ if its intersection with IC is empty, and it is
insufficient on its own for the model O to classify I as cate-
gory c.

Definitions 3.1 and 3.2 provide clarity on what we con-

sider class-informative and context-informative features.

Moreover, these definitions imply that IC and C are disjoint

sets, and their union constitutes the complete input vector.

3.1. Right Reasons Data Augmentation

This section discusses the issue of models learning pat-

terns from context rather than signal when the data corre-

lates context and label. We propose a solution through a

data augmentation method named Right Reasons Data Aug-

mentation (RRDA). It aims to transfer context information

between data samples, encouraging the model to utilize sig-

nal information for discrimination, thereby enhancing fair-

ness and robustness. Figure 3 presents a sample of RRDA

performed on a batch of images. Algorithm 1 provides a

pseudo-code illustrating of its generic implementation.

In
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Figure 3. Example of RRDA performing data augmentation on
a batch of 8 input images. Each column represents an input im-

age. The first row shows the original input batch, and the second

row shows the output obtained from the RRDA algorithm.

Given a batch of samples X , labels y, and a binary con-

text information mask CI , the RRDA algorithm 1 iterates

over each batch sample (Line 4) and selects a random one to

replace its context information (Lines 5-7). It then adds the

new samples and their respective labels to a new batch list

(Lines 8-11). The primary objective of the RRDA algorithm

is to embody the idea of context shift in a generic manner.

For simplicity, it presumes the data is structured, and all

context and class-informative features are in the same posi-

tion for all samples. Therefore, when computing new left
(Line 6), we insert zeros in X[left] context and add the

context information from X[right]. This process may not

apply to unstructured data (e.g., images and text) because

context and signal positions often vary for each sample in

the dataset. Consequently, specific implementation for each

domain must address this issue.

4. Experiments and Results
Evaluating RRR is challenging as it requires a task with

both signal and context information. Additionally, data ma-

nipulation and the creation of new data are necessary for as-
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Algorithm 1 RRDA algorithm

1: procedure RRDA(X, y, CI) � Compute RRDA for a

batch X

2: rrda batch ← []
3: for left ≤ len(X) do
4: right ← random(len(X))
5: new left ← (1 − CI[left]) � X[left] +

X[right]� CI[right]
6: new right ← (1 − CI[right]) � X[right] +

X[left]� CI[left] � Replace context between two

samples.

7: rrda batch.append((new left, y[left]))
8: rrda batch.append((new right, y[right]))
9: end for

10: return rrda batch � The RRDA new batch and

labels

11: end procedure

sessing the model’s robustness in the face of context shifts,

thereby extending beyond the typical test accuracy evalu-

ation. Background sensitivity serves as a task for evaluat-

ing the impact of image backgrounds on object recognition

models. We used this task to evaluate RRR methods and the

proposed RRDA. If the model can ignore the background

information and exhibit robustness to context shifts, it indi-

cates a focus on the signal information. This aligns with the

requirements and scope of this work.

4.1. Datasets

To evaluate background sensitivity, we need datasets

with image labels and object segmentation. Therefore, we

utilize the ImageNet-9 [25] challenge, which is specific to

background robustness, and construct a similar background

challenge with RIVAL10 [12].

ImageNet-9 (IN-9) [25] is a dataset designed for evalu-

ating background sensitivity in object recognition. It is a

subset of ImageNet [2] and consists of nine classes, each

containing 5.045 training and 450 testing images. The im-

age bounding box annotations, crucial for evaluating back-

ground sensitivity, are not abundant for each category in the

original ImageNet split. Consequently, the authors of IN-

9 grouped the ImageNet categories according to their an-

cestors in the WordNet [11] hierarchy. In addition to the

raw images from ImageNet, IN-9 includes seven synthetic

dataset variations intended to assess the background sensi-

tivity of image classification models. These variations result

from the processing of foreground or background elements

in the original dataset. Figure 4 provides a visual example

of each dataset variation.

RIVAL10 [12], a subset of ImageNet aligning with

the CIFAR10 dataset classes and comprising roughly 26k

images, also offers object segmentation for each image

and comprehensive attribution annotation for each object.

To verify the generalization of our proposal, we employ

the full object segmentation from RIVAL10 to generate

the mixed-same, mixed-rand, mixed-next, and only-fg

variations.

Figure 4. ImageNet-9 challenges. The top row displays samples

of challenges that alter the foreground information, while the bot-

tom row introduces the challenges that modify the background in-

formation. The original challenge includes images with neither

foreground nor background information changes. In the Original’

scenario, the original background of the image is used. BG’ refers

to the background, and FG’ to the image foreground. In the Mixed

Same’ scenario, the background is swapped with the background

of another image belonging to the same class. In the Mixed Rand’

scenario, the background is swapped with the background of an-

other image from a different random class. In the Mixed Next’

scenario, the background is swapped with one of another image

belonging to the next class, i.e., if the class index for the image is

2, then we swap backgrounds with an image from class 7.

