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Abstract

Inverse problems in spectral imaging have been ad-
dressed in the state-of-the-art by encoding scenes to al-
leviate the ill-posedness, leveraging the knowledge of the
forward model of the system. Recent studies have demon-
strated that optimizing these coding elements improves the
performance of solving the inverse problem. Specifically,
to include a coding element without sacrificing the light
throughput of the optical system, Diffractive Optical El-
ements (DOEs) have been employed. Recent works have
highlighted the significance of shift-variant systems, which
allows an optimized coding for each spatial portion of the
scene and for each wavelength. With this in mind, this work
proposes a shift-variant optical system using double-phase
coding elements by implementing a double DOE architec-
ture. The results show that using this proposed double-DOE
architecture leads to better results in terms of high-level
tasks, such as spectral image reconstruction and spatial-
spectral super-resolution. Additionally, this work proves the
shift-variant nature of the double-DOE architecture.

1. Introduction

Spectral imaging (SI) combines synergistic spectroscopy

and imaging techniques to acquire high-quality spatial and

spectral information, yielding in a 3D data cube. While

a wide range of research fields have harnessed this type

of data in various applications such as in remote sensing

[13], medical imaging [21], and surveillance [7] among oth-

ers, the acquisition of this type of information is still an

open problem. Traditional SI is based on scanning por-

tions of the spatio-spectral scene in several sensor integra-

tion times [14]. This scanning-based approach yields in

highly time-consumption acquisition, limiting their use in

dynamic scenes [5].

To overcome this limitation, compressive spectral imag-

ing (CSI) methods have been proposed to capture the entire

spatio-spectral cube in single-coded measurements [2, 30].

These methods rely on employing optical coding elements

to modulate the spatial-spectral information and employ a

2D focal plane array (FPA) sensor to integrate the coded in-

cident light. Consequently, an inverse problem is solved to

recover the spectral image. Additionally, several inherent

spectral imaging can be solved by using compressed mea-

surements, such as super-resolution [29], and fusion [27]

among others. Here, the quality of the estimate strongly

depends on both the optical coding system and the decod-

ing algorithms. Tremendous efforts have been made to

develop highly precise reconstruction. For this task, sev-

eral approaches have been proposed, spanning from tradi-

tional model-based convex optimization-based algorithms

[23, 10] to black-box deep learning-based approaches [26,

25] and lastly hybrid model-based data-driven methods in

the form of the so-called unrolling networks [17, 16]. These

last methods are the current state-of-the-art in CSI recovery.

Complementary to algorithmic development, the acqui-

sition system design has also been of great interest. First

CSI optical architectures were based on coded apertures

(CA) to modulate the spatial information and dispersive el-

ements to codify the spectral elements. Some examples of

these types of systems are the coded aperture snapshot spec-

tral imager (CASSI) [28] and dual dispersive architecture

[22] among others. These approaches employ amplitude

codification via the CA which suffers from loss of incident

energy in the sensor producing a lower signal-to-noise ra-

tio. Additionally, the optical architectures are very com-

plex and huge which difficult its implementation. Lately,

phase codification has been explored for CSI, in which a

diffractive optical element (DOE) is employed to modulate

both spatial and spectral information, some examples of the

use of DOEs employ patterns to design the height map, as

in [18] where the proposed approach achieves a PSF that

rotate for each wavelength, and in [6] is used deep neural
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networks to learn the height-maps jointly with the recon-

struction network, to achieve depth-dependent PSF to invert

hyperspectral-depth problems. These systems are modeled

as the convolution between the underlying spectral image

by a wavelength-variant point spread function (PSF), de-

termined by the DOE structure. Thus, these systems over-

come the energy loss issue and also are very compact. Usu-

ally, the DOE’s PSF is spatial shift-invariant increasing the

ill-posedness of the inverse problem. Then, in [4] a shift-

variant DOE-based optical system is proposed by includ-

ing a colored CA (CCA) between the DOE and the sensor.

However, the CCA also reduces the incident light energy.

