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Abstract

Fast estimates of model uncertainty are required for
many robust robotics applications. Deep Ensembles pro-
vides state of the art uncertainty without requiring Bayesian
methods, but still it is computationally expensive due to the
use of large ensembles. In this paper we propose deep sub-
ensembles, an approximation to deep ensembles where the
core idea is to ensemble only a selection of layers close
to the output, and not the whole model. This is moti-
vated by feature hierarchy learned by convolutional net-
works that should allow for feature reuse across ensembles.
With ResNet-20 on the CIFAR10 dataset, we obtain 1.5-
2.5 speedup over a deep ensemble, with a small increase
in error and loss, and similarly up to 5-15 speedup with a
VGG-like network on the SVHN dataset. Our results show
that this idea enables a trade-off between error and uncer-
tainty quality versus computational performance as a sub-
ensemble effectively works as an approximation of a deep
ensemble.

1. Introduction
Neural networks have revolutionized many fields like

object detection, behavior learning, and natural language

processing. But despite these advances, most neural net-

work models do not produce uncertainty-aware predictions,

only producing a point-wise estimation of the desired out-

put, without confidence intervals or meaningful probabili-

ties that are usable for further decision making.

This means neural network predictions are overconfi-

dent, do not consider epistemic (model) and aleatoric (data)

uncertainty, and are generally not calibrated [3]. Epistemic

uncertainty is particularly of interest, as neural networks

trained on limited datasets are used for high-stakes deci-

sions [12], and this kind of uncertainty can guide further

decision making and prevent wrong decision on overconfi-

dent predictions.

Many applications would benefit from well behaved

probabilistic predictions, particularly in Robotics and Au-

tonomous Driving [22]. One method that is able to produce
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Figure 1: Radar plot comparing sub-ensembles with deep

ensembles in several metrics on SVHN with M = 5. Values

are relative to the best in each metric. Sub-ensembles (SE-)

are faster than deep ensembles (DE) while slightly sacrific-

ing other capabilities like error and calibration, depending

on the number of layers participating in ensembling.

probabilistic predictions is the Bayesian Neural Network

(BNN) [14] [15], in which weights are modeled as distri-

butions instead of point estimates, allowing uncertainty in

the weights to propagate through the model, and producing

calibrated output probabilities and confidence intervals. But

inference on BNNs is generally untractable, so approxima-

tions are used.

Many methods exist to augment neural networks with

epistemic uncertainty that work as approximate BNN infer-

ence, for example MC-Dropout [2], MC-DropConnect [16],

and Deep Ensembles [9]. In particular the latter method is a

good candidate for many applications due to simplicity and

uncertainty quality. For robotics applications, fast (close

to real-time) estimates of uncertainty are highly desirable

[22]. While Deep Ensembles are state of the art in many

tasks, the use of ensembling is problematic for inference in

resource constrained applications, as the computation time

scales linearly with the number of ensemble members, lim-

iting its use in practical applications.

In this paper we propose an approximation to deep en-

sembles. By only ensembling part of the model, while

sharing a common network trunk, we show that an en-

semble model still produces high quality uncertainty esti-

mates, allowing a much faster inference time since a single

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Conceptual comparison of Deep Ensembles and Sub-Ensembles with n ensemble members. The figure shows

that in the latter, only a single trunk network Tf is shared across all ensemble members, while in the former multiple trunk

networks Ti are used. K represents task networks that are ensembled with n members. In both cases the ensemble predictions

are combined to produce outputs with uncertainty.

pass is required for a large trunk network, and several for-

ward passes for smaller task networks to produce an output,

which should improve overall performance. We expect that

ensembling less layers than the full model should behave as

an approximation to the true ensemble, enabling a trade-off

between computational resources and error and uncertainty

quality (see Figure 1).