4.2. Background Challenge Results

Table 1 presents the results from the Background chal-

lenge. The orig. column displays the results obtained from

the original test split. All models achieve an accuracy above

90%, except for ViT with RRR, which does not generalize

well on the RIVAL10 dataset. The BG-Gap column rep-

resents the difference between the mixed rand and mixed

same results, indicating the variation in model accuracy

when evaluated with biased (i.e., a background of the same

class) and unbiased backgrounds. Therefore, a lower BG-

Gap reflects a more robust model capable of handling back-

grounds from different categories. It is important to high-

light that the BG-Gap should be analyzed jointly with orig-

inal accuracy because a perfect model (i.e., 100% on mixed

rand and same) and a random model (i.e., 10% accuracy on

mixed rand and same) will have BG-Gap equal to zero. The

results suggest that not all RRR methods are robust to back-

ground sensitivity, as evidenced by the BG-Gap from Grad-

Mask, ADA, and RRR being worse than Standard training

with the ResNet architecture on IN-9. Furthermore, the best

BG-Gap on both datasets was achieved by the ViT trained

with Standard+RRDA.

Does Robustness Depend on Dataset Characteristics?
The results reveal a significant difference between the accu-
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Table 1. Challenge results. The table organizes the results by dataset, with each row representing an evaluation. The columns ’Architec-

ture’ and ’Method’ represent the architecture and training method used. The ’ImageNet-9’ and ’RIVAL-10’ columns represent the results

for the model trained with each respective dataset. The ’Orig.’, ’Mixed same’, ’Mixed rand’, and ’Mixed next’ columns represent the

accuracy results for each challenge, while the ’BG-Gap’ column represents the difference between the ’Mixed rand’ and ’Mixed same’

results.
ImageNet-9 RIVAL10

Architecture Method Mixed Mixed Mixed BG Orig. Mixed Mixed Mixed BG Orig.

same rand next Gap same rand next Gap

ResNet-18 Standard 92.67 82.99 80.22 9.68 96.15 95.01 87.82 88.65 7.19 99.19

ResNet-18 ActDiff 90.27 84.47 83.26 5.80 93.46 94.91 86.55 87.16 8.36 98.77

ResNet-18 GradMask 86.77 76.34 73.43 10.42 90.79 90.65 83.96 84.34 6.69 96.61

ResNet-18 ADA 92.20 81.80 79.28 10.40 96.05 95.20 88.64 89.35 6.55 99.07

ResNet-18 RRR 91.90 82.12 78.77 9.78 95.31 94.82 87.89 88.67 6.92 98.90

ResNet-18 ActDiff 89.56 85.90 84.89 3.65 92.49 96.25 94.57 94.21 1.68 98.52

+ RRDA

ResNet-18 Standard 88.30 83.41 82.37 4.88 90.62 95.38 93.93 93.89 1.46 96.80

+ RRDA

ViT Standard 94.15 86.84 84.69 7.3 98.35 95.31 87.99 88.61 7.32 99.24

ViT ActDiff 95.98 90.27 89.46 5.7 98.99 96.92 92.26 91.47 4.65 99.62

ViT GradMask 93.38 86.52 84.77 6.7 97.04 96.52 90.81 91.09 5.71 99.49

ViT ADA 91.73 81.98 80.12 9.7 97.24 96.27 88.84 90.09 7.45 99.69

ViT RRR 90.42 80.04 78.54 10.4 96.74 53.01 34.09 35.19 18.94 64.76

ViT Standard 97.28 96.00 95.88 1.28 99.06 96.67 96.44 96.48 0.23 97.81

+ RRDA

ViT ActDiff 96.12 93.26 93.04 2.86 98.79 97.69 94.45 94.09 3.24 99.75
+ RRDA

racies on IN-9 and RIVAL, suggesting that specific dataset

features, such as categories, number of classes, image distri-

bution, and the relationship between signal and background,

may considerably impact model robustness.

On the connection between the challenges. Figure S2

present the correlation between the results of the challenges

for each dataset. These results indicate a strong correla-

tion between the Mixed same and Original, as well as be-

tween the Mixed rand and Mixed next scenarios. This result

suggests how the models correlate signal with background

information because mixed same have background informa-

tion from the same categories, and mixed next as well mixed

rand have the background from different classes.

4.3. Analysis of BG-Gap distributions

Is background robustness architecture dependent?
Supervised learning design encompasses three major com-

ponents: the model, the data, and the optimization loss.