Therefore, to promote a shift-variant optical system for

CSI, a double DOE codification optical architecture is pro-

posed. We prove that the PSF produced by this system

varies along the spatial and spectral dimensions, yielding

a richer codification. The two DOEs heightmaps are opti-

mized by employing an End-to-End (E2E) optimization ap-

proach [3]. Here the DOEs are parametrized using Zernike

polynomials [24] and we optimize the coefficients of each

polynomial. These coefficients are jointly optimized with

the weights of the deep neural network that performs the

reconstruction of the spectral image as shown in Fig. 2(a).

The employed reconstruction network is based on the un-

rolling algorithm, which induces a better optimization of the

sensing systems since this network depends on the forward

sensing operator. Two recovery problems are evaluated by

using our approach, the first one is recovering high-fidelity

spectral image from the coded measurements and the sec-

ond is a spatial-super resolution problem where the FPA is

assumed to have a high pitch size than the underlying spec-

tral image. We compared the proposed optical system with

a single-DOE-based system (shift-invariant) also trained in

an E2E manner, and a non-data-driven DOE design named

Spiral [18]. We show that our proposed design yields better

reconstruction performance than shift-invariant approaches.

2. Mathematical Model of Double-DOE Archi-
tecture

This section describes the mathematical model of the

double-DOE optical architecture. Fig. 1 shows an illustra-

tion of the proposed system, which is mainly comprised of

two DOEs and an RGB sensor where for two different light

point sources, the response of the system is spatially dif-

ferent resulting in a shift-variant response. The light prop-

agation of DOE-based architectures can be modeled using

mainly three operations; the codification of the wavefront

phase by a DOE, the propagation between optical elements,

and the sensing process given by the RGB sensor. For

this work, the light propagation between optical elements

is modeled via Fresnel propagation [12]. Then, for a inci-

dent wavefront u(x, y, λ) Fresnel propagation operator for

Figure 1. Illustration of the proposed double-DOE architecture ex-

hibiting shift-variant property where for two light sources, the sys-

tem produces different response.

a distance z is defined as

P{u(x, y, λ), z}

=
ejkz

jzλ

∫∫
u(x, y, λ)e

jk
2z ((x

′−x̄)2+(y′−y)2) dx dy.
(1)

The Eq. (1) can be rewritten using the convolution operator

as

P{u(x, y, λ), z} =
ejkz

jzλ

(
u(x, y, λ) ∗ e jk

2z (x
2+y2)

)
. (2)

Then, the effect of a DOE, with a height map h(x′′, y′′)
and a diffractive index Δnλ

, is modeled as φ(x′′, y′′, λ) =

e
j2πΔnλ

h(x′′,y′′)
λ .

Following the propagation and DOE effect operators

single-doe propagation of a wavefront u0(x̄, ȳ, λ) to a dis-

tance z1 is modeled as:

u1(x
′′, y′′, λ) = P{u0(x̄, ȳ, λ), z1}. (3)

where u1(x
′′, y′′, λ) is the wavefront before the coding ef-

fect of the DOE. Then, propagating the encoded wavefront

with the effect of the DOE to the sensor, a new wavefront is

obtained:

u2(x
′, y′, λ) = P{φ1(x

′′, y′′, λ)u1(x
′′, y′′, λ), z2}. (4)

On the other hand, to describe a double-DOE architecture,

as shown in Fig. 1, the single-DOE model is employed by

adding a second DOE and another propagation to the sen-

sor. The double phase encoded wavefront propagated to the

sensor is modeled as:

u3(x, y, λ) = P{φ2(x
′, y′, λ)u2(x

′, y′, λ), z3} (5)

The advantage of double-phase coding is summarized in

the following lemma.

Lemma 1 Let û0(x̄, ȳ, λ) = u0(x̄ − a, ȳ − b, λ) be the
source incident wavefront and the respective output of the
double phase coding system û3(x, y, λ), and u3(x, y, λ) the
output for u0(x̄, ȳ, λ). Then, given that the û3(x, y, λ) �=
u3(x−a, y−b, λ), it is possible to conclude that the double-
phase codification system is shift-variant.
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Proof: The proof is contained in the supplementary mate-

rial.