The contributions of this paper are: We propose deep

sub-ensembles as a simplification of deep ensembles. We

evaluate sub-ensembles for regression and classification

tasks, and we show that a deep sub-ensemble works as

an approximation of a full deep ensemble. Sub-ensembles

require significantly less computational resources (1.5x -

5.0x) to produce predictions, while still having good epis-

temic uncertainty quantification properties, allowing for a

trade-off between computation and uncertainty quality.

2. Related Work
There are many methods to model output uncertainty in

machine learning. One possible categorization is defined by

scalability, where some methods can scale to large datasets

and networks, while other methods have convergence is-

sues. Three methods are considered scalable in this context

[4] and are of interest for our applications.

[2] proposed that test-time Dropout is an approximation

to the BNN posterior, enabling scalable uncertainty estima-

tion in deep neural networks, with applications to computer

vision [6] and others. This method is generally called MC-

Dropout.

A similar approximation using DropConnect has been

proposed by [16], where DropConnect is used instead of

Dropout, and the authors show that it outperforms MC-

Dropout in terms of error and out of distribution detection.

Analogously, this method is called MC-DropConnect.

Deep Ensembles [9] is a non-Bayesian method that is the

base for our proposed deep sub-ensembles method. It has

been shown that an ensemble of models can produce good

estimates of uncertainty, even surpassing MC Dropout, and

is also applicable to complex computer vision tasks like

segmentation and depth regression [4], and object detection

[21].

There are some similar ideas to sub-ensembles in the lit-

erature. [18] have used multiple output heads to estimate

a distribution of Q-values for exploration in reinforcement

learning, which models uncertainty in the Q-values and al-

lows for a more thorough exploration. Unlike Deep En-

sembles, this method uses bootstrapping to train Deep Q-

Networks.

EnsembleNet [13] is a method proposed to train a multi-

head model in an end-to-end way using novel terms added

to the loss function. This method has the aim of learning

new heads efficiently, but the authors only evaluate 2-3 ad-

ditional heads with some architectural surgery, and do not

evaluate prediction uncertainty.

A network using M Heads is proposed by [11]. This is

similar in concept to our proposed sub-ensembles, but there

are some scientific flaws that deserve consideration. Lee et

al. only evaluates 4-5 ensemble members, and only ana-

lyzes accuracy, without consideration to uncertainty quan-

tification. We evaluate many aspects of uncertainty, includ-

ing calibration, out of distribution detection, intra-ensemble

correlation, and computational performance.

Overall scalable methods are able to produce good un-

certainty estimates, but this comes at a high computational

cost. This work explores the direction of trading uncertainty

quality with computational performance gains. Our main

argument is that a sub-ensemble works as a principled ap-

proximation to a full ensemble, with a user-configurable pa-

rameter that allows for trading error and uncertainty quality

versus the computational load required to evaluate the sub-
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ensemble.

3. Deep Sub-Ensembles as Approximation to
Deep Ensembles

Training and performing inference in a Deep Ensemble

is computationally expensive. We consider that a neural

network architecture can be logically divided [19] into two

sub-networks, the trunk network T , and the task network

K. The full architecture output for an input x ∈ Rn is then

K(T (x)). This concept is shown in Figure 2.

This is motivated by the fact that deep neural networks

naturally learn a feature hierarchy, where feature complex-

ity increases with depth, and the last layers perform a task

(classification or regression). We hypothesize that it is not

necessary to ensemble all layers, as the trunk network will

learn similar features across ensemble members, with the

task network having a larger contribution to uncertainty.

A Deep Sub-Ensemble conceptually corresponds to

training one instance of the full network K(T (x)) in a train-

ing set, then fixing the trunk network weights (Tf ), and

training additional instances of the model where only the

task weights are learned. An overview of the training and

inference process is shown in Algorithm 1. Each combina-

tion of fixed trunk and trainable task network is trained on

the same full dataset.

We note that it is possible to conceptually define ensem-

bles and sub-ensembles that are trained end-to-end, by us-

ing a single loss over the combines predictions, but this has

disadvantages in terms of predictive power. Preliminary ex-

periments indicate that the ensembling property of increas-

ing performance with more ensembles does not happen with

end-to-end ensembles and sub-ensembles, only producing

similar results, so we did not explore this option further, as

the objective of this paper is to improve the computational

performance of ensembles and trade-off with predictive per-

formance, not improve training performance per se.