Thus far, we have primarily discussed different data and

optimization loss functions to guide the model to adhere

to the Right for the Right Reasons (RRR) principle. We

aim to evaluate the impact of the architectural choice on ro-

bustness. We specifically highlight the difference between

the results of the ResNet and ViT architectures, as shown

in Figure 5a. The figure illustrates that the ViT architec-

ture is more robust than ResNet, achieving a background

gap minimum that is at least twice as low as that of ResNet

on both datasets. Furthermore, both the maximum and me-

dian background gaps of ViT are lower than those of ResNet

[15]. These findings are in line with existing literature,

where authors have argued that ViT exhibits greater robust-

ness than ResNet in terms of image transformations [15].

Does RRDA impact background robustness? Fig-

ure 5b compares the BG-Gap distributions with and with-

out RRDA. It demonstrates a substantial impact of RRDA

on BG-Gap, with high-density values for low BG-Gap ap-

proaching 0. In contrast, the BG-Gap for models without

RRDA is close to 10 for both datasets. Additionally, the

median values exhibit stark differences between the two sit-

uations. These results indicate that architecture design plays

a crucial role in model fairness and robustness. This sug-

gests a new direction for research, focusing on the devel-

opment of ”right for the right reasons” architectures rather

than solely on data and optimization loss functions. Addi-

tionally, the analysis of BG-Gap distributions suggests that

RRDA significantly impacts model background robustness.

Is BG-Gap dependent on original accuracy? Figure

S4 presents the correlation between the BG-Gap metric and

original accuracies. The correlation on RIVAL10 results is

positive, while in ImageNet-9 is negative. Nevertheless, al-

though in both cases the correlation is not strong enough,

these insights could have significant implications for the

training of deep learning models, suggesting that striving
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Figure 5. BG-Gap distributions for different configurations. The

BG-Gap distribution is built from the BG Gap column in Table

1. The a) plot shows the comparison between ResNet and ViT

architectures based on BG-Gap distribution for ImageNet-9 and

RIVAL-10 datasets, while the b) plot compares the BG-Gap when

we use RRDA with when we do not use (i.e., Non-RRDA).

for high accuracy might inadvertently lead to models that

overfit to the background of images and the more robust

model is not necessarily the best in test accuracy.

4.4. Model Dependence on Edge Information

Edge information is vital for image recognition as it rep-

resents boundaries between different pieces of information,

such as the foreground and background. In this section, we

question whether this information is necessary for models to

make correct inferences and how robust they are to changes

in edge information. We create new variations of the origi-

nal IN-9 and RIVAL-10 datasets to perform the edge anal-

ysis by removing edge information with a fixed width W.

As the edge represents the transition between pieces of in-

formation, we occlude parts of the signal and background,

thereby eliminating this transition. Figure 2a) presents an

example of the model dependence on the edge information

pipeline, using an image from the original set and its version

with the edge removed.

We applied edge removal to the IN-9 and RIVAL-10

original sets and all background variations, namely Mixed-

same, Mixed-rand, and Mixed-next, with edge sizes vary-

ing from 5 to 50. It is important to highlight that images

with high-edge sizes almost do not have information, but

these scenarios are important to visualize the tendency of

the results. The results of this analysis are presented in

Figure 2b). These results indicate that edges are essential

for all models across all challenges, as an increase in edge

size corresponds to a decrease in accuracy. Another notable

observation is the relationship between challenge difficulty

and edge dependency. As the difficulty of the challenge in-

creases, the models become more dependent on edge infor-

mation, as indicated by lower accuracy scores. For instance,

focusing on an edge size of five, accuracy decreases in line

with the difficulty level of the challenge.

A significant finding is that models using the RRDA aug-

mentation method exhibit greater robustness to edge infor-

mation compared to the standard and raw RRR methods.

While the standard method with RRDA maintains similar

performance across all challenges, the raw standard method

demonstrates greater robustness when evaluated on the orig-

inal challenge. This suggests that the standard method is

tailored to the original distribution and is dependent on the

background. In general, ActDiff with RRDA augmentation

outperformed other methods, demonstrating consistent ac-

curacy across all challenge variations.

Table 2. Signal Information Results. Comparison of model per-

formance when trained with images containing only foreground

(FG) or background (BG) information.

ImageNet-9 RIVAL10

Arch. Method Only Only Only Only

FG BG FG BG

RN-18 Standard 85.01 32.52 89.50 41.30

RN-18 ActDiff 86.96 16.20 91.01 40.50

RN-18 GradMask 77.24 23.98 85.41 32.50

RN-18 ADA 86.72 31.78 91.01 41.32

RN-18 RRR 86.10 30.32 88.47 39.69

RN-18 ActDiff 85.43 20.79 94.42 29.99

+ RRDA

RN-18 Standard 85.14 22.37 93.97 24.35

+ RRDA

ViT Standard 91.80 42.35 91.43 42.36

ViT ActDiff 95.31 41.04 95.04 44.91

ViT GradMask 90.57 33.63 92.00 45.03

ViT ADA 87.70 36.35 93.95 47.94

ViT RRR 86.12 33.24 37.10 27.87

ViT Standard 97.30 32.74 96.94 16.35

+ RRDA

ViT ActDiff 95.68 44.17 95.65 48.58

+ RRDA

4.5. Dependence of Models on Signal Information

Definitions 3.1 and 3.2 clarify what we consider as class

and context informative features. In the context of an im-

age classification task, with humans acting as a fair oracle,

the object signal is sufficient for us to perform the classi-

fication. In this section, we analyze model accuracy when

presented with either only object signal information or only

background information. Table 2 present the results.