In this work, the sensor effect is considered for two

cases; the first one is when the sensor pitch is equal to the

desired image pitch. The second one is when the pitch size

is bigger yielding low-resolution measurements. Remark-

ing that in both cases is employed an RGB sensor to capture

the spectral information.

2.1. Sensing process of spectral imaging

Considering u3(x, y, λ) the wavefront that arrives at a

high-resolution spatial sensor with M × N pixels with a

pitch of Δ, the discrete measurement in RGB can be defined

as

G(m,n, c) ∝∫ (n+1)Δ

(n)Δ

∫ (m+1)

(m)Δ

∫
λ

κc(λ)|u3(x, y, λ)|dλdxdy,
(6)

where n ∈ {0, ..., N − 1} , m ∈ {0, ...,M − 1} and κc(λ)
is the wavelength sensitivity per channel c of the sensor.

2.2. Sensing process of low-spatial resolution spec-
tral imaging

Considering a low-resolution spatial sensor with L×K
pixels, where L < M and K < N , and a low-resolution

pitch of Δ̂, such that Δ̂ >> Δ, the discrete measurement

in RGB can be defined as

GLR(k, l, c) ∝∫ (l+1)Δ̂

(l)Δ̂

∫ (k+1)Δ̂

(k)Δ̂

∫
λ

κc(λ) |u3(x, y, λ)| dλdxdy,
(7)

where l ∈ {0, ..., L−1} , and k ∈ {0, ...,K−1} and κc(λ)
is the wavelength sensitivity per channel c of the sensor.

3. Data Driven Optical Design
We propose to optimize the height maps of the two DOEs

along with the reconstruction algorithm as shown in Fig. 2.

First, we parametrize both height maps H1 and H2 via the

Zernike polynomials basis. This is suitable parametriza-

tion since every element of the basis models a given opti-

cal aberration. Here, the coefficients of each term are the

trainable parameter. Consequently, employing the Noll se-

quence [20], Hi, for i = 1, 2 is defined as

Hi =

η∑
k=1

β
(k)
i Z(k) (8)

where η refers to the number of employed Zernike poly-

nomials, βi = [β
(1)
i , . . . , β

(η)
i ] are the coefficients of each

polynomial for the i-th DOE and Z(k) is the k-th Zernike

polynomials.

Then, consider the discrete vectorized spectral image

uMNL where M,N are the spatial dimensions and the L are

the number of spectral bands, the double DOE optical sens-

ing is modeled with the operator AB : RMNL → R
MN3

such that g = AB(u), where B = {β1,β2} and g ∈ R
MN3

are the coded measurements. Then, we aim to optimize

jointly B with a decoding network that solves the inverse

problem Dθ with trainable parameters θ. Consider the spec-

tral image dataset U = {ut}Tt=1, where T is the number of

training examples. We formulate the E2E optimization as

{B̂, θ̂} = argmin
B,θ

1

T

T∑
t=1

Lrec(Dθ(AB(ut)),ut), (9)

where Lrec is the recovery loss function.

3.1. Recovery Unrolling Network

To recover the spectral image from the coded measure-

ments, an unrolling network is employed. This approach

is inspired by traditional convex optimization formulations,

which aim to solve a regularized data fidelity cost function.

Consider the recovery of the t-th spectral image ut from

the measurements gt. The optimization problem to solve

this inverse problem is

ût = argmin
ut

E(ut) + τR(ut) (10)

where E(ut) denotes the data fidelity cost function, τ is a

regularization hyperparameter and R(ut) is the regulariza-

tion function that constrains the search space of the solution

into a feasible set based on prior knowledge of the spectral

image. A common choice for the data fidelity term is the 	2
norm thus, we have that E(ut) =