The purpose of this method is to allow the construction

of an ensemble that contains a common trunk network Tf ,

and several instances of the task networks K to build a

sub-ensemble1 E = {Ki | i = 0...M}, making the ensem-

ble computationally less expensive to evaluate at inference

time, as generally the trunk network contains more com-

putation than the task networks, and the trunk network is

evaluated once. We now describe how to train and com-

bine ensemble members into an output predictive distribu-

tion pe(y |x). We denote ensemble members predictions

with the i subindex (e.g. pi(x)), and M is the number of

ensemble members.

Classification. Uncertainty in this task is represented

through a categorical distribution over classes. Each ensem-

1A sub-ensemble is composed of a trunk network Tf and the set of task

networks E.

Algorithm 1 Training and Inference process for Deep Sub-

Ensembles
1: Input: Training set D, Trunk and Task models T and

K, number of ensemble members M .

2: Output: Trained trunk network Tf and set of ensemble

members E.

3: Stack the trunk and task model T -K and train an initial

instance of it on D.

4: Freeze weights of the initially trained instance of T ,

producing Tf

5: Set ensemble E = {K} with the initially trained in-

stance of K
6: for i = 1 to i = M − 1 do
7: Stack Tf and a randomly initialized instance of K

and train it on D. Note that features produced by Tf

might be cached for shorter training time.

8: E = E ∪{K} (Add task network K to ensemble E)

9: end for
10: Ensemble predictions can now be made by evaluating

Tf with an input image, then evaluating each ensemble

member K ∈ E given the output of Tf , and combining

the predictions.

ble member predicts a set of probabilities p(y |x) which are

then averaged as:

pe(y |x) = M−1
∑

i

pi(y |x).

For training, a standard cross-entropy loss is used.

Regression. Here each ensemble member outputs a

Gaussian distribution, which is parameterized as a mean

μi(x) and variance σ2
i (x), corresponding to one output

head each. The combined ensemble output is then a Gaus-

sian mixture model, with all distributions equally weighted,

which can be approximately computed as:

fpe(y |x) ∼ N (μ∗(x), σ2
∗(x))

μ∗(x) = M−1
∑

i

μi(x)

σ2
∗(x) = M−1

∑

i

(σ2
i (x) + μ2

i (x))− μ2
∗(x)

Regression requires a different loss, as supervision is avail-

able for μi(x), but not for σ2
i (x). A heteroscedastic Gaus-

sian log-likelihood loss [9] [6] is used for this purpose:

− log p(yn|xn) =
log σ2

i (xn)

2
+

(μi(xn)− yn)
2

2σ2
i (xn)

With this loss, the output variance σ2
i (x) can be interpreted

as an estimate of the aleatoric uncertainty in the data, while

epistemic uncertainty is obtained through ensembling, and

is present in σ2
∗(x).
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Figure 3: Comparison between ensembles and sub-ensembles in a toy regression problem. The shaded areas represent one-

σ confidence intervals. Dotted lines indicate the training set limits. True mean, predicted mean, and predicted standard

deviation are presented.

We now proceed to experimentally evaluate our pro-

posed method. We use the notation SE-m to denote a spe-

cific sub-ensemble network configuration, where m denotes

how many layers/blocks counted from the output layer par-

ticipate in ensembling (the task layers K), while the re-

maining layers are shared across all ensemble members (the

trunk layers Tf ).