The results demonstrate that high test set accuracy does

not necessarily translate to high accuracy when faced with

only foreground information. All models trained without

RRDA experience a decrease in accuracy of at least 5% (i.e.,

Orig. - Only FG accuracy). However, the ViT model trained
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with Standard + RRDA is the least affected, achieving al-

most the same accuracy with Only FG as with the Origi-

nal test, with this difference being less than 1% on the RI-

VAL10 dataset.

Comparing the results of all ViT models with those of

ResNet models trained with the same method, it is evident

that ViT consistently achieves higher Only FG accuracy.

This reinforces the claim that the choice of architecture is

a fundamental building block in achieving robust models.

Standard

Standard+RRDA

RRR

ADA

ActDiff

ActDiff+RRDA

GradMask

 2 64

M
et

ho
d

105

ImageNet-9
(2021)

RIVAL 10
(2022)

00

Signal-to-noise Signal-to-noise

ResNet
ViT

Figure 6. Analysis of Signal-to-Noise Ratio. For each model and

dataset, we compute the signal-to-noise ratio for each image using

the Saliency interpretability method. We then create a box plot to

display the distribution of these ratios. The left panel presents the

signal-to-noise ratio distributions for the model trained with IN-9,

while the right panel illustrates the scenario with RIVAL 10.

4.6. Interpretability Methods are Fragile

Interpretability methods generate an attribution matrix,

where each input dimension indicates the importance of the

corresponding input feature dimension for the model’s out-

put prediction. These methods enable us to analyze the

difference in feature attribution between a model robust to

background changes and one that is not. To carry out this

analysis, we compute the signal-to-noise ratio (i.e., the ra-

tio between the mean importance of the signal and back-

ground) for each input image in each model and construct

a box plot to analyze the differences between models. Fig-

ure 6 presents the results for the Saliency interpretability

method [20].

The results show that all ViT models exhibit a higher

signal-to-noise ratio than the corresponding ResNet-18

models trained with the same method on IN-9. However,

this pattern does not hold for the RIVAL 10 dataset, under-

scoring once again that dataset characteristics are crucial in

these analyses.

Does high background robustness imply high signal
importance? When analyzing robust models that achieve

high accuracy on only-FG and all mixed challenges, it

might seem natural to expect these models to attribute high

importance to the signal and low importance to the back-

ground (i.e., have a high signal-to-noise ratio). However,

our analysis reveals that this assumption does not always

hold. For example, even one of the less robust models,

ResNet-18+GradMask, exhibits a high signal-to-noise ratio

in RIVAL10. Furthermore, while RRR and GradMask have

higher signal-to-noise ratios than standard+RRDA, they are

less robust. This suggests that methods that learn to at-

tribute low importance to the background (i.e., those with

a high signal-to-noise ratio) are not necessarily the most ro-

bust. These counter-intuitive findings warrant further inves-

tigation, as they raise several research questions regarding

the accuracy of interpretability methods and whether high

signal importance is a cause or a consequence of model ro-

bustness.

5. Conclusion
This work evaluates methods such as Right for the

Right Reasons (RRR), GradMask, ActDiff, and ADA for

their robustness to image background sensitivity using the

ImageNet-9 and RIVAL10 datasets. The results indicate

that these methods struggle to create a robust model that

focuses on signal information rather than context informa-

tion. In response to this, we propose the Right Reasons

Data Augmentation (RRDA) method to guide the training

process to create robust models that prioritize signal over

context information. Remarkably, our results show that

RRDA improves the model performance upon the standard

and ActDiff outcomes.

The vulnerability of RRR, GradMask, and ADA to back-

ground sensitivity is intriguing. To obtain deeper insights,

we conducted an interpretability analysis to understand how

these models attribute importance to different features. We

computed the signal-to-noise ratio to quantify the relation-

ship between signal and context importance. The results

from this analysis, along with the challenges presented by

the ImageNet-9 and RIVAL10 datasets, suggest that having

a high signal-to-noise ratio (i.e., signal features having high

importance) is not necessarily an indicator of model robust-

ness. This helps clarify why RRR and GradMask did not

improve in terms of background sensitivity. Besides, this

raises questions about the fairness of interpretability meth-

ods.
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