1
2‖gt−At(ut)‖22. We can

re-formulate the optimization problem in (10) by including

an auxiliary variable vt following a half-quadratic splitting

[11]. This method aims to split the optimization problem

into two subproblems, one related to the data fidelity term

and the other to the prior term. Thus, the (10) is re-written

as

{ût, v̂t} =argmin
ut,vt

1

2
‖gt −At(ut)‖22 + τR(vt)

subject to vt = ut (11)

this constrained optimization problem is cast as a regular-

ized problem as

{ût, v̂t} = argmin
ut,vt

1

2
‖gt −At(ut)‖22 + τR(vt)+

μ‖vt − ut‖22, (12)

where μ is another regularization parameter. Thus, (12) is

solved in an alternating manner between ut and vt itera-

tively from i = 1, . . . , I where I is the number of iterations

v̂
(i+1)
t = argmin

vt

τR(vt) + μ‖vt − u
(i)
t ‖22, (13)
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Shift-Variant
Double-DOE System

Recovery Unrolling
Network

b c
Figure 2. (a) General pipeline of the proposed End-to-End optimization of both heightmaps as coding step and the unrolling algorithm as

decoding step. (b) Parametrization of the height maps as a linear combination of η Zernike polynomials. (c) Unrolling network stage where

in blue are denoted the trainable parameters.

û
(i+1)
t = argmin

ut

1

2
‖gt −At(ut)‖22 + μ‖v̂(i+1)

t − ut‖22.
(14)

The problem (13) is solved via a proximal step into the

function R(·). Traditionally, this regularization function is

hand-crafted and selected by the expertise of the user, how-

ever, this function fails to model the whole structure of the

underlying signal in practical scenarios. Therefore, the un-

rolling algorithms aim to solve (13) via a deep neural net-

work that learns priors from the training dataset denoted by

Wα(i) . Therefore, update of the of the variable vt is

v̂
(i+1)
t = Wαi(û

(i)
t ), (15)

where αi are the trainable parameters. Then, the ut sub-

problem (14) is solved via a gradient descent approach,

yielding

û
(i+1)
t =û

(i)
t − γ(i)

(
−A∗B(gt −AB(û(i)

t ))−

μt(v̂
(i+1)
t − u(i))

)
, (16)

where A∗B is the adjoint operator of the sensing process

and γ(i) is the gradient step size at the ith iteration.. To

model the adjoint sensing operator, a deep neural network

that computes the adjoint mapping is used. This network is

denoted as Hψ where ψ are the trainable weights. Replac-
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Figure 3. Learned Height-maps and point spread functions of the

system in various spatial points of the sensor for spectral imaging

task

ing the expression for v
(i+1)
t , we obtain

û
(i+1)
t =û

(i)
t − γ(i)

(
−Hψ(gt −AB(û(i)

t ))−

μ(i)(Wα(i)(û
(i)
t )− ûi

t)
)
. (17)

This update rule is computed I times. Additionally, the

parameters γ(i) and μ(i) which are usually selected via

trial and error, with the unrolling formulation, these pa-

rameters are also trained. We can express every stage

of the unrolling network as û
(i+1)
t = Dθ(i)(û

(i)
t ) where
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Figure 4. Numerical results over the test dataset for spectral imag-

ing task

θ(i) = {γ(i), α(i), μ(i)} are all the trainable parameters at

each stage. For the initialization of the unrolling algorithm

we employ u
(0)
t = Hψ(gt)

4. Simulations Experiments
To train the end-to-end network, the ARAD dataset was

employed [8], where 900 images were used for training and

50 for testing with 512 × 512 pixel and 31 spectral bands.

The framework was programmed in Tensorflow/Keras [1]

API. For the unrolling network, the proximal step sub-

network Wα(i) chosen was the network proposed in [9]

which is based on a linear mixture model of spectral im-

ages. The optimization problem in (9) was solved using

Adam optimizer [19] with its hyperparameters set as de-

fault for 100 epochs. The learning rate was halved every 50

epochs. To assess performance, two metrics were used: the

peak signal-to-noise ratio (PSNR) and the structural similar-

ity index measure (SSIM) [15]. As loss function Lrec, the

mean squared error was used, additionally, the loss function

was computed at the end of each unrolling stage to improve

the convergence of the network as suggested in [17]. The

number of Zernike polynomials employed to train the DOEs

height maps was set to η = 200. All the simulations were

performed using a Nvidia GPU 3090 with 24 GB memory.