4. Results in Toy Regression
We first showcase our method with a toy regression prob-

lem, as an easily understandable example. We draw sam-

ples from f(x) = sin(x) + ε, where ε ∼ N (0, σ(x))
and σ(x) = 0.15(1 + e−1)−1. We define a training set

where x ∈ [−π, π], and an independent test set where

x ∈ [−2π,−π]∪[π, 2π]. We use a three layer network, with

64 neurons per layers and ReLU activation. We define sub-

ensembles consisting of a task networks with one and two

layers, denoted SE-1 and SE-2 correspondingly. We test

three different number of ensembles M ∈ [1, 5, 15], which

should produce variations in model uncertainty. A plot of

the predictions is shown in Figure 3, while the training and

testing set samples are shown in Figure 9, and numerical

comparisons in Tables 2 (in the supplementary).

Our results in Figure 3 show that sub-ensembles produce

similar uncertainty compared to a deep ensemble, with in-

creasing out of distribution uncertainty for testing samples,

and a good estimation of the aleatoric uncertainty in the

training data.

As expected, we see that uncertainty quality (as mea-

sured by the negative log-likelihood2) degrades as less lay-

ers are ensembled, for example when comparing SE-2 and

SE-1.

5. Results in Image Classification

We evaluate our proposed method in three datasets for

image classification: MNIST, CIFAR10, and SVHN. For

MNIST [10], we use a simple batch normalized CNN con-

sisting of a 32 3 × 3 convolution, followed by 64 3 × 3
convolution, and a fully connected layer with 128 neurons

and an output fully connected layer with 10 neurons and a

softmax activation. All layers use ReLU activations. We se-

lect two sets of task networks for ensembling, the first uses

the last two fully connected layers (denominated SE-1), and

the second task network uses the three last layers (2 FC and

one Conv, denominated SE-2). These results are shown in

Figure 4a.

For CIFAR10 [8], we use ResNet-20 [5] with random

shifts and horizontal flips as data augmentation. We de-

fine a set of two task networks, the first containing the clas-

2NLL’s measure fit to a probability distribution which is a proxy for

error and uncertainty quality.
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Figure 4: Results on MNIST (with a simple CNN) and CI-

FAR10 (with ResNet-20), showing error and negative log-

likelihood as the number of ensembles is varied

sification layers and the last ResNet stack (with 64 filters

and stride S = 2, denominated SE-1), and a second task

network containing the previously defined network plus the

second from last ResNet stack (with 32 filters and S = 2,

denominated SE-2). These results are shown in Figure 4b.

Finally, for SVHN [17] we use a batch normalized VGG-

like network [20], with modules defined as two convolu-

tional layers with the same number of filters and ReLU ac-

tivation, and one 2 × 2 max pooling layer. The network is

composed of modules with 32, 64, 128, and 128 filters, and

followed by a fully connected layer of 128 neurons, and a fi-

nal output layer with 10 neurons and softmax activation. We

define a set of four task networks that we evaluate, namely

taking the classification layers, and going from these layers

backwards through the network modules, denominated as

SE-1 to SE-4. These results are shown in Figure 5.

Overall we used Adam [7] with a learning rate α = 0.01
and trained models until convergence. Detailed architec-

tures and training details are available in the supplementary

material.

5.1. Error and Uncertainty Quality

For all datasets we evaluate both the classification er-

ror, and the negative log-likelihood (NLL). For SVHN we

additionally evaluate the calibration curve in the Section

5.3. We compare our proposed method (called Deep Sub-

Ensembles, SE) with Deep Ensembles [9] (DE) as a base-

line, as the number of ensemble members is varied, from 1

to 15 ensemble members and task networks.

We also consider two additional baselines for error and

negative log-likelihood on SVHN and CIFAR10: MC-

DE SE-1 SE-2 SE-3 SE-4 D DC

5 10 15

4

5

6

7

Ensembles (M )

E
rr

o
r

(%
)

5 10 15

0.4

0.6

Ensembles (

M )

N
L

L

(a) Error and Negative Log-Likelihood (NLL) as the number of

ensembles is varied

Figure 5: Results on SVHN using a batch normalized VGG-

like network

Dropout [2] (Denoted by D) and MC-DropConnect [

16]
(Denoted by DC). These baselines are selected to check if

deep sub-ensembles is worse than other scalable uncertainty

methods. We found there is a considerable variation in er-

ror and NLL in terms of the drop probability p with these

methods, so we tune p for each method independently by

minimizing error. Tuning results are available in the sup-

plementary material.