4.1. Application on Spectral Image Reconstruction

For this experiment, the spectral images were cropped to

128x128 pixels with 25 spectral bands for the spectral imag-

ing task. The number of stages employed in the unrolling

network was set to I = 12, some experiments were per-

formed changing the number of stages parameters but after

I = 12 the results did not improve.

The learned height maps for each of the DOE of the

double-DOE architecture are presented in Fig.3, also the

point spread functions, where Xn and Yn with n ∈ [1, 2, 3]
represent different regions of the sensor, are presented,

showing that the system varies in both space and spectrum.

In Fig. 4 can be seen that the proposed double-doe ar-

chitecture beats the state-of-the-art Spiral DOE, and a sin-

gle learnable DOE from the initialization stage to the final

stage, having a gap in performance of up to 3 [dB]. An

analysis of noisy scenarios was made, using signal-to-noise-

ratio (SNR) of 10, 15, 20, 25, and 30 [dB] without retraining

the network weights, the results of the evaluation are shown

in Fig.4 where can be seen that even in low SNR scenar-

ios, the proposal shows comparable results, and in scenar-

ios with high SNR the proposed architecture gain in up to 2

[dB].

The visual results presented in Fig. 5 are a comparison

of two images of the test dataset, the architectures are com-

pared of PSNR and the Spectral Angle Mapper (SAM) of

specific spatial points. Is important to note that a bigger

number in PSNR leads to better reconstruction performance

and, a smaller SAM implies better spectral reconstruction of

signatures. These visual results also show that the Double

DOE architecture leads to reconstruction with fewer arti-

facts and better overall recovery.

4.2. Application on Spatial Super-resolution

In this subsection, the spectral images were kept to

512× 512 and 9 equispaced spectral bands. The downsam-

pled factor was set to 2, i.e. M
L = 2. Due to the high dimen-

sionality of the dataset for this experiment, the number of

stages of the unrolling network was set to I = 3. Learned

height maps for each of the DOE of the double-DOE archi-

tecture are presented in Fig.6, also the point spread func-

tions on various points of the sensor are presented, showing

that the system varies spatially.

In Fig.7 the results in terms of PSNR and SSIM are

shown for both noiseless and noisy scenarios. For the case

of noiseless scenarios, the proposed double-doe architecture

beats the state-of-the-art Spiral DOE, and a single learnable

DOE in all stages, having a gap in performance of up to 3.5

[dB]. In the case of noisy scenarios, the analysis was con-

ducted using SNR of 10, 15, 20, 25, and 30 [dB], and from

Fig.7 b, can be concluded that the gap between double-DOE

and single-DOE architectures in terms of PSNR is reduced

while the SNR increases.

In the visual results presented in Fig. 8 the architec-

tures are compared using PSNR and SAM of specific spatial

points in two images of the test dataset. These visual results

also show that the Double DOE architecture leads to recon-

struction with better spatial definition and spectral recovery.

4161



30.28/0.89326.38/0.70726.22/0.708PSNR/SSIM

GT

Spiral

O
bs

er
va

ti
on

Single DOE Double DOE

O

P

P
gp

O
bs

er
va

ti
on

O

Spiral Single DOE Double DOE

29.57/0.94125.41/0.79725.35/0.793PSNR/SSIM

GT O
bs

er
va

ti
on

P

P

p

O
bs

er
va

ti
on

g

Figure 5. Visual results of two images from the test dataset, comparing measurements, reconstruction, spectral signature, and metrics for

spectral reconstruction.
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Figure 6. Learned Height-maps and point spread functions in RGB

representation of the system in various points of the sensor for

super-resolution task

Figure 7. Numerical results over the test dataset for spatial super-

resolution application

5. Conclusion

A shift-variant double-DoE architecture, suitable for

multiple tasks in spectral images, such as recovery, and

super-resolution has been proposed. This architecture al-

lows high-fidelity spectral image reconstruction and it is

feasible for other high-level tasks, leading to the possi-

bility of spatial-spectral super-resolution images. Simula-

tion results show that the proposed architecture can achieve

better performance in spatial and spectral reconstruction

compared with the shift-invariant DOE-based architectures.

Specifically, the proposed architecture improves the recon-

struction quality by up to 3 [dB].
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