On MNIST as shown in Figure 4a, ensembling two lay-

ers of the model (SE-2) has error comparable with Deep

Ensembles, but only ensembling the fully connected layers

(SE-1) produces a higher error. The uncertainty as mea-

sured by the negative log-likelihood is comparable in all

three scenarios, indicating the preliminary viability of our

idea.

On CIFAR-10 (Figure 4b), error increases by around

2%
with a sub-ensemble when compared to Deep Ensembles,

and the increase of NLL is minor, specially when ensem-

bling two sets of layers (SE-2). Sub-ensembles also out-

performs MC-Dropout and MC-DropConnect in both error

and negative log-likelihood, indicating that it is a high qual-

ity approximation of a deep ensemble.

Finally on SVHN (Figure 5 ), there is a more marked

difference in increasing error as less layers are ensem-

bled. From SE-2 there is a clear improvement on nega-

tive log-likelihood, being very similar to the deep ensem-

bles baseline from the SE-3 configuration. In terms of er-

ror, sub-ensembles outperforms both MC-Dropout and MC-

DropConnect, while configuration SE-2 outperforms MC-

Dropout but not DropConnect, while configurations with

more ensembled layers (SE-3 and SE-4) do outperform

MC-DropConnect by a small margin.

Overall our results show that Deep Sub-Ensembles is in

all cases an approximation to Deep Ensembles, with always

having higher error, but negative log-likelihood can be sim-

ilar, depending on how many layers are ensembled. This

is expected as ensembling less layers than the full model

should behave as an approximation to the true ensemble,
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Sub-Ensembles (SE-1) Deep Ensembles

M AUC Mean Entropy AUC Mean Entropy

ID OOD ID OOD

1 0.655 0.051 0.195 0.787 0.054 0.281

5 0.957 0.043 0.867 0.986 0.112 1.325

10 0.971 0.042 0.986 0.994 0.125 1.589

15 0.973 0.040 1.009 0.996 0.130 1.665

Table 1: Numerical results for OOD detection on SVHN-

CIFAR10. ID/OOD Entropy corresponds to sample means.

enabling a trade-off between computational resources and

error and uncertainty quality.

5.2. Out of Distribution Detection - SVHN vs CI-
FAR10

We have also evaluated the out of distribution detection

(OOD) capabilities of Deep Sub-Ensembles. For this we

used the ensemble model trained on SVHN, and evaluated

on the CIFAR10 test set for ODD examples, and in the

SVHN test set for in-distribution (ID) examples, as both are

color image datasets, the image sizes are compatible (both

are 32× 32), and there are no classes in common.

To decide if an example is out of distribution, we use the

entropy H(x) of the ensemble probabilities pe(y |x):
H(x) = −

∑

c∈C
pe(yc |x) log pe(yc |x)

Where the subindex c indicates probability of class c. Then

we use a threshold in the entropy to decide if an example is

in-distribution or out-of-distribution. The idea is that in-

distribution examples will have a low entropy, as certain

class probabilities dominate the prediction, while out-of-

distribution examples will have a uniform class probability

distribution, which increases entropy.

We evaluate performance using area under the ROC

curve (AUC) as the number of ensemble members is varied,

as this summarizes performance across thresholds. Results

are presented in Table 1 and Figure 10 (supp) , while we also

make a kernel density estimate of the ID and OOD entropy

distributions, shown in Figure 11 (in supplementary).

Our results indicate that probabilities produced by

Deep Ensembles have an excellent capability for out-of-

distribution detection, starting from 5 ensemble members.

Deep Sub-Ensembles also produces good separation be-

tween ID and OOD examples, but requires more ensemble

members to reach performance that is slightly worse than a

Deep Ensemble, at 15 ensemble members. Entropy distri-

butions show that it clearly divides ID and OOD examples,

but Deep Sub-Ensembles produce lower entropy values for

OOD samples across all number of ensemble members. We

interpret this as evidence of Deep Sub-Ensembles being ap-

proximations of Deep Ensembles.

We provide additional results in the supplementary ma-

terial on accuracy as a function of confidence threshold in

this task. These results show that sub-ensembles closely

approximates the confidence properties of a deep ensemble,

with a small loss of less than 2% accuracy with M = 15
and the SE-2 and SE-3 configurations. SE-1 has a larger

gap of around 10% accuracy.

5.3. Calibration

As mentioned before, calibration is an important feature

of uncertainty-aware machine learning models. We produce

reliability diagrams [1] (also known as confidence-accuracy

plots or calibration curves), and estimate the expected cali-

bration error [3] (ECE), both on the SVHN dataset. To pro-

duce reliability diagrams, we use N = 7 histogram bins.

Reliability diagrams are available in Figure 6, and they

show that both methods are calibrated, starting from being

underconfident with the base model (single ensemble mem-

ber), and with increasing calibration as ensemble members

are added.

A plot of expected calibration error versus number of en-

semble members is shown in Figure 6e. These plots show

how ECE decreases with increasing number of ensemble

members, except for the case of SE-1 which has a level of

miscalibration across all number of ensembles. SE-2 has an

acceptable degree of calibration, while SE-3 has ECE that

is comparable with a full Deep Ensemble.

5.4. Trunk vs Ensemble Network Performance

One additional property of a Deep Sub-Ensemble is that

since a trunk network is trained once, due to random weight

initialization and randomness in the training process, the

model might not produce the best features given the data,

and the ensemble performance could be limited by the trunk

network.

We evaluated this hypothesis by performing 10 runs of

training Deep Sub-Ensembles with the SE-1 configuration

on MNIST, CIFAR10, and SVHN with ensemble members

varying from 1 to 15, and evaluating the trunk model error

and the ensemble error. These results are shown in Figure

7.

It can be seen that there is a strong correlation between

trunk and ensemble error, with the same effect happening

for negative log-likelihood, except for SVHN which does

not perform well with the SE-1 configuration in terms of

NLL. Overall these results indicate that a more thorough

design and training of the trunk model might be necessary

for good ensemble performance.

5.5. Computational Performance Analysis

Ensembling less layers has a theoretical computation

cost advantage over ensembling the full model. In this sec-

tion we aim to evaluate this hypothesis and measure how
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Figure 6: Reliability diagrams with different number of ensembles M (a-d) and Expected Calibration Error as the number of

ensembles is varied (e) on SVHN. Sub-ensembles are competitive when ensembling at least two layers.
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Figure 7: Relationship between Sub-Ensemble (Y axis) and Trunk network performance (X axis), in terms of error and neg-

ative log-likelihood, for configuration SE-1. There is a strong correlation between the trunk and sub-ensemble performance.

much speedup can be obtained by using a sub-ensemble in-

stead of a full deep ensemble.

For this purpose we estimate the number of floating point

operations (FLOPs) 3 for each architecture, as we vary the

number of ensembles. We evaluate models for SVHN and

CIFAR10, as they are the most complex ones. We plot

the error and negative log-likelihood as function of FLOPs

for different number of ensemble members, as a way to

show the trade-off between error and uncertainty quality

with computational requirements, and we also compute the

speedup of a sub-ensemble over a full ensemble with num-

ber of FLOPs as proxy for computational performance. This

is adequate as FLOPs are an implementation independent

metric, and we are comparing similar architectures where

FLOPs should not deviate considerably from real perfor-

mance.

Results are shown in Figure 8 for CIFAR10 and SVHN.

For CIFAR10, there is a clear trade-off between error and

computation, but it is possible to trade small NLL amounts

3Not to be confused with FLOPS, which is floating point operations per

second

for big gains in computational performance (up to 1.5-2.5

times).

For SVHN, similar patterns in error trade-offs are seen,

and the NLL decreases considerably with small compute,

for example SE-1 almost has no gains in NLL with very

small increases in FLOPs. SE-2 and SE-3 allow to trade

small variations in NLL for large computational gains (up

to 2-5 times).

Looking at speedups it can be seen that a sub-ensemble

obtains decent speed improvements over a full ensemble,

but there are large variations in speedup depending on

model complexity and number of ensemble members. For

example a maximum speedup of 15 can be reached with

SE-1 on a VGG-like network, but smaller speedups are ob-

tained on ResNet, maximum 2.7 with SE-2. It is clear that

speedups heavily depend on the granularity and selection of

layers to be ensembled.

5.6. Discussion

In this section we discuss our overall results. We believe

our experimental results show that sub-ensembles work as
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Figure 8: Computational performance measured as number of floating point operations (FLOPs) and Speedup (versus a deep

ensemble) compared with Error and NLL on CIFAR10 using ResNet-20 (top) and SVHN using VGG-like network (bottom).

Note how increasing FLOPS decreases error and NLL, while Error vs Speedup plateaus at different error levels depending

on sub-ensemble configuration (SE-1, SE-2, etc), showing the trade-off between error and sub-ensemble computational

complexity. NLL is very similar in all configurations indicating similar uncertainty estimation capabilities.

an approximation to deep ensembles, as in most cases per-

formance is lower (in terms of error and NLL) than the full

deep ensemble, and this gap increases when less layers are

ensembled (e.g. with SE-1 on all datasets we evaluated).

The gap reduces as more layers are ensembled, and in some

cases it is indistinguishable from the deep ensemble perfor-

mance (e.g. with SE-2 error on MNIST, or SE-2 NLL on

CIFAR10).

This pattern is also reflected in other metrics, such as

out of distribution performance (AUC), expected calibration

error, and intra-ensemble correlations. This indicates that

the number of layers to be ensembled works as a parameter

that tunes between full and partial ensemble performance.

This means that a sub-ensemble works as an approximation

to a deep ensemble.

Overall the performance gap between sub-ensembles and

full ensembles depends on many factors, including dataset,

model architecture, and which layers will be ensembled. We

believe this latter factor is the most important, as it directly

controls the ensemble and its potential for correctly estimat-

ing uncertainty. The selection of which layer the architec-

ture is divided into task and trunk network can be consid-

ered a hyper-parameter.

6. Conclusions

In this paper we have presented deep sub-ensembles for

neural networks, a simplification of deep ensembles with

the purpose of reducing computation time at inference.

Our results show that it might not be necessary to en-

semble all the layers in a model, and that a trade-off be-

tween computation time and uncertainty quality is be possi-

ble, depending on the task and dataset being learned. Sub-

ensembles require the network to be divided into trunk and

task networks, and the layer where this division is made can

be considered as a hyper-parameter.

We evaluated our method in three image classification

datasets: MNIST, CIFAR10, and SVHN. On CIFAR10,

sub-ensembles with the SE-2 configuration produce a 1.5-

2% gap in error, and a negligible gap in negative log-

likelihood. On SVHN, the error gap is less then 0.5% with

the SE-3 and SE-4 configurations and same negligible gap

in negative log-likelihood.

Our results also show that sub-ensembles have similar

calibration properties as a deep ensemble, with a 0.5% gap

in expected calibration error on SVHN. For out of distribu-

tion detection between SVHN and CIFAR10, we also find

that there is a small gap (around 2-3%), as measured in area

under the ROC curve.

Computational performance in terms of FLOPs, we mea-

sured speedups up to 1.5-2.5 for ResNet-20 on the CIFAR10

dataset, and speedups of 5-15 for a VGG-like network on

the SVHN dataset, with small increase in error and NLL.

We expect that sub-ensembles will increase the use of

neural networks with uncertainty in their outputs, as the re-

duced computational cost will make these methods more

practical for real-world applications, all while being bet-

ter calibrated than standard neural networks, and will small

gaps in performance with a full ensemble.
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